/* Copyright 2001 Matej Pfajfar.
* Copyright (c) 2001-2004, Roger Dingledine.
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
* Copyright (c) 2007-2017, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/**
* \file circuitlist.c
*
* \brief Manage global structures that list and index circuits, and
* look up circuits within them.
*
* One of the most frequent operations in Tor occurs every time that
* a relay cell arrives on a channel. When that happens, we need to
* find which circuit it is associated with, based on the channel and the
* circuit ID in the relay cell.
*
* To handle that, we maintain a global list of circuits, and a hashtable
* mapping [channel,circID] pairs to circuits. Circuits are added to and
* removed from this mapping using circuit_set_p_circid_chan() and
* circuit_set_n_circid_chan(). To look up a circuit from this map, most
* callers should use circuit_get_by_circid_channel(), though
* circuit_get_by_circid_channel_even_if_marked() is appropriate under some
* circumstances.
*
* We also need to allow for the possibility that we have blocked use of a
* circuit ID (because we are waiting to send a DESTROY cell), but the
* circuit is not there any more. For that case, we allow placeholder
* entries in the table, using channel_mark_circid_unusable().
*
* To efficiently handle a channel that has just opened, we also maintain a
* list of the circuits waiting for channels, so we can attach them as
* needed without iterating through the whole list of circuits, using
* circuit_get_all_pending_on_channel().
*
* In this module, we also handle the list of circuits that have been
* marked for close elsewhere, and close them as needed. (We use this
* "mark now, close later" pattern here and elsewhere to avoid
* unpredictable recursion if we closed every circuit immediately upon
* realizing it needed to close.) See circuit_mark_for_close() for the
* mark function, and circuit_close_all_marked() for the close function.
*
* For hidden services, we need to be able to look up introduction point
* circuits and rendezvous circuits by cookie, key, etc. These are
* currently handled with linear searches in
* circuit_get_ready_rend_circuit_by_rend_data(),
* circuit_get_next_by_pk_and_purpose(), and with hash lookups in
* circuit_get_rendezvous() and circuit_get_intro_point().
*
* This module is also the entry point for our out-of-memory handler
* logic, which was originally circuit-focused.
**/
#define CIRCUITLIST_PRIVATE
#include "torint.h" /* TOR_PRIuSZ */
#include "or.h"
#include "channel.h"
#include "channeltls.h"
#include "circpathbias.h"
#include "circuitbuild.h"
#include "circuitlist.h"
#include "circuituse.h"
#include "circuitstats.h"
#include "connection.h"
#include "config.h"
#include "connection_edge.h"
#include "connection_or.h"
#include "control.h"
#include "crypto_rand.h"
#include "crypto_util.h"
#include "entrynodes.h"
#include "main.h"
#include "hs_circuit.h"
#include "hs_circuitmap.h"
#include "hs_ident.h"
#include "networkstatus.h"
#include "nodelist.h"
#include "onion.h"
#include "onion_fast.h"
#include "policies.h"
#include "relay.h"
#include "relay_crypto.h"
#include "rendclient.h"
#include "rendcommon.h"
#include "rephist.h"
#include "routerlist.h"
#include "routerset.h"
#include "channelpadding.h"
#include "compress_lzma.h"
#include "compress_zlib.h"
#include "compress_zstd.h"
#include "ht.h"
/********* START VARIABLES **********/
/** A global list of all circuits at this hop. */
static smartlist_t *global_circuitlist = NULL;
/** A global list of all origin circuits. Every element of this is also
* an element of global_circuitlist. */
static smartlist_t *global_origin_circuit_list = NULL;
/** A list of all the circuits in CIRCUIT_STATE_CHAN_WAIT. */
static smartlist_t *circuits_pending_chans = NULL;
/** List of all the (origin) circuits whose state is
* CIRCUIT_STATE_GUARD_WAIT. */
static smartlist_t *circuits_pending_other_guards = NULL;
/** A list of all the circuits that have been marked with
* circuit_mark_for_close and which are waiting for circuit_about_to_free. */
static smartlist_t *circuits_pending_close = NULL;
static void circuit_free_cpath_node(crypt_path_t *victim);
static void cpath_ref_decref(crypt_path_reference_t *cpath_ref);
static void circuit_about_to_free_atexit(circuit_t *circ);
static void circuit_about_to_free(circuit_t *circ);
/**
* A cached value of the current state of the origin circuit list. Has the
* value 1 if we saw any opened circuits recently (since the last call to
* circuit_any_opened_circuits(), which gets called around once a second by
* circuit_expire_building). 0 otherwise.
*/
static int any_opened_circs_cached_val = 0;
/********* END VARIABLES ************/
/** A map from channel and circuit ID to circuit. (Lookup performance is
* very important here, since we need to do it every time a cell arrives.) */
typedef struct chan_circid_circuit_map_t {
HT_ENTRY(chan_circid_circuit_map_t) node;
channel_t *chan;
circid_t circ_id;
circuit_t *circuit;
/* For debugging 12184: when was this placeholder item added? */
time_t made_placeholder_at;
} chan_circid_circuit_map_t;
/** Helper for hash tables: compare the channel and circuit ID for a and
* b, and return less than, equal to, or greater than zero appropriately.
