/* Copyright (c) 2001 Matej Pfajfar. * Copyright (c) 2001-2004, Roger Dingledine. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. * Copyright (c) 2007-2017, The Tor Project, Inc. */ /* See LICENSE for licensing information */ /** * \file connection_or.c * \brief Functions to handle OR connections, TLS handshaking, and * cells on the network. * * An or_connection_t is a subtype of connection_t (as implemented in * connection.c) that uses a TLS connection to send and receive cells on the * Tor network. (By sending and receiving cells connection_or.c, it cooperates * with channeltls.c to implement a the channel interface of channel.c.) * * Every OR connection has an underlying tortls_t object (as implemented in * tortls.c) which it uses as its TLS stream. It is responsible for * sending and receiving cells over that TLS. * * This module also implements the client side of the v3 Tor link handshake, **/ #include "or.h" #include "bridges.h" #include "buffers.h" /* * Define this so we get channel internal functions, since we're implementing * part of a subclass (channel_tls_t). */ #define TOR_CHANNEL_INTERNAL_ #define CONNECTION_OR_PRIVATE #include "channel.h" #include "channeltls.h" #include "circuitbuild.h" #include "circuitlist.h" #include "circuitstats.h" #include "command.h" #include "config.h" #include "connection.h" #include "connection_or.h" #include "control.h" #include "crypto_rand.h" #include "crypto_util.h" #include "dirserv.h" #include "entrynodes.h" #include "geoip.h" #include "main.h" #include "link_handshake.h" #include "microdesc.h" #include "networkstatus.h" #include "nodelist.h" #include "proto_cell.h" #include "reasons.h" #include "relay.h" #include "rephist.h" #include "router.h" #include "routerkeys.h" #include "routerlist.h" #include "ext_orport.h" #include "scheduler.h" #include "torcert.h" #include "channelpadding.h" static int connection_tls_finish_handshake(or_connection_t *conn); static int connection_or_launch_v3_or_handshake(or_connection_t *conn); static int connection_or_process_cells_from_inbuf(or_connection_t *conn); static int connection_or_check_valid_tls_handshake(or_connection_t *conn, int started_here, char *digest_rcvd_out); static void connection_or_tls_renegotiated_cb(tor_tls_t *tls, void *_conn); static unsigned int connection_or_is_bad_for_new_circs(or_connection_t *or_conn); static void connection_or_mark_bad_for_new_circs(or_connection_t *or_conn); /* * Call this when changing connection state, so notifications to the owning * channel can be handled. */ static void connection_or_change_state(or_connection_t *conn, uint8_t state); static void connection_or_check_canonicity(or_connection_t *conn, int started_here); /**************************************************************/ /** Global map between Extended ORPort identifiers and OR * connections. */ static digestmap_t *orconn_ext_or_id_map = NULL; /** Clear clear conn->identity_digest and update other data * structures as appropriate.*/ void connection_or_clear_identity(or_connection_t *conn) { tor_assert(conn); memset(conn->identity_digest, 0, DIGEST_LEN); } /** Clear all identities in OR conns.*/ void connection_or_clear_identity_map(void) { smartlist_t *conns = get_connection_array(); SMARTLIST_FOREACH(conns, connection_t *, conn, { if (conn->type == CONN_TYPE_OR) { connection_or_clear_identity(TO_OR_CONN(conn)); } }); } /** Change conn->identity_digest to digest, and add conn into * the appropriate digest maps. * * NOTE that this function only allows two kinds of transitions: from * unset identity to set identity, and from idempotent re-settings * of the same identity. It's not allowed to clear an identity or to * change an identity. Return 0 on success, and -1 if the transition * is not allowed. **/ static void connection_or_set_identity_digest(or_connection_t *conn, const char *rsa_digest, const ed25519_public_key_t *ed_id) { channel_t *chan = NULL; tor_assert(conn); tor_assert(rsa_digest); if (conn->chan) chan = TLS_CHAN_TO_BASE(conn->chan); log_info(LD_HANDSHAKE, "Set identity digest for %p (%s): %s %s.", conn, escaped_safe_str(conn->base_.address), hex_str(rsa_digest, DIGEST_LEN), ed25519_fmt(ed_id)); log_info(LD_HANDSHAKE, " (Previously: %s %s)", hex_str(conn->identity_digest, DIGEST_LEN), chan ? ed25519_fmt(&chan->ed25519_identity) : ""); const int rsa_id_was_set = ! tor_digest_is_zero(conn->identity_digest); const int ed_id_was_set = chan && !ed25519_public_key_is_zero(&chan->ed25519_identity); const int rsa_changed = tor_memneq(conn->identity_digest, rsa_digest, DIGEST_LEN); const int ed_changed = ed_id_was_set && (!ed_id || !ed25519_pubkey_eq(ed_id, &chan->ed25519_identity)); tor_assert(!rsa_changed || !rsa_id_was_set); tor_assert(!ed_changed || !ed_id_was_set); if (!rsa_changed && !ed_changed) return; /* If the identity was set previously, remove the old mapping. */ if (rsa_id_was_set) { connection_or_clear_identity(conn); if (chan) channel_clear_identity_digest(chan); } memcpy(conn->identity_digest, rsa_digest, DIGEST_LEN); /* If we're initializing the IDs to zero, don't add a mapping yet. */ if (tor_digest_is_zero(rsa_digest) && (!ed_id || ed25519_public_key_is_zero(ed_id))) return; /* Deal with channels */ if (chan) channel_set_identity_digest(chan, rsa_digest, ed_id); } /** Remove the Extended ORPort identifier of conn from the * global identifier list. Also, clear the identifier from the * connection itself. */ void connection_or_remove_from_ext_or_id_map(or_connection_t *conn) { or_connection_t *tmp; if (!orconn_ext_or_id_map) return; if (!conn->ext_or_conn_id) return; tmp = digestmap_remove(orconn_ext_or_id_map, conn->ext_or_conn_id); if (!tor_digest_is_zero(conn->ext_or_conn_id)) tor_assert(tmp == conn); memset(conn->ext_or_conn_id, 0, EXT_OR_CONN_ID_LEN); } /** Return the connection whose ext_or_id is id. Return NULL if no such * connection is found. */ or_connection_t * connection_or_get_by_ext_or_id(const char *id) { if (!orconn_ext_or_id_map) return NULL; return digestmap_get(orconn_ext_or_id_map, id); } /** Deallocate the global Extended ORPort identifier list */ void connection_or_clear_ext_or_id_map(void) { digestmap_free(orconn_ext_or_id_map, NULL); orconn_ext_or_id_map = NULL; } /** Creates an Extended ORPort identifier for conn and deposits * it into the global list of identifiers. */ void connection_or_set_ext_or_identifier(or_connection_t *conn) { char random_id[EXT_OR_CONN_ID_LEN]; or_connection_t *tmp; if (!orconn_ext_or_id_map) orconn_ext_or_id_map = digestmap_new(); /* Remove any previous identifiers: */ if (conn->ext_or_conn_id && !tor_digest_is_zero(conn->ext_or_conn_id)) connection_or_remove_from_ext_or_id_map(conn); do { crypto_rand(random_id, sizeof(random_id)); } while (digestmap_get(orconn_ext_or_id_map, random_id)); if (!conn->ext_or_conn_id) conn->ext_or_conn_id = tor_malloc_zero(EXT_OR_CONN_ID_LEN); memcpy(conn->ext_or_conn_id, random_id, EXT_OR_CONN_ID_LEN); tmp = digestmap_set(orconn_ext_or_id_map, random_id, conn); tor_assert(!tmp); } /**************************************************************/ /** Map from a string describing what a non-open OR connection was doing when * failed, to an intptr_t describing the count of connections that failed that * way. Note that the count is stored _as_ the pointer. */ static strmap_t *broken_connection_counts; /** If true, do not record information in broken_connection_counts. */ static int disable_broken_connection_counts = 0; /** Record that an OR connection failed in state. */ static void note_broken_connection(const char *state) { void *ptr; intptr_t val; if (disable_broken_connection_counts) return; if (!broken_connection_counts) broken_connection_counts = strmap_new(); ptr = strmap_get(broken_connection_counts, state); val = (intptr_t)ptr; val++; ptr = (void*)val; strmap_set(broken_connection_counts, state, ptr); } /** Forget all recorded states for failed connections. If * stop_recording is true, don't record any more. */ void clear_broken_connection_map(int stop_recording) { if (broken_connection_counts) strmap_free(broken_connection_counts, NULL); broken_connection_counts = NULL; if (stop_recording) disable_broken_connection_counts = 1; } /** Write a detailed description the state of orconn into the * buflen-byte buffer at buf. This description includes not * only the OR-conn level state but also the TLS state. It's useful for * diagnosing broken handshakes. */ static void connection_or_get_state_description(or_connection_t *orconn, char *buf, size_t buflen) { connection_t *conn = TO_CONN(orconn); const char *conn_state; char tls_state[256]; tor_assert(conn->type == CONN_TYPE_OR || conn->type == CONN_TYPE_EXT_OR); conn_state = conn_state_to_string(conn->type, conn->state); tor_tls_get_state_description(orconn->tls, tls_state, sizeof(tls_state)); tor_snprintf(buf, buflen, "%s with SSL state %s", conn_state, tls_state); } /** Record the current state of orconn as the state of a broken * connection. */ static void connection_or_note_state_when_broken(or_connection_t *orconn) { char buf[256]; if (disable_broken_connection_counts) return; connection_or_get_state_description(orconn, buf, sizeof(buf)); log_info(LD_HANDSHAKE,"Connection died in state '%s'", buf); note_broken_connection(buf); } /** Helper type used to sort connection states and find the most frequent. */ typedef struct broken_state_count_t { intptr_t count; const char *state; } broken_state_count_t; /** Helper function used to sort broken_state_count_t by frequency. */ static int broken_state_count_compare(const void **a_ptr, const void **b_ptr) { const broken_state_count_t *a = *a_ptr, *b = *b_ptr; if (b->count < a->count) return -1; else if (b->count == a->count) return 0; else return 1; } /** Upper limit on the number of different states to report for connection * failure. */ #define MAX_REASONS_TO_REPORT 10 /** Report a list of the top states for failed OR connections at log level * severity, in log domain domain. */ void connection_or_report_broken_states(int severity, int domain) { int total = 0; smartlist_t *items; if (!broken_connection_counts || disable_broken_connection_counts) return; items = smartlist_new(); STRMAP_FOREACH(broken_connection_counts, state, void *, countptr) { broken_state_count_t *c = tor_malloc(sizeof(broken_state_count_t)); c->count = (intptr_t)countptr; total += (int)c->count; c->state = state; smartlist_add(items, c); } STRMAP_FOREACH_END; smartlist_sort(items, broken_state_count_compare); tor_log(severity, domain, "%d connections have failed%s", total, smartlist_len(items) > MAX_REASONS_TO_REPORT ? ". Top reasons:" : ":"); SMARTLIST_FOREACH_BEGIN(items, const broken_state_count_t *, c) { if (c_sl_idx > MAX_REASONS_TO_REPORT) break; tor_log(severity, domain, " %d connections died in state %s", (int)c->count, c->state); } SMARTLIST_FOREACH_END(c); SMARTLIST_FOREACH(items, broken_state_count_t *, c, tor_free(c)); smartlist_free(items); } /** Call this to change or_connection_t states, so the owning channel_tls_t can * be notified. */ static void connection_or_change_state(or_connection_t *conn, uint8_t state) { uint8_t old_state; tor_assert(conn); old_state = conn->base_.state; conn->base_.state = state; if (conn->chan) channel_tls_handle_state_change_on_orconn(conn->chan, conn, old_state, state); } /** Return the number of circuits using an or_connection_t; this used to * be an or_connection_t field, but it got moved to channel_t and we * shouldn't maintain two copies. */ MOCK_IMPL(int, connection_or_get_num_circuits, (or_connection_t *conn)) { tor_assert(conn); if (conn->chan) { return channel_num_circuits(TLS_CHAN_TO_BASE(conn->chan)); } else return 0; } /**************************************************************/ /** Pack the cell_t host-order structure src into network-order * in the buffer dest. See tor-spec.txt for details about the * wire format. * * Note that this function doesn't touch dst-\>next: the caller * should set it or clear it as appropriate. */ void cell_pack(packed_cell_t *dst, const cell_t *src, int wide_circ_ids) { char *dest = dst->body; if (wide_circ_ids) { set_uint32(dest, htonl(src->circ_id)); dest += 4; } else { /* Clear the last two bytes of dest, in case we can accidentally * send them to the network somehow. */ memset(dest+CELL_MAX_NETWORK_SIZE-2, 0, 2); set_uint16(dest, htons(src->circ_id)); dest += 2; } set_uint8(dest, src->command); memcpy(dest+1, src->payload, CELL_PAYLOAD_SIZE); } /** Unpack the network-order buffer src into a host-order * cell_t structure dest. */ static void cell_unpack(cell_t *dest, const char *src, int wide_circ_ids) { if (wide_circ_ids) { dest->circ_id = ntohl(get_uint32(src)); src += 4; } else { dest->circ_id = ntohs(get_uint16(src)); src += 2; } dest->command = get_uint8(src); memcpy(dest->payload, src+1, CELL_PAYLOAD_SIZE); } /** Write the header of cell into the first VAR_CELL_MAX_HEADER_SIZE * bytes of hdr_out. Returns number of bytes used. */ int var_cell_pack_header(const var_cell_t *cell, char *hdr_out, int wide_circ_ids) { int r; if (wide_circ_ids) { set_uint32(hdr_out, htonl(cell->circ_id)); hdr_out += 4; r = VAR_CELL_MAX_HEADER_SIZE; } else { set_uint16(hdr_out, htons(cell->circ_id)); hdr_out += 2; r = VAR_CELL_MAX_HEADER_SIZE - 2; } set_uint8(hdr_out, cell->command); set_uint16(hdr_out+1, htons(cell->payload_len)); return r; } /** Allocate and return a new var_cell_t with payload_len bytes of * payload space. */ var_cell_t * var_cell_new(uint16_t payload_len) { size_t size = offsetof(var_cell_t, payload) + payload_len; var_cell_t *cell = tor_malloc_zero(size); cell->payload_len = payload_len; cell->command = 0; cell->circ_id = 0; return cell; } /** * Copy a var_cell_t */ var_cell_t * var_cell_copy(const var_cell_t *src) { var_cell_t *copy = NULL; size_t size = 0; if (src != NULL) { size = offsetof(var_cell_t, payload) + src->payload_len; copy = tor_malloc_zero(size); copy->payload_len = src->payload_len; copy->command = src->command; copy->circ_id = src->circ_id; memcpy(copy->payload, src->payload, copy->payload_len); } return copy; } /** Release all space held by cell. */ void var_cell_free_(var_cell_t *cell) { tor_free(cell); } /** We've received an EOF from conn. Mark it for close and return. */ int connection_or_reached_eof(or_connection_t *conn) { tor_assert(conn); log_info(LD_OR,"OR connection reached EOF. Closing."); connection_or_close_normally(conn, 1); return 0; } /** Handle any new bytes that have come in on connection conn. * If conn is in 'open' state, hand it to * connection_or_process_cells_from_inbuf() * (else do nothing). */ int connection_or_process_inbuf(or_connection_t *conn) { /** Don't let the inbuf of a nonopen OR connection grow beyond this many * bytes: it's either a broken client, a non-Tor client, or a DOS * attempt. */ #define MAX_OR_INBUF_WHEN_NONOPEN 0 int ret = 0; tor_assert(conn); switch (conn->base_.state) { case OR_CONN_STATE_PROXY_HANDSHAKING: ret = connection_read_proxy_handshake(TO_CONN(conn)); /* start TLS after handshake completion, or deal with error */ if (ret == 1) { tor_assert(TO_CONN(conn)->proxy_state == PROXY_CONNECTED); if (connection_tls_start_handshake(conn, 0) < 0) ret = -1; /* Touch the channel's active timestamp if there is one */ if (conn->chan) channel_timestamp_active(TLS_CHAN_TO_BASE(conn->chan)); } if (ret < 0) { connection_or_close_for_error(conn, 0); } return ret; case OR_CONN_STATE_TLS_SERVER_RENEGOTIATING: case OR_CONN_STATE_OPEN: case OR_CONN_STATE_OR_HANDSHAKING_V2: case OR_CONN_STATE_OR_HANDSHAKING_V3: return connection_or_process_cells_from_inbuf(conn); default: break; /* don't do anything */ } /* This check was necessary with 0.2.2, when the TLS_SERVER_RENEGOTIATING * check would otherwise just let data accumulate. It serves no purpose * in 0.2.3. * * XXXX Remove this check once we verify that the above paragraph is * 100% true. */ if (buf_datalen(conn->base_.inbuf) > MAX_OR_INBUF_WHEN_NONOPEN) { log_fn(LOG_PROTOCOL_WARN, LD_NET, "Accumulated too much data (%d bytes) " "on nonopen OR connection %s %s:%u in state %s; closing.", (int)buf_datalen(conn->base_.inbuf), connection_or_nonopen_was_started_here(conn) ? "to" : "from", conn->base_.address, conn->base_.port, conn_state_to_string(conn->base_.type, conn->base_.state)); connection_or_close_for_error(conn, 0); ret = -1; } return ret; } /** Called whenever we have flushed some data on an or_conn: add more data * from active circuits. */ int connection_or_flushed_some(or_connection_t *conn) { size_t datalen; /* Update the channel's active timestamp if there is one */ if (conn->chan) channel_timestamp_active(TLS_CHAN_TO_BASE(conn->chan)); /* If we're under the low water mark, add cells until we're just over the * high water mark. */ datalen = connection_get_outbuf_len(TO_CONN(conn)); if (datalen < OR_CONN_LOWWATER) { /* Let the scheduler know */ scheduler_channel_wants_writes(TLS_CHAN_TO_BASE(conn->chan)); } return 0; } /** This is for channeltls.c to ask how many cells we could accept if * they were available. */ ssize_t connection_or_num_cells_writeable(or_connection_t *conn) { size_t datalen, cell_network_size; ssize_t n = 0; tor_assert(conn); /* * If we're under the high water mark, we're potentially * writeable; note this is different from the calculation above * used to trigger when to start writing after we've stopped. */ datalen = connection_get_outbuf_len(TO_CONN(conn)); if (datalen < OR_CONN_HIGHWATER) { cell_network_size = get_cell_network_size(conn->wide_circ_ids); n = CEIL_DIV(OR_CONN_HIGHWATER - datalen, cell_network_size); } return n; } /** Connection conn has finished writing and has no bytes left on * its outbuf. * * Otherwise it's in state "open": stop writing and return. * * If conn is broken, mark it for close and return -1, else * return 0. */ int connection_or_finished_flushing(or_connection_t *conn) { tor_assert(conn); assert_connection_ok(TO_CONN(conn),0); switch (conn->base_.state) { case OR_CONN_STATE_PROXY_HANDSHAKING: case OR_CONN_STATE_OPEN: case OR_CONN_STATE_OR_HANDSHAKING_V2: case OR_CONN_STATE_OR_HANDSHAKING_V3: break; default: log_err(LD_BUG,"Called in unexpected state %d.", conn->base_.state); tor_fragile_assert(); return -1; } /* Update the channel's active timestamp if there is one */ if (conn->chan) channel_timestamp_active(TLS_CHAN_TO_BASE(conn->chan)); return 0; } /** Connected handler for OR connections: begin the TLS handshake. */ int connection_or_finished_connecting(or_connection_t *or_conn) { const int proxy_type = or_conn->proxy_type; connection_t *conn; tor_assert(or_conn); conn = TO_CONN(or_conn); tor_assert(conn->state == OR_CONN_STATE_CONNECTING); log_debug(LD_HANDSHAKE,"OR connect() to router at %s:%u finished.", conn->address,conn->port); control_event_bootstrap(BOOTSTRAP_STATUS_HANDSHAKE, 0); if (proxy_type != PROXY_NONE) { /* start proxy handshake */ if (connection_proxy_connect(conn, proxy_type) < 0) { connection_or_close_for_error(or_conn, 0); return -1; } connection_start_reading(conn); connection_or_change_state(or_conn, OR_CONN_STATE_PROXY_HANDSHAKING); return 0; } if (connection_tls_start_handshake(or_conn, 0) < 0) { /* TLS handshaking error of some kind. */ connection_or_close_for_error(or_conn, 0); return -1; } return 0; } /** Called when we're about to finally unlink and free an OR connection: * perform necessary accounting and cleanup */ void connection_or_about_to_close(or_connection_t *or_conn) { connection_t *conn = TO_CONN(or_conn); /* Tell the controlling channel we're closed */ if (or_conn->chan) { channel_closed(TLS_CHAN_TO_BASE(or_conn->chan)); /* * NULL this out because the channel might hang around a little * longer before channel_run_cleanup() gets it. */ or_conn->chan->conn = NULL; or_conn->chan = NULL; } /* Remember why we're closing this connection. */ if (conn->state != OR_CONN_STATE_OPEN) { /* now mark things down as needed */ if (connection_or_nonopen_was_started_here(or_conn)) { const or_options_t *options = get_options(); connection_or_note_state_when_broken(or_conn); /* Tell the new guard API about the channel failure */ entry_guard_chan_failed(TLS_CHAN_TO_BASE(or_conn->chan)); if (conn->state >= OR_CONN_STATE_TLS_HANDSHAKING) { int reason = tls_error_to_orconn_end_reason(or_conn->tls_error); control_event_or_conn_status(or_conn, OR_CONN_EVENT_FAILED, reason); if (!authdir_mode_tests_reachability(options)) control_event_bootstrap_prob_or( orconn_end_reason_to_control_string(reason), reason, or_conn); } } } else if (conn->hold_open_until_flushed) { /* We only set hold_open_until_flushed when we're intentionally * closing a connection. */ control_event_or_conn_status(or_conn, OR_CONN_EVENT_CLOSED, tls_error_to_orconn_end_reason(or_conn->tls_error)); } else if (!tor_digest_is_zero(or_conn->identity_digest)) { control_event_or_conn_status(or_conn, OR_CONN_EVENT_CLOSED, tls_error_to_orconn_end_reason(or_conn->tls_error)); } } /** Return 1 if identity digest id_digest is known to be a * currently or recently running relay. Otherwise return 0. */ int connection_or_digest_is_known_relay(const char *id_digest) { if (router_get_consensus_status_by_id(id_digest)) return 1; /* It's in the consensus: "yes" */ if (router_get_by_id_digest(id_digest)) return 1; /* Not in the consensus, but we have a descriptor for * it. Probably it was in a recent consensus. "Yes". */ return 0; } /** Set the per-conn read and write limits for conn. If it's a known * relay, we will rely on the global read and write buckets, so give it * per-conn limits that are big enough they'll never matter. But if it's * not a known relay, first check if we set PerConnBwRate/Burst, then * check if the consensus sets them, else default to 'big enough'. * * If reset is true, set the bucket to be full. Otherwise, just * clip the bucket if it happens to be too full. */ static void connection_or_update_token_buckets_helper(or_connection_t *conn, int reset, const or_options_t *options) { int rate, burst; /* per-connection rate limiting params */ if (connection_or_digest_is_known_relay(conn->identity_digest)) { /* It's in the consensus, or we have a descriptor for it meaning it * was probably in a recent consensus. It's a recognized relay: * give it full bandwidth. */ rate = (int)options->BandwidthRate; burst = (int)options->BandwidthBurst; } else { /* Not a recognized relay. Squeeze it down based on the suggested * bandwidth parameters in the consensus, but allow local config * options to override. */ rate = options->PerConnBWRate ? (int)options->PerConnBWRate : networkstatus_get_param(NULL, "perconnbwrate", (int)options->BandwidthRate, 1, INT32_MAX); burst = options->PerConnBWBurst ? (int)options->PerConnBWBurst : networkstatus_get_param(NULL, "perconnbwburst", (int)options->BandwidthBurst, 1, INT32_MAX); } conn->bandwidthrate = rate; conn->bandwidthburst = burst; if (reset) { /* set up the token buckets to be full */ conn->read_bucket = conn->write_bucket = burst; return; } /* If the new token bucket is smaller, take out the extra tokens. * (If it's larger, don't -- the buckets can grow to reach the cap.) */ if (conn->read_bucket > burst) conn->read_bucket = burst; if (conn->write_bucket > burst) conn->write_bucket = burst; } /** Either our set of relays or our per-conn rate limits have changed. * Go through all the OR connections and update their token buckets to make * sure they don't exceed their maximum values. */ void connection_or_update_token_buckets(smartlist_t *conns, const or_options_t *options) { SMARTLIST_FOREACH(conns, connection_t *, conn, { if (connection_speaks_cells(conn)) connection_or_update_token_buckets_helper(TO_OR_CONN(conn), 0, options); }); } /* Mark or_conn as canonical if is_canonical is set, and * non-canonical otherwise. Adjust idle_timeout accordingly. */ void connection_or_set_canonical(or_connection_t *or_conn, int is_canonical) { if (bool_eq(is_canonical, or_conn->is_canonical) && or_conn->idle_timeout != 0) { /* Don't recalculate an existing idle_timeout unless the canonical * status changed. */ return; } or_conn->is_canonical = !! is_canonical; /* force to a 1-bit boolean */ or_conn->idle_timeout = channelpadding_get_channel_idle_timeout( TLS_CHAN_TO_BASE(or_conn->chan), is_canonical); log_info(LD_CIRC, "Channel " U64_FORMAT " chose an idle timeout of %d.", or_conn->chan ? U64_PRINTF_ARG(TLS_CHAN_TO_BASE(or_conn->chan)->global_identifier):0, or_conn->idle_timeout); } /** If we don't necessarily know the router we're connecting to, but we * have an addr/port/id_digest, then fill in as much as we can. Start * by checking to see if this describes a router we know. * started_here is 1 if we are the initiator of conn and * 0 if it's an incoming connection. */ void connection_or_init_conn_from_address(or_connection_t *conn, const tor_addr_t *addr, uint16_t port, const char *id_digest, const ed25519_public_key_t *ed_id, int started_here) { log_debug(LD_HANDSHAKE, "init conn from address %s: %s, %s (%d)", fmt_addr(addr), hex_str((const char*)id_digest, DIGEST_LEN), ed25519_fmt(ed_id), started_here); connection_or_set_identity_digest(conn, id_digest, ed_id); connection_or_update_token_buckets_helper(conn, 1, get_options()); conn->base_.port = port; tor_addr_copy(&conn->base_.addr, addr); tor_addr_copy(&conn->real_addr, addr); connection_or_check_canonicity(conn, started_here); } /** Check whether the identity of conn matches a known node. If it * does, check whether the address of conn matches the expected address, and * update the connection's is_canonical flag, nickname, and address fields as * appropriate. */ static void connection_or_check_canonicity(or_connection_t *conn, int started_here) { const char *id_digest = conn->identity_digest; const ed25519_public_key_t *ed_id = NULL; const tor_addr_t *addr = &conn->real_addr; if (conn->chan) ed_id = & TLS_CHAN_TO_BASE(conn->chan)->ed25519_identity; const node_t *r = node_get_by_id(id_digest); if (r && node_supports_ed25519_link_authentication(r, 1) && ! node_ed25519_id_matches(r, ed_id)) { /* If this node is capable of proving an ed25519 ID, * we can't call this a canonical connection unless both IDs match. */ r = NULL; } if (r) { tor_addr_port_t node_ap; node_get_pref_orport(r, &node_ap); /* XXXX proposal 186 is making this more complex. For now, a conn is canonical when it uses the _preferred_ address. */ if (tor_addr_eq(&conn->base_.addr, &node_ap.addr)) connection_or_set_canonical(conn, 1); if (!started_here) { /* Override the addr/port, so our log messages will make sense. * This is dangerous, since if we ever try looking up a conn by * its actual addr/port, we won't remember. Careful! */ /* XXXX arma: this is stupid, and it's the reason we need real_addr * to track is_canonical properly. What requires it? */ /* XXXX i believe the reason we did this, originally, is because * we wanted to log what OR a connection was to, and if we logged the * right IP address and port 56244, that wouldn't be as helpful. now we * log the "right" port too, so we know if it's moria1 or moria2. */ tor_addr_copy(&conn->base_.addr, &node_ap.addr); conn->base_.port = node_ap.port; } tor_free(conn->nickname); conn->nickname = tor_strdup(node_get_nickname(r)); tor_free(conn->base_.address); conn->base_.address = tor_addr_to_str_dup(&node_ap.addr); } else { tor_free(conn->nickname); conn->nickname = tor_malloc(HEX_DIGEST_LEN+2); conn->nickname[0] = '$'; base16_encode(conn->nickname+1, HEX_DIGEST_LEN+1, conn->identity_digest, DIGEST_LEN); tor_free(conn->base_.address); conn->base_.address = tor_addr_to_str_dup(addr); } /* * We have to tell channeltls.c to update the channel marks (local, in * particular), since we may have changed the address. */ if (conn->chan) { channel_tls_update_marks(conn); } } /** These just pass all the is_bad_for_new_circs manipulation on to * channel_t */ static unsigned int connection_or_is_bad_for_new_circs(or_connection_t *or_conn) { tor_assert(or_conn); if (or_conn->chan) return channel_is_bad_for_new_circs(TLS_CHAN_TO_BASE(or_conn->chan)); else return 0; } static void connection_or_mark_bad_for_new_circs(or_connection_t *or_conn) { tor_assert(or_conn); if (or_conn->chan) channel_mark_bad_for_new_circs(TLS_CHAN_TO_BASE(or_conn->chan)); } /** How old do we let a connection to an OR get before deciding it's * too old for new circuits? */ #define TIME_BEFORE_OR_CONN_IS_TOO_OLD (60*60*24*7) /** Expire an or_connection if it is too old. Helper for * connection_or_group_set_badness_ and fast path for * channel_rsa_id_group_set_badness. * * Returns 1 if the connection was already expired, else 0. */ int connection_or_single_set_badness_(time_t now, or_connection_t *or_conn, int force) { /* XXXX this function should also be about channels? */ if (or_conn->base_.marked_for_close || connection_or_is_bad_for_new_circs(or_conn)) return 1; if (force || or_conn->base_.timestamp_created + TIME_BEFORE_OR_CONN_IS_TOO_OLD < now) { log_info(LD_OR, "Marking OR conn to %s:%d as too old for new circuits " "(fd "TOR_SOCKET_T_FORMAT", %d secs old).", or_conn->base_.address, or_conn->base_.port, or_conn->base_.s, (int)(now - or_conn->base_.timestamp_created)); connection_or_mark_bad_for_new_circs(or_conn); } return 0; } /** Given a list of all the or_connections with a given * identity, set elements of that list as is_bad_for_new_circs as * appropriate. Helper for connection_or_set_bad_connections(). * * Specifically, we set the is_bad_for_new_circs flag on: * - all connections if force is true. * - all connections that are too old. * - all open non-canonical connections for which a canonical connection * exists to the same router. * - all open canonical connections for which a 'better' canonical * connection exists to the same router. * - all open non-canonical connections for which a 'better' non-canonical * connection exists to the same router at the same address. * * See channel_is_better() in channel.c for our idea of what makes one OR * connection better than another. */ void connection_or_group_set_badness_(smartlist_t *group, int force) { /* XXXX this function should be entirely about channels, not OR * XXXX connections. */ or_connection_t *best = NULL; int n_old = 0, n_inprogress = 0, n_canonical = 0, n_other = 0; time_t now = time(NULL); /* Pass 1: expire everything that's old, and see what the status of * everything else is. */ SMARTLIST_FOREACH_BEGIN(group, or_connection_t *, or_conn) { if (connection_or_single_set_badness_(now, or_conn, force)) continue; if (connection_or_is_bad_for_new_circs(or_conn)) { ++n_old; } else if (or_conn->base_.state != OR_CONN_STATE_OPEN) { ++n_inprogress; } else if (or_conn->is_canonical) { ++n_canonical; } else { ++n_other; } } SMARTLIST_FOREACH_END(or_conn); /* Pass 2: We know how about how good the best connection is. * expire everything that's worse, and find the very best if we can. */ SMARTLIST_FOREACH_BEGIN(group, or_connection_t *, or_conn) { if (or_conn->base_.marked_for_close || connection_or_is_bad_for_new_circs(or_conn)) continue; /* This one doesn't need to be marked bad. */ if (or_conn->base_.state != OR_CONN_STATE_OPEN) continue; /* Don't mark anything bad until we have seen what happens * when the connection finishes. */ if (n_canonical && !or_conn->is_canonical) { /* We have at least one open canonical connection to this router, * and this one is open but not canonical. Mark it bad. */ log_info(LD_OR, "Marking OR conn to %s:%d as unsuitable for new circuits: " "(fd "TOR_SOCKET_T_FORMAT", %d secs old). It is not " "canonical, and we have another connection to that OR that is.", or_conn->base_.address, or_conn->base_.port, or_conn->base_.s, (int)(now - or_conn->base_.timestamp_created)); connection_or_mark_bad_for_new_circs(or_conn); continue; } if (!best || channel_is_better(TLS_CHAN_TO_BASE(or_conn->chan), TLS_CHAN_TO_BASE(best->chan))) { best = or_conn; } } SMARTLIST_FOREACH_END(or_conn); if (!best) return; /* Pass 3: One connection to OR is best. If it's canonical, mark as bad * every other open connection. If it's non-canonical, mark as bad * every other open connection to the same address. * * XXXX This isn't optimal; if we have connections to an OR at multiple * addresses, we'd like to pick the best _for each address_, and mark as * bad every open connection that isn't best for its address. But this * can only occur in cases where the other OR is old (so we have no * canonical connection to it), or where all the connections to the OR are * at noncanonical addresses and we have no good direct connection (which * means we aren't at risk of attaching circuits to it anyway). As * 0.1.2.x dies out, the first case will go away, and the second one is * "mostly harmless", so a fix can wait until somebody is bored. */ SMARTLIST_FOREACH_BEGIN(group, or_connection_t *, or_conn) { if (or_conn->base_.marked_for_close || connection_or_is_bad_for_new_circs(or_conn) || or_conn->base_.state != OR_CONN_STATE_OPEN) continue; if (or_conn != best && channel_is_better(TLS_CHAN_TO_BASE(best->chan), TLS_CHAN_TO_BASE(or_conn->chan))) { /* This isn't the best conn, _and_ the best conn is better than it */ if (best->is_canonical) { log_info(LD_OR, "Marking OR conn to %s:%d as unsuitable for new circuits: " "(fd "TOR_SOCKET_T_FORMAT", %d secs old). " "We have a better canonical one " "(fd "TOR_SOCKET_T_FORMAT"; %d secs old).", or_conn->base_.address, or_conn->base_.port, or_conn->base_.s, (int)(now - or_conn->base_.timestamp_created), best->base_.s, (int)(now - best->base_.timestamp_created)); connection_or_mark_bad_for_new_circs(or_conn); } else if (!tor_addr_compare(&or_conn->real_addr, &best->real_addr, CMP_EXACT)) { log_info(LD_OR, "Marking