*/
static inline int
chan_circid_entries_eq_(chan_circid_circuit_map_t *a,
chan_circid_circuit_map_t *b)
{
return a->chan == b->chan && a->circ_id == b->circ_id;
}
/** Helper: return a hash based on circuit ID and the pointer value of
* chan in a. */
static inline unsigned int
chan_circid_entry_hash_(chan_circid_circuit_map_t *a)
{
/* Try to squeze the siphash input into 8 bytes to save any extra siphash
* rounds. This hash function is in the critical path. */
uintptr_t chan = (uintptr_t) (void*) a->chan;
uint32_t array[2];
array[0] = a->circ_id;
/* The low bits of the channel pointer are uninteresting, since the channel
* is a pretty big structure. */
array[1] = (uint32_t) (chan >> 6);
return (unsigned) siphash24g(array, sizeof(array));
}
/** Map from [chan,circid] to circuit. */
static HT_HEAD(chan_circid_map, chan_circid_circuit_map_t)
chan_circid_map = HT_INITIALIZER();
HT_PROTOTYPE(chan_circid_map, chan_circid_circuit_map_t, node,
chan_circid_entry_hash_, chan_circid_entries_eq_)
HT_GENERATE2(chan_circid_map, chan_circid_circuit_map_t, node,
chan_circid_entry_hash_, chan_circid_entries_eq_, 0.6,
tor_reallocarray_, tor_free_)
/** The most recently returned entry from circuit_get_by_circid_chan;
* used to improve performance when many cells arrive in a row from the
* same circuit.
*/
static chan_circid_circuit_map_t *_last_circid_chan_ent = NULL;
/** Implementation helper for circuit_set_{p,n}_circid_channel: A circuit ID
* and/or channel for circ has just changed from old_chan, old_id
* to chan, id. Adjust the chan,circid map as appropriate, removing
* the old entry (if any) and adding a new one. */
static void
circuit_set_circid_chan_helper(circuit_t *circ, int direction,
circid_t id,
channel_t *chan)
{
chan_circid_circuit_map_t search;
chan_circid_circuit_map_t *found;
channel_t *old_chan, **chan_ptr;
circid_t old_id, *circid_ptr;
int make_active, attached = 0;
if (direction == CELL_DIRECTION_OUT) {
chan_ptr = &circ->n_chan;
circid_ptr = &circ->n_circ_id;
make_active = circ->n_chan_cells.n > 0;
} else {
or_circuit_t *c = TO_OR_CIRCUIT(circ);
chan_ptr = &c->p_chan;
circid_ptr = &c->p_circ_id;
make_active = c->p_chan_cells.n > 0;
}
old_chan = *chan_ptr;
old_id = *circid_ptr;
if (id == old_id && chan == old_chan)
return;
if (_last_circid_chan_ent &&
((old_id == _last_circid_chan_ent->circ_id &&
old_chan == _last_circid_chan_ent->chan) ||
(id == _last_circid_chan_ent->circ_id &&
chan == _last_circid_chan_ent->chan))) {
_last_circid_chan_ent = NULL;
}
if (old_chan) {
/*
* If we're changing channels or ID and had an old channel and a non
* zero old ID and weren't marked for close (i.e., we should have been
* attached), detach the circuit. ID changes require this because
* circuitmux hashes on (channel_id, circuit_id).
*/
if (old_id != 0 && (old_chan != chan || old_id != id) &&
!(circ->marked_for_close)) {
tor_assert(old_chan->cmux);
circuitmux_detach_circuit(old_chan->cmux, circ);
}
/* we may need to remove it from the conn-circid map */
search.circ_id = old_id;
search.chan = old_chan;
found = HT_REMOVE(chan_circid_map, &chan_circid_map, &search);
if (found) {
tor_free(found);
if (direction == CELL_DIRECTION_OUT) {
/* One fewer circuits use old_chan as n_chan */
--(old_chan->num_n_circuits);
} else {
/* One fewer circuits use old_chan as p_chan */
--(old_chan->num_p_circuits);
}
}
}
/* Change the values only after we have possibly made the circuit inactive
* on the previous chan. */
*chan_ptr = chan;
*circid_ptr = id;
if (chan == NULL)
return;
/* now add the new one to the conn-circid map */
search.circ_id = id;
search.chan = chan;
found = HT_FIND(chan_circid_map, &chan_circid_map, &search);
if (found) {
found->circuit = circ;
found->made_placeholder_at = 0;
} else {
found = tor_malloc_zero(sizeof(chan_circid_circuit_map_t));
found->circ_id = id;
found->chan = chan;
found->circuit = circ;
HT_INSERT(chan_circid_map, &chan_circid_map, found);
}
/*
* Attach to the circuitmux if we're changing channels or IDs and
* have a new channel and ID to use and the circuit is not marked for
* close.
*/
if (chan && id != 0 && (old_chan != chan || old_id != id) &&
!(circ->marked_for_close)) {
tor_assert(chan->cmux);
circuitmux_attach_circuit(chan->cmux, circ, direction);
attached = 1;
}
/*
* This is a no-op if we have no cells, but if we do it marks us active to
* the circuitmux
*/
if (make_active && attached)
update_circuit_on_cmux(circ, direction);
/* Adjust circuit counts on new channel */
if (direction == CELL_DIRECTION_OUT) {
++chan->num_n_circuits;
} else {
++chan->num_p_circuits;
}
}
/** Mark that circuit id id shouldn't be used on channel chan,
* even if there is no circuit on the channel. We use this to keep the
* circuit id from getting re-used while we have queued but not yet sent
* a destroy cell. */
void
channel_mark_circid_unusable(channel_t *chan, circid_t id)
{
chan_circid_circuit_map_t search;
chan_circid_circuit_map_t *ent;
/* See if there's an entry there. That wouldn't be good. */
memset(&search, 0, sizeof(search));
search.chan = chan;
search.circ_id = id;
ent = HT_FIND(chan_circid_map, &chan_circid_map, &search);
if (ent && ent->circuit) {
/* we have a problem. */
log_warn(LD_BUG, "Tried to mark %u unusable on %p, but there was already "
"a circuit there.", (unsigned)id, chan);
} else if (ent) {
/* It's already marked. */
if (!ent->made_placeholder_at)
ent->made_placeholder_at = approx_time();
} else {
ent = tor_malloc_zero(sizeof(chan_circid_circuit_map_t));
ent->chan = chan;
ent->circ_id = id;
/* leave circuit at NULL. */
ent->made_placeholder_at = approx_time();
HT_INSERT(chan_circid_map, &chan_circid_map, ent);
}
}
/** Mark that a circuit id id can be used again on chan.
* We use this to re-enable the circuit ID after we've sent a destroy cell.
*/
void
channel_mark_circid_usable(channel_t *chan, circid_t id)
{
chan_circid_circuit_map_t search;
chan_circid_circuit_map_t *ent;
/* See if there's an entry there. That wouldn't be good. */
memset(&search, 0, sizeof(search));
search.chan = chan;
search.circ_id = id;
ent = HT_REMOVE(chan_circid_map, &chan_circid_map, &search);
if (ent && ent->circuit) {
log_warn(LD_BUG, "Tried to mark %u usable on %p, but there was already "
"a circuit there.", (unsigned)id, chan);
return;
}
if (_last_circid_chan_ent == ent)
_last_circid_chan_ent = NULL;
tor_free(ent);
}
/** Called to indicate that a DESTROY is pending on chan with
* circuit ID id, but hasn't been sent yet. */
void
channel_note_destroy_pending(channel_t *chan, circid_t id)
{
circuit_t *circ = circuit_get_by_circid_channel_even_if_marked(id,chan);
if (circ) {
if (circ->n_chan == chan && circ->n_circ_id == id) {
circ->n_delete_pending = 1;
} else {
or_circuit_t *orcirc = TO_OR_CIRCUIT(circ);
if (orcirc->p_chan == chan && orcirc->p_circ_id == id) {
circ->p_delete_pending = 1;
}
}
return;
}
channel_mark_circid_unusable(chan, id);
}
/** Called to indicate that a DESTROY is no longer pending on chan with
* circuit ID id -- typically, because it has been sent. */
MOCK_IMPL(void,
channel_note_destroy_not_pending,(channel_t *chan, circid_t id))
{
circuit_t *circ = circuit_get_by_circid_channel_even_if_marked(id,chan);
if (circ) {
if (circ->n_chan == chan && circ->n_circ_id == id) {
circ->n_delete_pending = 0;
} else {
or_circuit_t *orcirc = TO_OR_CIRCUIT(circ);
if (orcirc->p_chan == chan && orcirc->p_circ_id == id) {
circ->p_delete_pending = 0;
}
}
/* XXXX this shouldn't happen; log a bug here. */
return;
}
channel_mark_circid_usable(chan, id);
}
/** Set the p_conn field of a circuit circ, along
* with the corresponding circuit ID, and add the circuit as appropriate
* to the (chan,id)-\>circuit map. */
void
circuit_set_p_circid_chan(or_circuit_t *or_circ, circid_t id,
channel_t *chan)
{
circuit_t *circ = TO_CIRCUIT(or_circ);
channel_t *old_chan = or_circ->p_chan;
circid_t old_id = or_circ->p_circ_id;
circuit_set_circid_chan_helper(circ, CELL_DIRECTION_IN, id, chan);
if (chan) {
chan->timestamp_last_had_circuits = approx_time();
}
if (circ->p_delete_pending && old_chan) {
channel_mark_circid_unusable(old_chan, old_id);
circ->p_delete_pending = 0;
}
}