OR conn to %s:%d as unsuitable for new circuits: " "(fd "TOR_SOCKET_T_FORMAT", %d secs old). We have a better " "one with the " "same address (fd "TOR_SOCKET_T_FORMAT"; %d secs old).", or_conn->base_.address, or_conn->base_.port, or_conn->base_.s, (int)(now - or_conn->base_.timestamp_created), best->base_.s, (int)(now - best->base_.timestamp_created)); connection_or_mark_bad_for_new_circs(or_conn); } } } SMARTLIST_FOREACH_END(or_conn); } /* Lifetime of a connection failure. After that, we'll retry. This is in * seconds. */ #define OR_CONNECT_FAILURE_LIFETIME 60 /* The interval to use with when to clean up the failure cache. */ #define OR_CONNECT_FAILURE_CLEANUP_INTERVAL 60 /* When is the next time we have to cleanup the failure map. We keep this * because we clean it opportunistically. */ static time_t or_connect_failure_map_next_cleanup_ts = 0; /* OR connection failure entry data structure. It is kept in the connection * failure map defined below and indexed by OR identity digest, address and * port. * * We need to identify a connection failure with these three values because we * want to avoid to wrongfully blacklist a relay if someone is trying to * extend to a known identity digest but with the wrong IP/port. For instance, * it can happen if a relay changed its port but the client still has an old * descriptor with the old port. We want to stop connecting to that * IP/port/identity all together, not only the relay identity. */ typedef struct or_connect_failure_entry_t { HT_ENTRY(or_connect_failure_entry_t) node; /* Identity digest of the connection where it is connecting to. */ uint8_t identity_digest[DIGEST_LEN]; /* This is the connection address from the base connection_t. After the * connection is checked for canonicity, the base address should represent * what we know instead of where we are connecting to. This is what we need * so we can correlate known relays within the consensus. */ tor_addr_t addr; uint16_t port; /* Last time we were unable to connect. */ time_t last_failed_connect_ts; } or_connect_failure_entry_t; /* Map where we keep connection failure entries. They are indexed by addr, * port and identity digest. */ static HT_HEAD(or_connect_failure_ht, or_connect_failure_entry_t) or_connect_failures_map = HT_INITIALIZER(); /* Helper: Hashtable equal function. Return 1 if equal else 0. */ static int or_connect_failure_ht_eq(const or_connect_failure_entry_t *a, const or_connect_failure_entry_t *b) { return fast_memeq(a->identity_digest, b->identity_digest, DIGEST_LEN) && tor_addr_eq(&a->addr, &b->addr) && a->port == b->port; } /* Helper: Return the hash for the hashtable of the given entry. For this * table, it is a combination of address, port and identity digest. */ static unsigned int or_connect_failure_ht_hash(const or_connect_failure_entry_t *entry) { size_t offset = 0, addr_size; const void *addr_ptr; /* Largest size is IPv6 and IPv4 is smaller so it is fine. */ uint8_t data[16 + sizeof(uint16_t) + DIGEST_LEN]; /* Get the right address bytes depending on the family. */ switch (tor_addr_family(&entry->addr)) { case AF_INET: addr_size = 4; addr_ptr = &entry->addr.addr.in_addr.s_addr; break; case AF_INET6: addr_size = 16; addr_ptr = &entry->addr.addr.in6_addr.s6_addr; break; default: tor_assert_nonfatal_unreached(); return 0; } memcpy(data, addr_ptr, addr_size); offset += addr_size; memcpy(data + offset, entry->identity_digest, DIGEST_LEN); offset += DIGEST_LEN; set_uint16(data + offset, entry->port); offset += sizeof(uint16_t); return (unsigned int) siphash24g(data, offset); } HT_PROTOTYPE(or_connect_failure_ht, or_connect_failure_entry_t, node, or_connect_failure_ht_hash, or_connect_failure_ht_eq) HT_GENERATE2(or_connect_failure_ht, or_connect_failure_entry_t, node, or_connect_failure_ht_hash, or_connect_failure_ht_eq, 0.6, tor_reallocarray_, tor_free_) /* Initialize a given connect failure entry with the given identity_digest, * addr and port. All field are optional except ocf. */ static void or_connect_failure_init(const char *identity_digest, const tor_addr_t *addr, uint16_t port, or_connect_failure_entry_t *ocf) { tor_assert(ocf); if (identity_digest) { memcpy(ocf->identity_digest, identity_digest, sizeof(ocf->identity_digest)); } if (addr) { tor_addr_copy(&ocf->addr, addr); } ocf->port = port; } /* Return a newly allocated connection failure entry. It is initialized with * the given or_conn data. This can't fail. */ static or_connect_failure_entry_t * or_connect_failure_new(const or_connection_t *or_conn) { or_connect_failure_entry_t *ocf = tor_malloc_zero(sizeof(*ocf)); or_connect_failure_init(or_conn->identity_digest, &or_conn->real_addr, TO_CONN(or_conn)->port, ocf); return ocf; } /* Return a connection failure entry matching the given or_conn. NULL is * returned if not found. */ static or_connect_failure_entry_t * or_connect_failure_find(const or_connection_t *or_conn) { or_connect_failure_entry_t lookup; tor_assert(or_conn); or_connect_failure_init(or_conn->identity_digest, &TO_CONN(or_conn)->addr, TO_CONN(or_conn)->port, &lookup); return HT_FIND(or_connect_failure_ht, &or_connect_failures_map, &lookup); } /* Note down in the connection failure cache that a failure occurred on the * given or_conn. */ STATIC void note_or_connect_failed(const or_connection_t *or_conn) { or_connect_failure_entry_t *ocf = NULL; tor_assert(or_conn); ocf = or_connect_failure_find(or_conn); if (ocf == NULL) { ocf = or_connect_failure_new(or_conn); HT_INSERT(or_connect_failure_ht, &or_connect_failures_map, ocf); } ocf->last_failed_connect_ts = approx_time(); } /* Cleanup the connection failure cache and remove all entries below the * given cutoff. */ static void or_connect_failure_map_cleanup(time_t cutoff) { or_connect_failure_entry_t **ptr, **next, *entry; for (ptr = HT_START(or_connect_failure_ht, &or_connect_failures_map); ptr != NULL; ptr = next) { entry = *ptr; if (entry->last_failed_connect_ts <= cutoff) { next = HT_NEXT_RMV(or_connect_failure_ht, &or_connect_failures_map, ptr); tor_free(entry); } else { next = HT_NEXT(or_connect_failure_ht, &or_connect_failures_map, ptr); } } } /* Return true iff the given OR connection can connect to its destination that * is the triplet identity_digest, address and port. * * The or_conn MUST have gone through connection_or_check_canonicity() so the * base address is properly set to what we know or doesn't know. */ STATIC int should_connect_to_relay(const or_connection_t *or_conn) { time_t now, cutoff; time_t connect_failed_since_ts = 0; or_connect_failure_entry_t *ocf; tor_assert(or_conn); now = approx_time(); cutoff = now - OR_CONNECT_FAILURE_LIFETIME; /* Opportunistically try to cleanup the failure cache. We do that at regular * interval so it doesn't grow too big. */ if (or_connect_failure_map_next_cleanup_ts <= now) { or_connect_failure_map_cleanup(cutoff); or_connect_failure_map_next_cleanup_ts = now + OR_CONNECT_FAILURE_CLEANUP_INTERVAL; } /* Look if we have failed previously to the same destination as this * OR connection. */ ocf = or_connect_failure_find(or_conn); if (ocf) { connect_failed_since_ts = ocf->last_failed_connect_ts; } /* If we do have an unable to connect timestamp and it is below cutoff, we * can connect. Or we have never failed before so let it connect. */ if (connect_failed_since_ts > cutoff) { goto no_connect; } /* Ok we can connect! */ return 1; no_connect: return 0; } /** conn is in the 'connecting' state, and it failed to complete * a TCP connection. Send notifications appropriately. * * reason specifies the or_conn_end_reason for the failure; * msg specifies the strerror-style error message. */ void connection_or_connect_failed(or_connection_t *conn, int reason, const char *msg) { control_event_or_conn_status(conn, OR_CONN_EVENT_FAILED, reason); if (!authdir_mode_tests_reachability(get_options())) control_event_bootstrap_prob_or(msg, reason, conn); note_or_connect_failed(conn); } /** conn got an error in connection_handle_read_impl() or * connection_handle_write_impl() and is going to die soon. * * reason specifies the or_conn_end_reason for the failure; * msg specifies the strerror-style error message. */ void connection_or_notify_error(or_connection_t *conn, int reason, const char *msg) { channel_t *chan; tor_assert(conn); /* If we're connecting, call connect_failed() too */ if (TO_CONN(conn)->state == OR_CONN_STATE_CONNECTING) connection_or_connect_failed(conn, reason, msg); /* Tell the controlling channel if we have one */ if (conn->chan) { chan = TLS_CHAN_TO_BASE(conn->chan); /* Don't transition if we're already in closing, closed or error */ if (!CHANNEL_CONDEMNED(chan)) { channel_close_for_error(chan); } } /* No need to mark for error because connection.c is about to do that */ } /** Launch a new OR connection to addr:port and expect to * handshake with an OR with identity digest id_digest. Optionally, * pass in a pointer to a channel using this connection. * * If id_digest is me, do nothing. If we're already connected to it, * return that connection. If the connect() is in progress, set the * new conn's state to 'connecting' and return it. If connect() succeeds, * call connection_tls_start_handshake() on it. * * This function is called from router_retry_connections(), for * ORs connecting to ORs, and circuit_establish_circuit(), for * OPs connecting to ORs. * * Return the launched conn, or NULL if it failed. */ MOCK_IMPL(or_connection_t *, connection_or_connect, (const tor_addr_t *_addr, uint16_t port, const char *id_digest, const ed25519_public_key_t *ed_id, channel_tls_t *chan)) { or_connection_t *conn; const or_options_t *options = get_options(); int socket_error = 0; tor_addr_t addr; int r; tor_addr_t proxy_addr; uint16_t proxy_port; int proxy_type; tor_assert(_addr); tor_assert(id_digest); tor_addr_copy(&addr, _addr); if (server_mode(options) && router_digest_is_me(id_digest)) { log_info(LD_PROTOCOL,"Client asked me to connect to myself. Refusing."); return NULL; } if (server_mode(options) && router_ed25519_id_is_me(ed_id)) { log_info(LD_PROTOCOL,"Client asked me to connect to myself by Ed25519 " "identity. Refusing."); return NULL; } conn = or_connection_new(CONN_TYPE_OR, tor_addr_family(&addr)); /* * Set up conn so it's got all the data we need to remember for channels * * This stuff needs to happen before connection_or_init_conn_from_address() * so connection_or_set_identity_digest() and such know where to look to * keep the channel up to date. */ conn->chan = chan; chan->conn = conn; connection_or_init_conn_from_address(conn, &addr, port, id_digest, ed_id, 1); /* We have a proper OR connection setup, now check if we can connect to it * that is we haven't had a failure earlier. This is to avoid to try to * constantly connect to relays that we think are not reachable. */ if (!should_connect_to_relay(conn)) { log_info(LD_GENERAL, "Can't connect to identity %s at %s:%u because we " "failed earlier. Refusing.", hex_str(id_digest, DIGEST_LEN), fmt_addr(&TO_CONN(conn)->addr), TO_CONN(conn)->port); connection_free_(TO_CONN(conn)); return NULL; } connection_or_change_state(conn, OR_CONN_STATE_CONNECTING); control_event_or_conn_status(conn, OR_CONN_EVENT_LAUNCHED, 0); conn->is_outgoing = 