/** Set the n_conn field of a circuit circ, along
* with the corresponding circuit ID, and add the circuit as appropriate
* to the (chan,id)-\>circuit map. */
void
circuit_set_n_circid_chan(circuit_t *circ, circid_t id,
channel_t *chan)
{
channel_t *old_chan = circ->n_chan;
circid_t old_id = circ->n_circ_id;
circuit_set_circid_chan_helper(circ, CELL_DIRECTION_OUT, id, chan);
if (chan) {
chan->timestamp_last_had_circuits = approx_time();
}
if (circ->n_delete_pending && old_chan) {
channel_mark_circid_unusable(old_chan, old_id);
circ->n_delete_pending = 0;
}
}
/** Change the state of circ to state, adding it to or removing
* it from lists as appropriate. */
void
circuit_set_state(circuit_t *circ, uint8_t state)
{
tor_assert(circ);
if (state == circ->state)
return;
if (PREDICT_UNLIKELY(!circuits_pending_chans))
circuits_pending_chans = smartlist_new();
if (PREDICT_UNLIKELY(!circuits_pending_other_guards))
circuits_pending_other_guards = smartlist_new();
if (circ->state == CIRCUIT_STATE_CHAN_WAIT) {
/* remove from waiting-circuit list. */
smartlist_remove(circuits_pending_chans, circ);
}
if (state == CIRCUIT_STATE_CHAN_WAIT) {
/* add to waiting-circuit list. */
smartlist_add(circuits_pending_chans, circ);
}
if (circ->state == CIRCUIT_STATE_GUARD_WAIT) {
smartlist_remove(circuits_pending_other_guards, circ);
}
if (state == CIRCUIT_STATE_GUARD_WAIT) {
smartlist_add(circuits_pending_other_guards, circ);
}
if (state == CIRCUIT_STATE_GUARD_WAIT || state == CIRCUIT_STATE_OPEN)
tor_assert(!circ->n_chan_create_cell);
circ->state = state;
}
/** Append to out all circuits in state CHAN_WAIT waiting for
* the given connection. */
void
circuit_get_all_pending_on_channel(smartlist_t *out, channel_t *chan)
{
tor_assert(out);
tor_assert(chan);
if (!circuits_pending_chans)
return;
SMARTLIST_FOREACH_BEGIN(circuits_pending_chans, circuit_t *, circ) {
if (circ->marked_for_close)
continue;
if (!circ->n_hop)
continue;
tor_assert(circ->state == CIRCUIT_STATE_CHAN_WAIT);
if (tor_digest_is_zero(circ->n_hop->identity_digest)) {
/* Look at addr/port. This is an unkeyed connection. */
if (!channel_matches_extend_info(chan, circ->n_hop))
continue;
} else {
/* We expected a key. See if it's the right one. */
if (tor_memneq(chan->identity_digest,
circ->n_hop->identity_digest, DIGEST_LEN))
continue;
}
smartlist_add(out, circ);
} SMARTLIST_FOREACH_END(circ);
}
/** Return the number of circuits in state CHAN_WAIT, waiting for the given
* channel. */
int
circuit_count_pending_on_channel(channel_t *chan)
{
int cnt;
smartlist_t *sl = smartlist_new();
tor_assert(chan);
circuit_get_all_pending_on_channel(sl, chan);
cnt = smartlist_len(sl);
smartlist_free(sl);
log_debug(LD_CIRC,"or_conn to %s, %d pending circs",
channel_get_canonical_remote_descr(chan),
cnt);
return cnt;
}
/** Remove origin_circ from the global list of origin circuits.
* Called when we are freeing a circuit.
*/
static void
circuit_remove_from_origin_circuit_list(origin_circuit_t *origin_circ)
{
int origin_idx = origin_circ->global_origin_circuit_list_idx;
if (origin_idx < 0)
return;
origin_circuit_t *c2;
tor_assert(origin_idx <= smartlist_len(global_origin_circuit_list));
c2 = smartlist_get(global_origin_circuit_list, origin_idx);
tor_assert(origin_circ == c2);
smartlist_del(global_origin_circuit_list, origin_idx);
if (origin_idx < smartlist_len(global_origin_circuit_list)) {
origin_circuit_t *replacement =
smartlist_get(global_origin_circuit_list, origin_idx);
replacement->global_origin_circuit_list_idx = origin_idx;
}
origin_circ->global_origin_circuit_list_idx = -1;
}
/** Add origin_circ to the global list of origin circuits. Called
* when creating the circuit. */
static void
circuit_add_to_origin_circuit_list(origin_circuit_t *origin_circ)
{
tor_assert(origin_circ->global_origin_circuit_list_idx == -1);
smartlist_t *lst = circuit_get_global_origin_circuit_list();
smartlist_add(lst, origin_circ);
origin_circ->global_origin_circuit_list_idx = smartlist_len(lst) - 1;
}
/** Detach from the global circuit list, and deallocate, all
* circuits that have been marked for close.