1; /* If we are using a proxy server, find it and use it. */ r = get_proxy_addrport(&proxy_addr, &proxy_port, &proxy_type, TO_CONN(conn)); if (r == 0) { conn->proxy_type = proxy_type; if (proxy_type != PROXY_NONE) { tor_addr_copy(&addr, &proxy_addr); port = proxy_port; conn->base_.proxy_state = PROXY_INFANT; } } else { /* get_proxy_addrport() might fail if we have a Bridge line that references a transport, but no ClientTransportPlugin lines defining its transport proxy. If this is the case, let's try to output a useful log message to the user. */ const char *transport_name = find_transport_name_by_bridge_addrport(&TO_CONN(conn)->addr, TO_CONN(conn)->port); if (transport_name) { log_warn(LD_GENERAL, "We were supposed to connect to bridge '%s' " "using pluggable transport '%s', but we can't find a pluggable " "transport proxy supporting '%s'. This can happen if you " "haven't provided a ClientTransportPlugin line, or if " "your pluggable transport proxy stopped running.", fmt_addrport(&TO_CONN(conn)->addr, TO_CONN(conn)->port), transport_name, transport_name); control_event_bootstrap_prob_or( "Can't connect to bridge", END_OR_CONN_REASON_PT_MISSING, conn); } else { log_warn(LD_GENERAL, "Tried to connect to '%s' through a proxy, but " "the proxy address could not be found.", fmt_addrport(&TO_CONN(conn)->addr, TO_CONN(conn)->port)); } connection_free_(TO_CONN(conn)); return NULL; } switch (connection_connect(TO_CONN(conn), conn->base_.address, &addr, port, &socket_error)) { case -1: /* We failed to establish a connection probably because of a local * error. No need to blame the guard in this case. Notify the networking * system of this failure. */ connection_or_connect_failed(conn, errno_to_orconn_end_reason(socket_error), tor_socket_strerror(socket_error)); connection_free_(TO_CONN(conn)); return NULL; case 0: connection_watch_events(TO_CONN(conn), READ_EVENT | WRITE_EVENT); /* writable indicates finish, readable indicates broken link, error indicates broken link on windows */ return conn; /* case 1: fall through */ } if (connection_or_finished_connecting(conn) < 0) { /* already marked for close */ return NULL; } return conn; } /** Mark orconn for close and transition the associated channel, if any, to * the closing state. * * It's safe to call this and connection_or_close_for_error() any time, and * channel layer will treat it as a connection closing for reasons outside * its control, like the remote end closing it. It can also be a local * reason that's specific to connection_t/or_connection_t rather than * the channel mechanism, such as expiration of old connections in * run_connection_housekeeping(). If you want to close a channel_t * from somewhere that logically works in terms of generic channels * rather than connections, use channel_mark_for_close(); see also * the comment on that function in channel.c. */ void connection_or_close_normally(or_connection_t *orconn, int flush) { channel_t *chan = NULL; tor_assert(orconn); if (flush) connection_mark_and_flush_internal(TO_CONN(orconn)); else connection_mark_for_close_internal(TO_CONN(orconn)); if (orconn->chan) { chan = TLS_CHAN_TO_BASE(orconn->chan); /* Don't transition if we're already in closing, closed or error */ if (!CHANNEL_CONDEMNED(chan)) { channel_close_from_lower_layer(chan); } } } /** Mark orconn for close and transition the associated channel, if any, to * the error state. */ MOCK_IMPL(void, connection_or_close_for_error,(or_connection_t *orconn, int flush)) { channel_t *chan = NULL; tor_assert(orconn); if (flush) connection_mark_and_flush_internal(TO_CONN(orconn)); else connection_mark_for_close_internal(TO_CONN(orconn)); if (orconn->chan) { chan = TLS_CHAN_TO_BASE(orconn->chan); /* Don't transition if we're already in closing, closed or error */ if (!CHANNEL_CONDEMNED(chan)) { channel_close_for_error(chan); } } } /** Begin the tls handshake with conn. receiving is 0 if * we initiated the connection, else it's 1. * * Assign a new tls object to conn->tls, begin reading on conn, and * pass conn to connection_tls_continue_handshake(). * * Return -1 if conn is broken, else return 0. */ MOCK_IMPL(int, connection_tls_start_handshake,(or_connection_t *conn, int receiving)) { channel_listener_t *chan_listener; channel_t *chan; /* Incoming connections will need a new channel passed to the * channel_tls_listener */ if (receiving) { /* It shouldn't already be set */ tor_assert(!(conn->chan)); chan_listener = channel_tls_get_listener(); if (!chan_listener) { chan_listener = channel_tls_start_listener(); command_setup_listener(chan_listener); } chan = channel_tls_handle_incoming(conn); channel_listener_queue_incoming(chan_listener, chan); } connection_or_change_state(conn, OR_CONN_STATE_TLS_HANDSHAKING); tor_assert(!conn->tls); conn->tls = tor_tls_new(conn->base_.s, receiving); if (!conn->tls) { log_warn(LD_BUG,"tor_tls_new failed. Closing."); return -1; } tor_tls_set_logged_address(conn->tls, // XXX client and relay? escaped_safe_str(conn->base_.address)); connection_start_reading(TO_CONN(conn)); log_debug(LD_HANDSHAKE,"starting TLS handshake on fd "TOR_SOCKET_T_FORMAT, conn->base_.s); if (connection_tls_continue_handshake(conn) < 0) return -1; return 0; } /** Block all future attempts to renegotiate on 'conn' */ void connection_or_block_renegotiation(or_connection_t *conn) { tor_tls_t *tls = conn->tls; if (!tls) return; tor_tls_set_renegotiate_callback(tls, NULL, NULL); tor_tls_block_renegotiation(tls); } /** Invoked on the server side from inside tor_tls_read() when the server * gets a successful TLS renegotiation from the client. */ static void connection_or_tls_renegotiated_cb(tor_tls_t *tls, void *_conn) { or_connection_t *conn = _conn; (void)tls; /* Don't invoke this again. */ connection_or_block_renegotiation(conn); if (connection_tls_finish_handshake(conn) < 0) { /* XXXX_TLS double-check that it's ok to do this from inside read. */ /* XXXX_TLS double-check that this verifies certificates. */ connection_or_close_for_error(conn, 0); } } /** Move forward with the tls handshake. If it finishes, hand * conn to connection_tls_finish_handshake(). * * Return -1 if conn is broken, else return 0. */ int connection_tls_continue_handshake(or_connection_t *conn) { int result; check_no_tls_errors(); tor_assert(conn->base_.state == OR_CONN_STATE_TLS_HANDSHAKING); // log_notice(LD_OR, "Continue handshake with %p", conn->tls); result = tor_tls_handshake(conn->tls); // log_notice(LD_OR, "Result: %d", result); switch (result) { CASE_TOR_TLS_ERROR_ANY: log_info(LD_OR,"tls error [%s]. breaking connection.", tor_tls_err_to_string(result)); return -1; case TOR_TLS_DONE: if (! tor_tls_used_v1_handshake(conn->tls)) { if (!tor_tls_is_server(conn->tls)) { tor_assert(conn->base_.state == OR_CONN_STATE_TLS_HANDSHAKING); return connection_or_launch_v3_or_handshake(conn); } else { /* v2/v3 handshake, but we are not a client. */ log_debug(LD_OR, "Done with initial SSL handshake (server-side). " "Expecting renegotiation or VERSIONS cell"); tor_tls_set_renegotiate_callback(conn->tls, connection_or_tls_renegotiated_cb, conn); connection_or_change_state(conn, OR_CONN_STATE_TLS_SERVER_RENEGOTIATING); connection_stop_writing(TO_CONN(conn)); connection_start_reading(TO_CONN(conn)); return 0; } } tor_assert(tor_tls_is_server(conn->tls)); return connection_tls_finish_handshake(conn); case TOR_TLS_WANTWRITE: connection_start_writing(TO_CONN(conn)); log_debug(LD_OR,"wanted write"); return 0; case TOR_TLS_WANTREAD: /* handshaking conns are *always* reading */ log_debug(LD_OR,"wanted read"); return 0; case TOR_TLS_CLOSE: log_info(LD_OR,"tls closed. breaking connection."); return -1; } return 0; } /** Return 1 if we initiated this connection, or 0 if it started * out as an incoming connection. */ int connection_or_nonopen_was_started_here(or_connection_t *conn) { tor_assert(conn->base_.type == CONN_TYPE_OR || conn->base_.type == CONN_TYPE_EXT_OR); if (!conn->tls) return 1; /* it's still in proxy states or something */ if (conn->handshake_state) return conn->handshake_state->started_here; return !tor_tls_is_server(conn->tls); } /** Conn just completed its handshake. Return 0 if all is well, and * return -1 if they are lying, broken, or otherwise something is wrong. * * If we initiated this connection (started_here is true), make sure * the other side sent a correctly formed certificate. If I initiated the * connection, make sure it's the right relay by checking the certificate. * * Otherwise (if we _didn't_ initiate this connection), it's okay for * the certificate to be weird or absent. * * If we return 0, and the certificate is as expected, write a hash of the * identity key into digest_rcvd_out, which must have DIGEST_LEN * space in it. * If the certificate is invalid or missing on an incoming connection, * we return 0 and set digest_rcvd_out to DIGEST_LEN NUL bytes. * (If we return -1, the contents of this buffer are undefined.) * * As side effects, * 1) Set conn->circ_id_type according to tor-spec.txt. * 2) If we're an authdirserver and we initiated the connection: drop all * descriptors that claim to be on that IP/port but that aren't * this relay; and note that this relay is reachable. * 3) If this is a bridge and we didn't configure its identity * fingerprint, remember the keyid we just learned. */ static int connection_or_check_valid_tls_handshake(or_connection_t *conn, int started_here, char *digest_rcvd_out) { crypto_pk_t *identity_rcvd=NULL; const or_options_t *options = get_options(); int severity = server_mode(options) ? LOG_PROTOCOL_WARN : LOG_WARN; const char *safe_address = started_here ? conn->base_.address : safe_str_client(conn->base_.address); const char *conn_type = started_here ? "outgoing" : "incoming"; int has_cert = 0; check_no_tls_errors(); has_cert = tor_tls_peer_has_cert(conn->tls); if (started_here && !has_cert) { log_info(LD_HANDSHAKE,"Tried connecting to router at %s:%d, but it didn't " "send a cert! Closing.", safe_address, conn->base_.port); return -1; } else if (!has_cert) { log_debug(LD_HANDSHAKE,"Got incoming connection with no certificate. " "That's ok."); } check_no_tls_errors(); if (has_cert) { int v = tor_tls_verify(started_here?severity:LOG_INFO, conn->tls, &identity_rcvd); if (started_here && v<0) { log_fn(severity,LD_HANDSHAKE,"Tried connecting to router at %s:%d: It" " has a cert but it's invalid. Closing.", safe_address, conn->base_.port); return -1; } else if (v<0) { log_info(LD_HANDSHAKE,"Incoming connection gave us an invalid cert " "chain; ignoring."); } else { log_debug(LD_HANDSHAKE, "The certificate seems to be valid on %s connection " "with %s:%d", conn_type, safe_address, conn->base_.port); } check_no_tls_errors(); } if (identity_rcvd) { if (crypto_pk_get_digest(identity_rcvd, digest_rcvd_out) < 0) { crypto_pk_free(identity_rcvd); return -1; } } else { memset(digest_rcvd_out, 0, DIGEST_LEN); } tor_assert(conn->chan); channel_set_circid_type(TLS_CHAN_TO_BASE(conn->chan), identity_rcvd, 1); crypto_pk_free(identity_rcvd); if (started_here) { /* A TLS handshake can't teach us an Ed25519 ID, so we set it to NULL * here. */ log_debug(LD_HANDSHAKE, "Calling client_learned_peer_id from " "check_valid_tls_handshake"); return