*/
void
circuit_close_all_marked(void)
{
if (circuits_pending_close == NULL)
return;
smartlist_t *lst = circuit_get_global_list();
SMARTLIST_FOREACH_BEGIN(circuits_pending_close, circuit_t *, circ) {
tor_assert(circ->marked_for_close);
/* Remove it from the circuit list. */
int idx = circ->global_circuitlist_idx;
smartlist_del(lst, idx);
if (idx < smartlist_len(lst)) {
circuit_t *replacement = smartlist_get(lst, idx);
replacement->global_circuitlist_idx = idx;
}
circ->global_circuitlist_idx = -1;
/* Remove it from the origin circuit list, if appropriate. */
if (CIRCUIT_IS_ORIGIN(circ)) {
circuit_remove_from_origin_circuit_list(TO_ORIGIN_CIRCUIT(circ));
}
circuit_about_to_free(circ);
circuit_free(circ);
} SMARTLIST_FOREACH_END(circ);
smartlist_clear(circuits_pending_close);
}
/** Return a pointer to the global list of circuits. */
MOCK_IMPL(smartlist_t *,
circuit_get_global_list,(void))
{
if (NULL == global_circuitlist)
global_circuitlist = smartlist_new();
return global_circuitlist;
}
/** Return a pointer to the global list of origin circuits. */
smartlist_t *
circuit_get_global_origin_circuit_list(void)
{
if (NULL == global_origin_circuit_list)
global_origin_circuit_list = smartlist_new();
return global_origin_circuit_list;
}
/**
* Return true if we have any opened general-purpose 3 hop
* origin circuits.
*
* The result from this function is cached for use by
* circuit_any_opened_circuits_cached().
*/
int
circuit_any_opened_circuits(void)
{
SMARTLIST_FOREACH_BEGIN(circuit_get_global_origin_circuit_list(),
const origin_circuit_t *, next_circ) {
if (!TO_CIRCUIT(next_circ)->marked_for_close &&
next_circ->has_opened &&
TO_CIRCUIT(next_circ)->state == CIRCUIT_STATE_OPEN &&
TO_CIRCUIT(next_circ)->purpose != CIRCUIT_PURPOSE_C_MEASURE_TIMEOUT &&
next_circ->build_state &&
next_circ->build_state->desired_path_len == DEFAULT_ROUTE_LEN) {
circuit_cache_opened_circuit_state(1);
return 1;
}
} SMARTLIST_FOREACH_END(next_circ);
circuit_cache_opened_circuit_state(0);
return 0;
}
/**
* Cache the "any circuits opened" state, as specified in param
* circuits_are_opened. This is a helper function to update
* the circuit opened status whenever we happen to look at the
* circuit list.
*/
void
circuit_cache_opened_circuit_state(int circuits_are_opened)
{
any_opened_circs_cached_val = circuits_are_opened;
}
/**
* Return true if there were any opened circuits since the last call to
* circuit_any_opened_circuits(), or since circuit_expire_building() last
* ran (it runs roughly once per second).
*/
int
circuit_any_opened_circuits_cached(void)
{
return any_opened_circs_cached_val;
}
/** Function to make circ-\>state human-readable */
const char *
circuit_state_to_string(int state)
{
static char buf[64];
switch (state) {
case CIRCUIT_STATE_BUILDING: return "doing handshakes";
case CIRCUIT_STATE_ONIONSKIN_PENDING: return "processing the onion";
case CIRCUIT_STATE_CHAN_WAIT: return "connecting to server";
case CIRCUIT_STATE_GUARD_WAIT: return "waiting to see how other "
"guards perform";
case CIRCUIT_STATE_OPEN: return "open";
default:
log_warn(LD_BUG, "Unknown circuit state %d", state);
tor_snprintf(buf, sizeof(buf), "unknown state [%d]", state);
return buf;
}
}
/** Map a circuit purpose to a string suitable to be displayed to a
* controller. */
const char *
circuit_purpose_to_controller_string(uint8_t purpose)
{
static char buf[32];
switch (purpose) {
case CIRCUIT_PURPOSE_OR:
case CIRCUIT_PURPOSE_INTRO_POINT:
case CIRCUIT_PURPOSE_REND_POINT_WAITING:
case CIRCUIT_PURPOSE_REND_ESTABLISHED:
return "SERVER"; /* A controller should never see these, actually. */
case CIRCUIT_PURPOSE_C_GENERAL:
return "GENERAL";
case CIRCUIT_PURPOSE_C_HSDIR_GET:
return "HS_CLIENT_HSDIR";
case CIRCUIT_PURPOSE_C_INTRODUCING:
case CIRCUIT_PURPOSE_C_INTRODUCE_ACK_WAIT:
case CIRCUIT_PURPOSE_C_INTRODUCE_ACKED:
return "HS_CLIENT_INTRO";
case CIRCUIT_PURPOSE_C_ESTABLISH_REND:
case CIRCUIT_PURPOSE_C_REND_READY:
case CIRCUIT_PURPOSE_C_REND_READY_INTRO_ACKED:
case CIRCUIT_PURPOSE_C_REND_JOINED:
return "HS_CLIENT_REND";
case CIRCUIT_PURPOSE_S_HSDIR_POST:
return "HS_SERVICE_HSDIR";
case CIRCUIT_PURPOSE_S_ESTABLISH_INTRO:
case CIRCUIT_PURPOSE_S_INTRO:
return "HS_SERVICE_INTRO";
case CIRCUIT_PURPOSE_S_CONNECT_REND:
case CIRCUIT_PURPOSE_S_REND_JOINED:
return "HS_SERVICE_REND";
case CIRCUIT_PURPOSE_TESTING:
return "TESTING";
case CIRCUIT_PURPOSE_C_MEASURE_TIMEOUT:
return "MEASURE_TIMEOUT";
case CIRCUIT_PURPOSE_CONTROLLER:
return "CONTROLLER";
case CIRCUIT_PURPOSE_PATH_BIAS_TESTING:
return "PATH_BIAS_TESTING";
case CIRCUIT_PURPOSE_HS_VANGUARDS:
return "HS_VANGUARDS";
default:
tor_snprintf(buf, sizeof(buf), "UNKNOWN_%d", (int)purpose);
return buf;
}
}
/** Return a string specifying the state of the hidden-service circuit
* purpose purpose, or NULL if purpose is not a
* hidden-service-related circuit purpose. */
const char *
circuit_purpose_to_controller_hs_state_string(uint8_t purpose)
{
switch (purpose)
{
default:
log_fn(LOG_WARN, LD_BUG,
"Unrecognized circuit purpose: %d",
(int)purpose);
tor_fragile_assert();
/* fall through */
case CIRCUIT_PURPOSE_OR:
case CIRCUIT_PURPOSE_C_GENERAL:
case CIRCUIT_PURPOSE_C_MEASURE_TIMEOUT:
case CIRCUIT_PURPOSE_TESTING:
case CIRCUIT_PURPOSE_CONTROLLER:
case CIRCUIT_PURPOSE_PATH_BIAS_TESTING:
case CIRCUIT_PURPOSE_HS_VANGUARDS:
return NULL;
case CIRCUIT_PURPOSE_INTRO_POINT:
return "OR_HSSI_ESTABLISHED";
case CIRCUIT_PURPOSE_REND_POINT_WAITING:
return "OR_HSCR_ESTABLISHED";
case CIRCUIT_PURPOSE_REND_ESTABLISHED:
return "OR_HS_R_JOINED";
case CIRCUIT_PURPOSE_C_HSDIR_GET:
case CIRCUIT_PURPOSE_C_INTRODUCING:
return "HSCI_CONNECTING";
case CIRCUIT_PURPOSE_C_INTRODUCE_ACK_WAIT:
return "HSCI_INTRO_SENT";
case CIRCUIT_PURPOSE_C_INTRODUCE_ACKED:
return "HSCI_DONE";
case CIRCUIT_PURPOSE_C_ESTABLISH_REND:
return "HSCR_CONNECTING";
case CIRCUIT_PURPOSE_C_REND_READY:
return "HSCR_ESTABLISHED_IDLE";
case CIRCUIT_PURPOSE_C_REND_READY_INTRO_ACKED:
return "HSCR_ESTABLISHED_WAITING";
case CIRCUIT_PURPOSE_C_REND_JOINED:
return "HSCR_JOINED";
case CIRCUIT_PURPOSE_S_HSDIR_POST:
case CIRCUIT_PURPOSE_S_ESTABLISH_INTRO:
return "HSSI_CONNECTING";
case CIRCUIT_PURPOSE_S_INTRO:
return "HSSI_ESTABLISHED";
case CIRCUIT_PURPOSE_S_CONNECT_REND:
return "HSSR_CONNECTING";
case CIRCUIT_PURPOSE_S_REND_JOINED:
return "HSSR_JOINED";
}
}
/** Return a human-readable string for the circuit purpose purpose. */
const char *
circuit_purpose_to_string(uint8_t purpose)
{
static char buf[32];
switch (purpose)
{
case CIRCUIT_PURPOSE_OR:
return "Circuit at relay";
case CIRCUIT_PURPOSE_INTRO_POINT:
return "Acting as intro point";
case CIRCUIT_PURPOSE_REND_POINT_WAITING:
return "Acting as rendezvous (pending)";
case CIRCUIT_PURPOSE_REND_ESTABLISHED:
return "Acting as rendezvous (established)";
case CIRCUIT_PURPOSE_C_GENERAL:
return "General-purpose client";
case CIRCUIT_PURPOSE_C_INTRODUCING:
return "Hidden service client: Connecting to intro point";
case CIRCUIT_PURPOSE_C_INTRODUCE_ACK_WAIT:
return "Hidden service client: Waiting for ack from intro point";
case CIRCUIT_PURPOSE_C_INTRODUCE_ACKED:
return "Hidden service client: Received ack from intro point";
case CIRCUIT_PURPOSE_C_ESTABLISH_REND:
return "Hidden service client: Establishing rendezvous point";
case CIRCUIT_PURPOSE_C_REND_READY:
return "Hidden service client: Pending rendezvous point";
case CIRCUIT_PURPOSE_C_REND_READY_INTRO_ACKED:
return "Hidden service client: Pending rendezvous point (ack received)";
case CIRCUIT_PURPOSE_C_REND_JOINED:
return "Hidden service client: Active rendezvous point";
case CIRCUIT_PURPOSE_C_HSDIR_GET:
return "Hidden service client: Fetching HS descriptor";
case CIRCUIT_PURPOSE_C_MEASURE_TIMEOUT:
return "Measuring circuit timeout";
case CIRCUIT_PURPOSE_S_ESTABLISH_INTRO:
return "Hidden service: Establishing introduction point";
case CIRCUIT_PURPOSE_S_INTRO:
return "Hidden service: Introduction point";
case CIRCUIT_PURPOSE_S_CONNECT_REND:
return "Hidden service: Connecting to rendezvous point";
case CIRCUIT_PURPOSE_S_REND_JOINED:
return "Hidden service: Active rendezvous point";
case CIRCUIT_PURPOSE_S_HSDIR_POST:
return "Hidden service: Uploading HS descriptor";
case CIRCUIT_PURPOSE_TESTING:
return "Testing circuit";
case CIRCUIT_PURPOSE_CONTROLLER:
return "Circuit made by controller";
case CIRCUIT_PURPOSE_PATH_BIAS_TESTING:
return "Path-bias testing circuit";
case CIRCUIT_PURPOSE_HS_VANGUARDS:
return "Hidden service: Pre-built vanguard circuit";
default:
tor_snprintf(buf, sizeof(buf), "UNKNOWN_%d", (int)purpose);
return buf;
}
}
/** Pick a reasonable package_window to start out for our circuits.
* Originally this was hard-coded at 1000, but now the consensus votes
* on the answer. See proposal 168. */
int32_t
circuit_initial_package_window(void)
{
int32_t num = networkstatus_get_param(NULL, "circwindow", CIRCWINDOW_START,
CIRCWINDOW_START_MIN,
CIRCWINDOW_START_MAX);
/* If the consensus tells us a negative number, we'd assert. */
if (num < 0)
num = CIRCWINDOW_START;
return num;
}
/** Initialize the common elements in a circuit_t, and add it to the global
* list. */
static void
init_circuit_base(circuit_t *circ)
{
tor_gettimeofday(&circ->timestamp_created);
// Gets reset when we send CREATE_FAST.
// circuit_expire_building() expects these to be equal
// until the orconn is built.
circ->timestamp_began = circ->timestamp_created;
circ->package_window = circuit_initial_package_window();
circ->deliver_window = CIRCWINDOW_START;
cell_queue_init(&circ->n_chan_cells);
smartlist_add(circuit_get_global_list(), circ);
circ->global_circuitlist_idx = smartlist_len(circuit_get_global_list()) - 1;
}
/** If we haven't yet decided on a good timeout value for circuit
* building, we close idle circuits aggressively so we can get more
* data points. These are the default, min, and max consensus values */
#define DFLT_IDLE_TIMEOUT_WHILE_LEARNING (3*60)
#define MIN_IDLE_TIMEOUT_WHILE_LEARNING (10)
#define MAX_IDLE_TIMEOUT_WHILE_LEARNING (1000*60)
/** Allocate space for a new circuit, initializing with p_circ_id
* and p_conn. Add it to the global circuit list.
*/
origin_circuit_t *
origin_circuit_new(void)
{
origin_circuit_t *circ;
/* never zero, since a global ID of 0 is treated specially by the
* controller */
static uint32_t n_circuits_allocated = 1;
circ = tor_malloc_zero(sizeof(origin_circuit_t));
circ->base_.magic = ORIGIN_CIRCUIT_MAGIC;
circ->next_stream_id = crypto_rand_int(1<<16);
circ->global_identifier = n_circuits_allocated++;
circ->remaining_relay_early_cells = MAX_RELAY_EARLY_CELLS_PER_CIRCUIT;
circ->remaining_relay_early_cells -= crypto_rand_int(2);
init_circuit_base(TO_CIRCUIT(circ));
/* Add to origin-list. */
circ->global_origin_circuit_list_idx = -1;
circuit_add_to_origin_circuit_list(circ);
circuit_build_times_update_last_circ(get_circuit_build_times_mutable());
if (! circuit_build_times_disabled(get_options()) &&
circuit_build_times_needs_circuits(get_circuit_build_times())) {
/* Circuits should be shorter lived if we need more of them
* for learning a good build timeout */
circ->circuit_idle_timeout =
networkstatus_get_param(NULL, "cbtlearntimeout",
DFLT_IDLE_TIMEOUT_WHILE_LEARNING,
MIN_IDLE_TIMEOUT_WHILE_LEARNING,
MAX_IDLE_TIMEOUT_WHILE_LEARNING);
} else {
// This should always be larger than the current port prediction time
// remaining, or else we'll end up with the case where a circuit times out
// and another one is built, effectively doubling the timeout window.