connection_or_client_learned_peer_id(conn, (const uint8_t*)digest_rcvd_out, NULL); } return 0; } /** Called when we (as a connection initiator) have definitively, * authenticatedly, learned that ID of the Tor instance on the other * side of conn is rsa_peer_id and optionally ed_peer_id. * For v1 and v2 handshakes, * this is right after we get a certificate chain in a TLS handshake * or renegotiation. For v3+ handshakes, this is right after we get a * certificate chain in a CERTS cell. * * If we did not know the ID before, record the one we got. * * If we wanted an ID, but we didn't get the one we expected, log a message * and return -1. * On relays: * - log a protocol warning whenever the fingerprints don't match; * On clients: * - if a relay's fingerprint doesn't match, log a warning; * - if we don't have updated relay fingerprints from a recent consensus, and * a fallback directory mirror's hard-coded fingerprint has changed, log an * info explaining that we will try another fallback. * * If we're testing reachability, remember what we learned. * * Return 0 on success, -1 on failure. */ int connection_or_client_learned_peer_id(or_connection_t *conn, const uint8_t *rsa_peer_id, const ed25519_public_key_t *ed_peer_id) { const or_options_t *options = get_options(); channel_tls_t *chan_tls = conn->chan; channel_t *chan = channel_tls_to_base(chan_tls); int changed_identity = 0; tor_assert(chan); const int expected_rsa_key = ! tor_digest_is_zero(conn->identity_digest); const int expected_ed_key = ! ed25519_public_key_is_zero(&chan->ed25519_identity); log_info(LD_HANDSHAKE, "learned peer id for %p (%s): %s, %s", conn, safe_str_client(conn->base_.address), hex_str((const char*)rsa_peer_id, DIGEST_LEN), ed25519_fmt(ed_peer_id)); if (! expected_rsa_key && ! expected_ed_key) { log_info(LD_HANDSHAKE, "(we had no ID in mind when we made this " "connection."); connection_or_set_identity_digest(conn, (const char*)rsa_peer_id, ed_peer_id); tor_free(conn->nickname); conn->nickname = tor_malloc(HEX_DIGEST_LEN+2); conn->nickname[0] = '$'; base16_encode(conn->nickname+1, HEX_DIGEST_LEN+1, conn->identity_digest, DIGEST_LEN); log_info(LD_HANDSHAKE, "Connected to router %s at %s:%d without knowing " "its key. Hoping for the best.", conn->nickname, conn->base_.address, conn->base_.port); /* if it's a bridge and we didn't know its identity fingerprint, now * we do -- remember it for future attempts. */ learned_router_identity(&conn->base_.addr, conn->base_.port, (const char*)rsa_peer_id, ed_peer_id); changed_identity = 1; } const int rsa_mismatch = expected_rsa_key && tor_memneq(rsa_peer_id, conn->identity_digest, DIGEST_LEN); /* It only counts as an ed25519 mismatch if we wanted an ed25519 identity * and didn't get it. It's okay if we get one that we didn't ask for. */ const int ed25519_mismatch = expected_ed_key && (ed_peer_id == NULL || ! ed25519_pubkey_eq(&chan->ed25519_identity, ed_peer_id)); if (rsa_mismatch || ed25519_mismatch) { /* I was aiming for a particular digest. I didn't get it! */ char seen_rsa[HEX_DIGEST_LEN+1]; char expected_rsa[HEX_DIGEST_LEN+1]; char seen_ed[ED25519_BASE64_LEN+1]; char expected_ed[ED25519_BASE64_LEN+1]; base16_encode(seen_rsa, sizeof(seen_rsa), (const char*)rsa_peer_id, DIGEST_LEN); base16_encode(expected_rsa, sizeof(expected_rsa), conn->identity_digest, DIGEST_LEN); if (ed_peer_id) { ed25519_public_to_base64(seen_ed, ed_peer_id); } else { strlcpy(seen_ed, "no ed25519 key", sizeof(seen_ed)); } if (! ed25519_public_key_is_zero(&chan->ed25519_identity)) { ed25519_public_to_base64(expected_ed, &chan->ed25519_identity); } else { strlcpy(expected_ed, "no ed25519 key", sizeof(expected_ed)); } const int using_hardcoded_fingerprints = !networkstatus_get_reasonably_live_consensus(time(NULL), usable_consensus_flavor()); const int is_fallback_fingerprint = router_digest_is_fallback_dir( conn->identity_digest); const int is_authority_fingerprint = router_digest_is_trusted_dir( conn->identity_digest); int severity; const char *extra_log = ""; if (server_mode(options)) { severity = LOG_PROTOCOL_WARN; } else { if (using_hardcoded_fingerprints) { /* We need to do the checks in this order, because the list of * fallbacks includes the list of authorities */ if (is_authority_fingerprint) { severity = LOG_WARN; } else if (is_fallback_fingerprint) { /* we expect a small number of fallbacks to change from their * hard-coded fingerprints over the life of a release */ severity = LOG_INFO; extra_log = " Tor will try a different fallback."; } else { /* it's a bridge, it's either a misconfiguration, or unexpected */ severity = LOG_WARN; } } else { /* a relay has changed its fingerprint from the one in the consensus */ severity = LOG_WARN; } } log_fn(severity, LD_HANDSHAKE, "Tried connecting to router at %s:%d, but RSA identity key was not " "as expected: wanted %s + %s but got %s + %s.%s", conn->base_.address, conn->base_.port, expected_rsa, expected_ed, seen_rsa, seen_ed, extra_log); /* Tell the new guard API about the channel failure */ entry_guard_chan_failed(TLS_CHAN_TO_BASE(conn->chan)); control_event_or_conn_status(conn, OR_CONN_EVENT_FAILED, END_OR_CONN_REASON_OR_IDENTITY); if (!authdir_mode_tests_reachability(options)) control_event_bootstrap_prob_or( "Unexpected identity in router certificate", END_OR_CONN_REASON_OR_IDENTITY, conn); return -1; } if (!expected_ed_key && ed_peer_id) { log_info(LD_HANDSHAKE, "(we had no Ed25519 ID in mind when we made this " "connection."); connection_or_set_identity_digest(conn, (const char*)rsa_peer_id, ed_peer_id); changed_identity = 1; } if (changed_identity) { /* If we learned an identity for this connection, then we might have * just discovered it to be canonical. */ connection_or_check_canonicity(conn, conn->handshake_state->started_here); } if (authdir_mode_tests_reachability(options)) { dirserv_orconn_tls_done(&conn->base_.addr, conn->base_.port, (const char*)rsa_peer_id, ed_peer_id); } return 0; } /** Return when we last used this channel for client activity (origin * circuits). This is called from connection.c, since client_used is now one * of the timestamps in channel_t */ time_t connection_or_client_used(or_connection_t *conn) { tor_assert(conn); if (conn->chan) { return channel_when_last_client(TLS_CHAN_TO_BASE(conn->chan)); } else return 0; } /** The v1/v2 TLS handshake is finished. * * Make sure we are happy with the peer we just handshaked with. * * If they initiated the connection, make sure they're not already connected, * then initialize conn from the information in router. * * If all is successful, call circuit_n_conn_done() to handle events * that have been pending on the base_.address), tor_tls_get_ciphersuite_name(conn->tls)); if (connection_or_check_valid_tls_handshake(conn, started_here, digest_rcvd) < 0) return -1; circuit_build_times_network_is_live(get_circuit_build_times_mutable()); if (tor_tls_used_v1_handshake(conn->tls)) { conn->link_proto = 1; connection_or_init_conn_from_address(conn, &conn->base_.addr, conn->base_.port, digest_rcvd, NULL, 0); tor_tls_block_renegotiation(conn->tls); rep_hist_note_negotiated_link_proto(1, started_here); return connection_or_set_state_open(conn); } else { connection_or_change_state(conn, OR_CONN_STATE_OR_HANDSHAKING_V2); if (connection_init_or_handshake_state(conn, started_here) < 0) return -1; connection_or_init_conn_from_address(conn, &conn->base_.addr, conn->base_.port, digest_rcvd, NULL, 0); return connection_or_send_versions(conn, 0); } } /** * Called as client when initial TLS handshake is done, and we notice * that we got a v3-handshake signalling certificate from the server. * Set up structures, do bookkeeping, and send the versions cell. * Return 0 on success and -1 on failure. */ static int connection_or_launch_v3_or_handshake(or_connection_t *conn) { tor_assert(connection_or_nonopen_was_started_here(conn)); circuit_build_times_network_is_live(get_circuit_build_times_mutable()); connection_or_change_state(conn, OR_CONN_STATE_OR_HANDSHAKING_V3); if (connection_init_or_handshake_state(conn, 1) < 0) return -1; return connection_or_send_versions(conn, 1); } /** Allocate a new connection handshake state for the connection * conn. Return 0 on success, -1 on failure. */ int connection_init_or_handshake_state(or_connection_t *conn, int started_here) { or_handshake_state_t *s; if (conn->handshake_state) { log_warn(LD_BUG, "Duplicate call to connection_init_or_handshake_state!"); return 0; } s = conn->handshake_state = tor_malloc_zero(sizeof(or_handshake_state_t)); s->started_here = started_here ? 1 : 0; s->digest_sent_data = 1; s->digest_received_data = 1; if (! started_here && get_current_link_cert_cert()) { s->own_link_cert = tor_cert_dup(get_current_link_cert_cert()); } s->certs = or_handshake_certs_new(); s->certs->started_here = s->started_here; return 0; } /** Free all storage held by state. */ void or_handshake_state_free_(or_handshake_state_t *state) { if (!state) return; crypto_digest_free(state->digest_sent); crypto_digest_free(state->digest_received); or_handshake_certs_free(state->certs); tor_cert_free(state->own_link_cert); memwipe(state, 0xBE, sizeof(or_handshake_state_t)); tor_free(state); } /** * Remember that cell has been transmitted (if incoming is * false) or received (if incoming is true) during a V3 handshake using * state. * * (We don't record the cell, but we keep a digest of everything sent or * received during the v3 handshake, and the client signs it in an * authenticate cell.) */ void or_handshake_state_record_cell(or_connection_t *conn, or_handshake_state_t *state, const cell_t *cell, int incoming) { size_t cell_network_size = get_cell_network_size(conn->wide_circ_ids); crypto_digest_t *d, **dptr; packed_cell_t packed; if (incoming) { if (!state->digest_received_data) return; } else { if (!state->digest_sent_data) return; } if (!incoming) { log_warn(LD_BUG, "We shouldn't be sending any non-variable-length cells " "while making a handshake digest. But we think we are sending " "one with type %d.", (int)cell->command); } dptr = incoming ? &state->digest_received : &state->digest_sent; if (! *dptr) *dptr = crypto_digest256_new(DIGEST_SHA256); d = *dptr; /* Re-packing like this is a little inefficient, but we don't have to do this very often at all. */ cell_pack(&packed, cell, conn->wide_circ_ids); crypto_digest_add_bytes(d, packed.body, cell_network_size); memwipe(&packed, 0, sizeof(packed)); } /** Remember that a variable-length cell has been transmitted (if * incoming is false) or received (if incoming is true) during a * V3 handshake using state. * * (We don't record the cell, but we keep a digest of everything sent or * received during the v3 handshake, and the client signs it in an * authenticate cell.) */ void or_handshake_state_record_var_cell(or_connection_t *conn, or_handshake_state_t *state, const var_cell_t *cell, int incoming) { crypto_digest_t *d, **dptr; int n; char buf[VAR_CELL_MAX_HEADER_SIZE]; if (incoming) { if (!state->digest_received_data) return; } else { if (!state->digest_sent_data) return; } dptr = incoming ? &state->digest_received : &state->digest_sent; if (! *dptr) *dptr = crypto_digest256_new(DIGEST_SHA256); d = *dptr; n = var_cell_pack_header(cell, buf, conn->wide_circ_ids); crypto_digest_add_bytes(d, buf, n); crypto_digest_add_bytes(d, (const char *)cell->payload, cell->payload_len); memwipe(buf, 0, sizeof(buf)); } /** Set conn's state to OR_CONN_STATE_OPEN, and tell other subsystems * as appropriate. Called when we are done with all TLS and OR handshaking. */ int connection_or_set_state_open(or_connection_t *conn) { connection_or_change_state(conn, OR_CONN_STATE_OPEN); control_event_or_conn_status(conn, OR_CONN_EVENT_CONNECTED, 0); /* Link protocol 3 appeared in Tor 0.2.3.6-alpha, so any connection * that uses an earlier link protocol should not be treated as a relay. */ if (conn->link_proto < 3) { channel_mark_client(TLS_CHAN_TO_BASE(conn->chan)); } or_handshake_state_free(conn->handshake_state); conn->handshake_state = NULL; connection_start_reading(TO_CONN(conn)); return 0; } /** Pack cell into wire-format, and write it onto conn's outbuf. * For cells that use or affect a circuit, this should only be called by * connection_or_flush_from_first_active_circuit(). */ void connection_or_write_cell_to_buf(const cell_t *cell, or_connection_t *conn) { packed_cell_t networkcell; size_t cell_network_size = get_cell_network_size(conn->wide_circ_ids); tor_assert(cell); tor_assert(conn); cell_pack(&networkcell, cell, conn->wide_circ_ids); rep_hist_padding_count_write(PADDING_TYPE_TOTAL); if (cell->command == CELL_PADDING) rep_hist_padding_count_write(PADDING_TYPE_CELL); connection_buf_add(networkcell.body, cell_network_size, TO_CONN(conn)); /* Touch the channel's active timestamp if there is one */ if (conn->chan) { channel_timestamp_active(TLS_CHAN_TO_BASE(conn->chan)); if (TLS_CHAN_TO_BASE(conn->chan)->currently_padding) { rep_hist_padding_count_write(PADDING_TYPE_ENABLED_TOTAL); if (cell->command == CELL_PADDING) rep_hist_padding_count_write(PADDING_TYPE_ENABLED_CELL); } } if (conn->base_.state == OR_CONN_STATE_OR_HANDSHAKING_V3) or_handshake_state_record_cell(conn, conn->handshake_state, cell, 0); } /** Pack a variable-length cell into wire-format, and write it onto * conn's outbuf. Right now, this DOES NOT support cells that * affect a circuit. */ MOCK_IMPL(void, connection_or_write_var_cell_to_buf,(const var_cell_t *cell, or_connection_t *conn)) { int n; char hdr[VAR_CELL_MAX_HEADER_SIZE]; tor_assert(cell); tor_assert(conn); n = var_cell_pack_header(cell, hdr, conn->wide_circ_ids); connection_buf_add(hdr, n, TO_CONN(conn)); connection_buf_add((char*)cell->payload, cell->payload_len, TO_CONN(conn)); if (conn->base_.state == OR_CONN_STATE_OR_HANDSHAKING_V3) or_handshake_state_record_var_cell(conn, conn->handshake_state, cell, 0); /* Touch the channel's active timestamp if there is one */ if (conn->chan) channel_timestamp_active(TLS_CHAN_TO_BASE(conn->chan)); } /** See whether there's a variable-length cell waiting on or_conn's * inbuf. Return values as for fetch_var_cell_from_buf(). */ static int connection_fetch_var_cell_from_buf(or_connection_t *or_conn, var_cell_t **out) { connection_t *conn = TO_CONN(or_conn); return fetch_var_cell_from_buf(conn->inbuf, out, or_conn->link_proto); } /** Process cells from conn's inbuf. * * Loop: while inbuf contains a cell, pull it off the inbuf, unpack it, * and hand it to command_process_cell(). * * Always return 0. */ static int connection_or_process_cells_from_inbuf(or_connection_t *conn) { var_cell_t *var_cell; /* * Note on memory management for incoming cells: below the channel layer, * we shouldn't need to consider its internal queueing/copying logic. It * is safe to pass cells to it on the stack or on the heap, but in the * latter case we must be sure we free them later. * * The incoming cell queue code in channel.c will (in the common case) * decide it can pass them to the upper layer immediately, in which case * those functions may run directly on the cell pointers we pass here, or * it may decide to queue them, in which case it will allocate its own * buffer and copy the cell. */ while (1) { log_debug(LD_OR, TOR_SOCKET_T_FORMAT": starting, inbuf_datalen %d " "(%d pending in tls object).", conn->base_.s,(int)connection_get_inbuf_len(TO_CONN(conn)), tor_tls_get_pending_bytes(conn->tls)); if (connection_fetch_var_cell_from_buf(conn, &var_cell)) { if (!var_cell) return 0; /* not yet. */ /* Touch the channel's active timestamp if there is one */ if (conn->chan) channel_timestamp_active(TLS_CHAN_TO_BASE(conn->chan)); circuit_build_times_network_is_live(get_circuit_build_times_mutable()); channel_tls_handle_var_cell(var_cell, conn); var_cell_free(var_cell); } else { const int wide_circ_ids = conn->wide_circ_ids; size_t cell_network_size = get_cell_network_size(conn->wide_circ_ids); char buf[CELL_MAX_NETWORK_SIZE]; cell_t cell; if (connection_get_inbuf_len(TO_CONN(conn)) < cell_network_size) /* whole response available? */ return 0; /* not yet */ /* Touch the channel's active timestamp if there is one */ if (conn->chan) channel_timestamp_active(TLS_CHAN_TO_BASE(conn->chan)); circuit_build_times_network_is_live(get_circuit_build_times_mutable()); connection_buf_get_bytes(buf, cell_network_size, TO_CONN(conn)); /* retrieve cell info from buf (create the host-order struct from the * network-order string) */ cell_unpack(&cell, buf, wide_circ_ids); channel_tls_handle_cell(&cell, conn); } } } /** Array of recognized link protocol versions. */ static const uint16_t or_protocol_versions[] = { 1, 2, 3, 4, 5 }; /** Number of versions in or_protocol_versions. */ static const int n_or_protocol_versions = (int)( sizeof(or_protocol_versions)/sizeof(uint16_t) ); /** Return true iff v is a link protocol version that this Tor * implementation believes it can support. */ int is_or_protocol_version_known(uint16_t v) { int i; for (i = 0; i < n_or_protocol_versions; ++i) { if (or_protocol_versions[i] == v) return 1; } return 0; } /** Send a VERSIONS cell on conn, telling the other host about the * link protocol versions that this Tor can support. * * If v3_plus, this is part of a V3 protocol handshake, so only * allow protocol version v3 or later. If not v3_plus, this is * not part of a v3 protocol handshake, so don't allow protocol v3 or * later. **/ int connection_or_send_versions(or_connection_t *conn, int v3_plus) { var_cell_t *cell; int i; int n_versions = 0; const int min_version = v3_plus ? 3 : 0; const int max_version = v3_plus ? UINT16_MAX : 2; tor_assert(conn->handshake_state && !conn->handshake_state->sent_versions_at); cell = var_cell_new(n_or_protocol_versions * 2); cell->command = CELL_VERSIONS; for (i = 0; i < n_or_protocol_versions; ++i) { uint16_t v = or_protocol_versions[i]; if (v < min_version || v > max_version) continue; set_uint16(cell->payload+(2*n_versions), htons(v)); ++n_versions; } cell->payload_len = n_versions * 2; connection_or_write_var_cell_to_buf(cell, conn); conn->handshake_state->sent_versions_at = time(NULL); var_cell_free(cell); return 0; } /** Send a NETINFO cell on conn, telling the other server what we know * about their address, our address, and the current time. */ MOCK_IMPL(int, connection_or_send_netinfo,(or_connection_t *conn)) { cell_t cell; time_t now = time(NULL); const routerinfo_t *me; int len; uint8_t *out; tor_assert(conn->handshake_state); if (conn->handshake_state->sent_netinfo) { log_warn(LD_BUG, "Attempted to send an extra netinfo cell on a connection " "where we already sent one."); return 0; } memset(&cell, 0, sizeof(cell_t)); cell.command = CELL_NETINFO; /* Timestamp, if we're a relay. */ if (public_server_mode(get_options()) || ! conn->is_outgoing) set_uint32(cell.payload, htonl((uint32_t)now)); /* Their address. */ out = cell.payload + 4; /* We use &conn->real_addr below, unless it hasn't yet been set. If it * hasn't yet been set, we know that base_.addr hasn't been tampered with * yet either. */ len = append_address_to_payload(out, !tor_addr_is_null(&conn->real_addr) ? &conn->real_addr : &conn->base_.addr); if (len<0) return -1; out += len; /* My address -- only include it if I'm a public relay, or if I'm a * bridge and this is an incoming connection. If I'm a bridge and this * is an outgoing connection, act like a normal client and omit it. */ if ((public_server_mode(get_options()) || !conn->is_outgoing) && (me = router_get_my_routerinfo())) { tor_addr_t my_addr; *out++ = 1 + !tor_addr_is_null(&me->ipv6_addr); tor_addr_from_ipv4h(&my_addr, me->addr); len = append_address_to_payload(out, &my_addr); if (len < 0) return -1; out += len; if (!tor_addr_is_null(&me->ipv6_addr)) { len = append_address_to_payload(out, &me->ipv6_addr); if (len < 0) return -1; } } else { *out = 0; } conn->handshake_state->digest_sent_data = 0; conn->handshake_state->sent_netinfo = 1; connection_or_write_cell_to_buf(&cell, conn); return 0; } /** Helper used to add an encoded certs to a cert cell */ static void add_certs_cell_cert_helper(certs_cell_t *certs_cell, uint8_t cert_type, const uint8_t *cert_encoded, size_t cert_len) { tor_assert(cert_len <= UINT16_MAX); certs_cell_cert_t *ccc = certs_cell_cert_new(); ccc->cert_type = cert_type; ccc->cert_len = cert_len; certs_cell_cert_setlen_body(ccc, cert_len); memcpy(certs_cell_cert_getarray_body(ccc), cert_encoded, cert_len); certs_cell_add_certs(certs_cell, ccc); } /** Add an encoded X509 cert (stored as cert_len bytes at * cert_encoded) to the trunnel certs_cell_t object that we are * building in certs_cell. Set its type field to cert_type. * (If cert is NULL, take no action.) */ static void add_x509_cert(certs_cell_t *certs_cell, uint8_t cert_type, const tor_x509_cert_t *cert) { if (NULL == cert) return; const uint8_t *cert_encoded = NULL; size_t cert_len; tor_x509_cert_get_der(cert, &cert_encoded, &cert_len); add_certs_cell_cert_helper(certs_cell, cert_type, cert_encoded, cert_len); } /** Add an Ed25519 cert from cert to the trunnel certs_cell_t object * that we are building in certs_cell. Set its type field to * cert_type. (If cert is NULL, take no action.) */ static void add_ed25519_cert(certs_cell_t *certs_cell, uint8_t cert_type, const tor_cert_t *cert) { if (NULL == cert) return; add_certs_cell_cert_helper(certs_cell, cert_type, cert->encoded, cert->encoded_len); } #ifdef TOR_UNIT_TESTS int certs_cell_ed25519_disabled_for_testing = 0; #else #define certs_cell_ed25519_disabled_for_testing 0 #endif /** Send a CERTS cell on the connection conn. Return 0 on success, -1 * on failure. */ int connection_or_send_certs_cell(or_connection_t *conn) { const tor_x509_cert_t *global_link_cert = NULL, *id_cert = NULL; tor_x509_cert_t *own_link_cert = NULL; var_cell_t *cell; certs_cell_t *certs_cell = NULL; tor_assert(conn->base_.state == OR_CONN_STATE_OR_HANDSHAKING_V3); if (! conn->handshake_state) return -1; const int conn_in_server_mode = ! conn->handshake_state->started_here; /* Get the encoded values of the X509 certificates */ if (tor_tls_get_my_certs(conn_in_server_mode, &global_link_cert, &id_cert) < 0) return -1; if (conn_in_server_mode) { own_link_cert = tor_tls_get_own_cert(conn->tls); } tor_assert(id_cert); certs_cell = certs_cell_new(); /* Start adding certs. First the link cert or auth1024 cert. */ if (conn_in_server_mode) { tor_assert_nonfatal(own_link_cert); add_x509_cert(certs_cell, OR_CERT_TYPE_TLS_LINK, own_link_cert); } else { tor_assert(global_link_cert); add_x509_cert(certs_cell, OR_CERT_TYPE_AUTH_1024, global_link_cert); } /* Next the RSA->RSA ID cert */ add_x509_cert(certs_cell, OR_CERT_TYPE_ID_1024, id_cert); /* Next the Ed25519 certs */ add_ed25519_cert(certs_cell, CERTTYPE_ED_ID_SIGN, get_master_signing_key_cert()); if (conn_in_server_mode) { tor_assert_nonfatal(conn->handshake_state->own_link_cert || certs_cell_ed25519_disabled_for_testing); add_ed25519_cert(certs_cell, CERTTYPE_ED_SIGN_LINK, conn->handshake_state->own_link_cert); } else { add_ed25519_cert(certs_cell, CERTTYPE_ED_SIGN_AUTH, get_current_auth_key_cert()); } /* And finally the crosscert. */ { const uint8_t *crosscert=NULL; size_t crosscert_len; get_master_rsa_crosscert(&crosscert, &crosscert_len); if (crosscert) { add_certs_cell_cert_helper(certs_cell, CERTTYPE_RSA1024_ID_EDID, crosscert, crosscert_len); } } /* We've added all the certs; make the cell. */ certs_cell->n_certs = certs_cell_getlen_certs(certs_cell); ssize_t alloc_len = certs_cell_encoded_len(certs_cell); tor_assert(alloc_len >= 0 && alloc_len <= UINT16_MAX); cell = var_cell_new(alloc_len); cell->command = CELL_CERTS; ssize_t enc_len = certs_cell_encode(cell->payload, alloc_len, certs_cell); tor_assert(enc_len > 0 && enc_len <= alloc_len); cell->payload_len = enc_len; connection_or_write_var_cell_to_buf(cell, conn); var_cell_free(cell); certs_cell_free(certs_cell); tor_x509_cert_free(own_link_cert); return 0; } /** Return true iff challenge_type is an AUTHCHALLENGE type that * we can send and receive. */ int authchallenge_type_is_supported(uint16_t challenge_type) { switch (challenge_type) { case AUTHTYPE_RSA_SHA256_TLSSECRET: case AUTHTYPE_ED25519_SHA256_RFC5705: return 1; case AUTHTYPE_RSA_SHA256_RFC5705: default: return 0; } } /** Return true iff challenge_type_a is one that we would rather * use than challenge_type_b. */ int authchallenge_type_is_better(uint16_t challenge_type_a, uint16_t challenge_type_b) { /* Any supported type is better than an unsupported one; * all unsupported types are equally bad. */ if (!authchallenge_type_is_supported(challenge_type_a)) return 0; if (!authchallenge_type_is_supported(challenge_type_b)) return 1; /* It happens that types are superior in numerically ascending order. * If that ever changes, this must change too. */ return (challenge_type_a > challenge_type_b); } /** Send an AUTH_CHALLENGE cell on the connection conn. Return 0 * on success, -1 on failure. */ int connection_or_send_auth_challenge_cell(or_connection_t *conn) { var_cell_t *cell = NULL; int r = -1; tor_assert(conn->base_.state == OR_CONN_STATE_OR_HANDSHAKING_V3); if (! conn->handshake_state) return -1; auth_challenge_cell_t *ac = auth_challenge_cell_new(); tor_assert(sizeof(ac->challenge) == 32); crypto_rand((char*)ac->challenge, sizeof(ac->challenge)); auth_challenge_cell_add_methods(ac, AUTHTYPE_RSA_SHA256_TLSSECRET); /* Disabled, because everything that supports this method also supports * the much-superior ED25519_SHA256_RFC5705 */ /* auth_challenge_cell_add_methods(ac, AUTHTYPE_RSA_SHA256_RFC5705); */ auth_challenge_cell_add_methods(ac, AUTHTYPE_ED25519_SHA256_RFC5705); auth_challenge_cell_set_n_methods(ac, auth_challenge_cell_getlen_methods(ac)); cell = var_cell_new(auth_challenge_cell_encoded_len(ac)); ssize_t len = auth_challenge_cell_encode(cell->payload, cell->payload_len, ac); if (len != cell->payload_len) { /* LCOV_EXCL_START */ log_warn(LD_BUG, "Encoded auth challenge cell length not as expected"); goto done; /* LCOV_EXCL_STOP */ } cell->command = CELL_AUTH_CHALLENGE; connection_or_write_var_cell_to_buf(cell, conn); r = 0; done: var_cell_free(cell); auth_challenge_cell_free(ac); return r; } /** Compute the main body of an AUTHENTICATE cell that a client can use * to authenticate itself on a v3 handshake for conn. Return it * in a var_cell_t. * * If server is true, only calculate the first * V3_AUTH_FIXED_PART_LEN bytes -- the part of the authenticator that's * determined by the rest of the handshake, and which match the provided value * exactly. * * If server is false and signing_key is NULL, calculate the * first V3_AUTH_BODY_LEN bytes of the authenticator (that is, everything * that should be signed), but don't actually sign it. * * If server is false and signing_key is provided, calculate the * entire authenticator, signed with signing_key. * * Return the length of the cell body on success, and -1 on failure. */ var_cell_t * connection_or_compute_authenticate_cell_body(or_connection_t *conn, const int authtype, crypto_pk_t *signing_key, const ed25519_keypair_t *ed_signing_key, int server) { auth1_t *auth = NULL; auth_ctx_t *ctx = auth_ctx_new(); var_cell_t *result = NULL; int old_tlssecrets_algorithm = 0; const char *authtype_str = NULL; int is_ed = 0; /* assert state is reasonable XXXX */ switch (authtype) { case AUTHTYPE_RSA_SHA256_TLSSECRET: authtype_str = "AUTH0001"; old_tlssecrets_algorithm = 1; break; case AUTHTYPE_RSA_SHA256_RFC5705: authtype_str = "AUTH0002"; break; case AUTHTYPE_ED25519_SHA256_RFC5705: authtype_str = "AUTH0003"; is_ed = 1; break; default: tor_assert(0); break; } auth = auth1_new(); ctx->is_ed = is_ed; /* Type: 8 bytes. */ memcpy(auth1_getarray_type(auth), authtype_str, 8); { const tor_x509_cert_t *id_cert=NULL; const common_digests_t *my_digests, *their_digests; const uint8_t *my_id, *their_id, *client_id, *server_id; if (tor_tls_get_my_certs(server, NULL, &id_cert)) goto err; my_digests = tor_x509_cert_get_id_digests(id_cert); their_digests = tor_x509_cert_get_id_digests(conn->handshake_state->certs->id_cert); tor_assert(my_digests); tor_assert(their_digests); my_id = (uint8_t*)my_digests->d[DIGEST_SHA256]; their_id = (uint8_t*)their_digests->d[DIGEST_SHA256]; client_id = server ? their_id : my_id; server_id = server ? my_id : their_id; /* Client ID digest: 32 octets. */ memcpy(auth->cid, client_id, 32); /* Server ID digest: 32 octets. */ memcpy(auth->sid, server_id, 32); } if (is_ed) { const ed25519_public_key_t *my_ed_id, *their_ed_id; if (!conn->handshake_state->certs->ed_id_sign) { log_warn(LD_OR, "Ed authenticate without Ed ID cert from peer."); goto err; } my_ed_id = get_master_identity_key(); their_ed_id = &conn->handshake_state->certs->ed_id_sign->signing_key; const uint8_t *cid_ed = (server ? their_ed_id : my_ed_id)->pubkey; const uint8_t *sid_ed = (server ? my_ed_id : their_ed_id)->pubkey; memcpy(auth->u1_cid_ed, cid_ed, ED25519_PUBKEY_LEN); memcpy(auth->u1_sid_ed, sid_ed, ED25519_PUBKEY_LEN); } { crypto_digest_t *server_d, *client_d; if (server) { server_d = conn->handshake_state->digest_sent; client_d = conn->handshake_state->digest_received; } else { client_d = conn->handshake_state->digest_sent; server_d = conn->handshake_state->digest_received; } /* Server log digest : 32 octets */ crypto_digest_get_digest(server_d, (char*)auth->slog, 32); /* Client log digest : 32 octets */ crypto_digest_get_digest(client_d, (char*)auth->clog, 32); } { /* Digest of cert used on TLS link : 32 octets. */ tor_x509_cert_t *cert = NULL; if (server) { cert = tor_tls_get_own_cert(conn->tls); } else { cert = tor_tls_get_peer_cert(conn->tls); } if (!cert) { log_warn(LD_OR, "Unable to find cert when making %s data.", authtype_str); goto err; } memcpy(auth->scert, tor_x509_cert_get_cert_digests(cert)->d[DIGEST_SHA256], 32); tor_x509_cert_free(cert); } /* HMAC of clientrandom and serverrandom using master key : 32 octets */ if (old_tlssecrets_algorithm) { tor_tls_get_tlssecrets(conn->tls, auth->tlssecrets); } else { char label[128]; tor_snprintf(label, sizeof(label), "EXPORTER FOR TOR TLS CLIENT BINDING %s", authtype_str); tor_tls_export_key_material(conn->tls, auth->tlssecrets, auth->cid, sizeof(auth->cid), label); } /* 8 octets were reserved for the current time, but we're trying to get out * of the habit of sending time around willynilly. Fortunately, nothing * checks it. That's followed by 16 bytes of nonce. */ crypto_rand((char*)auth->rand, 24); ssize_t maxlen = auth1_encoded_len(auth, ctx); if (ed_signing_key && is_ed) { maxlen += ED25519_SIG_LEN; } else if (signing_key && !is_ed) { maxlen += crypto_pk_keysize(signing_key); } const int AUTH_CELL_HEADER_LEN = 4; /* 2 bytes of type, 2 bytes of length */ result = var_cell_new(AUTH_CELL_HEADER_LEN + maxlen); uint8_t *const out = result->payload + AUTH_CELL_HEADER_LEN; const size_t outlen = maxlen; ssize_t len; result->command = CELL_AUTHENTICATE; set_uint16(result->payload, htons(authtype)); if ((len = auth1_encode(out, outlen, auth, ctx)) < 0) { /* LCOV_EXCL_START */ log_warn(LD_BUG, "Unable to encode signed part of AUTH1 data."); goto err; /* LCOV_EXCL_STOP */ } if (server) { auth1_t *tmp = NULL; ssize_t len2 = auth1_parse(&tmp, out, len, ctx); if (!tmp) { /* LCOV_EXCL_START */ log_warn(LD_BUG, "Unable to parse signed part of AUTH1 data that " "we just encoded"); goto err; /* LCOV_EXCL_STOP */ } result->payload_len = (tmp->end_of_signed - result->payload); auth1_free(tmp); if (len2 != len) { /* LCOV_EXCL_START */ log_warn(LD_BUG, "Mismatched length when re-parsing AUTH1 data."); goto err; /* LCOV_EXCL_STOP */ } goto done; } if (ed_signing_key && is_ed) { ed25519_signature_t sig; if (ed25519_sign(&sig, out, len, ed_signing_key) < 0) { /* LCOV_EXCL_START */ log_warn(LD_BUG, "Unable to sign ed25519 authentication data"); goto err; /* LCOV_EXCL_STOP */ } auth1_setlen_sig(auth, ED25519_SIG_LEN); memcpy(auth1_getarray_sig(auth), sig.sig, ED25519_SIG_LEN); } else if (signing_key && !is_ed) { auth1_setlen_sig(auth, crypto_pk_keysize(signing_key)); char d[32]; crypto_digest256(d, (char*)out, len, DIGEST_SHA256); int siglen = crypto_pk_private_sign(signing_key, (char*)auth1_getarray_sig(auth), auth1_getlen_sig(auth), d, 32); if (siglen < 0) { log_warn(LD_OR, "Unable to sign AUTH1 data."); goto err; } auth1_setlen_sig(auth, siglen); } len = auth1_encode(out, outlen, auth, ctx); if (len < 0) { /* LCOV_EXCL_START */ log_warn(LD_BUG, "Unable to encode signed AUTH1 data."); goto err; /* LCOV_EXCL_STOP */ } tor_assert(len + AUTH_CELL_HEADER_LEN <= result->payload_len); result->payload_len = len + AUTH_CELL_HEADER_LEN; set_uint16(result->payload+2, htons(len)); goto done; err: var_cell_free(result); result = NULL; done: auth1_free(auth); auth_ctx_free(ctx); return result; } /** Send an AUTHENTICATE cell on the connection conn. Return 0 on * success, -1 on failure */ MOCK_IMPL(int, connection_or_send_authenticate_cell,(or_connection_t *conn, int authtype)) { var_cell_t *cell; crypto_pk_t *pk = tor_tls_get_my_client_auth_key(); /* XXXX make sure we're actually supposed to send this! */ if (!pk) { log_warn(LD_BUG, "Can't compute authenticate cell: no client auth key"); return -1; } if (! authchallenge_type_is_supported(authtype)) { log_warn(LD_BUG, "Tried to send authenticate cell with unknown " "authentication type %d", authtype); return -1; } cell = connection_or_compute_authenticate_cell_body(conn, authtype, pk, get_current_auth_keypair(), 0 /* not server */); if (! cell) { /* LCOV_EXCL_START */ log_warn(LD_BUG, "Unable to compute authenticate cell!"); return -1; /* LCOV_EXCL_STOP */ } connection_or_write_var_cell_to_buf(cell, conn); var_cell_free(cell); return 0; }