//
// We also randomize it by up to 5% more (ie 5% of 0 to 3600 seconds,
// depending on how much circuit prediction time is remaining) so that
// we don't close a bunch of unused circuits all at the same time.
int prediction_time_remaining =
predicted_ports_prediction_time_remaining(time(NULL));
circ->circuit_idle_timeout = prediction_time_remaining+1+
crypto_rand_int(1+prediction_time_remaining/20);
if (circ->circuit_idle_timeout <= 0) {
log_warn(LD_BUG,
"Circuit chose a negative idle timeout of %d based on "
"%d seconds of predictive building remaining.",
circ->circuit_idle_timeout,
prediction_time_remaining);
circ->circuit_idle_timeout =
networkstatus_get_param(NULL, "cbtlearntimeout",
DFLT_IDLE_TIMEOUT_WHILE_LEARNING,
MIN_IDLE_TIMEOUT_WHILE_LEARNING,
MAX_IDLE_TIMEOUT_WHILE_LEARNING);
}
log_info(LD_CIRC,
"Circuit " U64_FORMAT " chose an idle timeout of %d based on "
"%d seconds of predictive building remaining.",
U64_PRINTF_ARG(circ->global_identifier),
circ->circuit_idle_timeout,
prediction_time_remaining);
}
return circ;
}
/** Allocate a new or_circuit_t, connected to p_chan as
* p_circ_id. If p_chan is NULL, the circuit is unattached. */
or_circuit_t *
or_circuit_new(circid_t p_circ_id, channel_t *p_chan)
{
/* CircIDs */
or_circuit_t *circ;
circ = tor_malloc_zero(sizeof(or_circuit_t));
circ->base_.magic = OR_CIRCUIT_MAGIC;
if (p_chan)
circuit_set_p_circid_chan(circ, p_circ_id, p_chan);
circ->remaining_relay_early_cells = MAX_RELAY_EARLY_CELLS_PER_CIRCUIT;
cell_queue_init(&circ->p_chan_cells);
init_circuit_base(TO_CIRCUIT(circ));
return circ;
}
/** Free all storage held in circ->testing_cell_stats */
void
circuit_clear_testing_cell_stats(circuit_t *circ)
{
if (!circ || !circ->testing_cell_stats)
return;
SMARTLIST_FOREACH(circ->testing_cell_stats, testing_cell_stats_entry_t *,
ent, tor_free(ent));
smartlist_free(circ->testing_cell_stats);
circ->testing_cell_stats = NULL;
}
/** Deallocate space associated with circ.
*/
STATIC void
circuit_free_(circuit_t *circ)
{
circid_t n_circ_id = 0;
void *mem;
size_t memlen;
int should_free = 1;
if (!circ)
return;
/* We keep a copy of this so we can log its value before it gets unset. */
n_circ_id = circ->n_circ_id;
circuit_clear_testing_cell_stats(circ);
/* Cleanup circuit from anything HS v3 related. We also do this when the
* circuit is closed. This is to avoid any code path that free registered
* circuits without closing them before. This needs to be done before the
* hs identifier is freed. */
hs_circ_cleanup(circ);
if (CIRCUIT_IS_ORIGIN(circ)) {
origin_circuit_t *ocirc = TO_ORIGIN_CIRCUIT(circ);
mem = ocirc;
memlen = sizeof(origin_circuit_t);
tor_assert(circ->magic == ORIGIN_CIRCUIT_MAGIC);
circuit_remove_from_origin_circuit_list(ocirc);
if (ocirc->half_streams) {
SMARTLIST_FOREACH_BEGIN(ocirc->half_streams, half_edge_t *,
half_conn) {
half_edge_free(half_conn);
} SMARTLIST_FOREACH_END(half_conn);
smartlist_free(ocirc->half_streams);
}
if (ocirc->build_state) {
extend_info_free(ocirc->build_state->chosen_exit);
circuit_free_cpath_node(ocirc->build_state->pending_final_cpath);
cpath_ref_decref(ocirc->build_state->service_pending_final_cpath_ref);
}
tor_free(ocirc->build_state);
/* Cancel before freeing, if we haven't already succeeded or failed. */
if (ocirc->guard_state) {
entry_guard_cancel(ô->guard_state);
}
circuit_guard_state_free(ocirc->guard_state);
circuit_clear_cpath(ocirc);
crypto_pk_free(ocirc->intro_key);
rend_data_free(ocirc->rend_data);
/* Finally, free the identifier of the circuit and nullify it so multiple
* cleanup will work. */
hs_ident_circuit_free(ocirc->hs_ident);
ocirc->hs_ident = NULL;
tor_free(ocirc->dest_address);
if (ocirc->socks_username) {
memwipe(ocirc->socks_username, 0x12, ocirc->socks_username_len);
tor_free(ocirc->socks_username);
}
if (ocirc->socks_password) {
memwipe(ocirc->socks_password, 0x06, ocirc->socks_password_len);
tor_free(ocirc->socks_password);
}
addr_policy_list_free(ocirc->prepend_policy);
} else {
or_circuit_t *ocirc = TO_OR_CIRCUIT(circ);
/* Remember cell statistics for this circuit before deallocating. */
if (get_options()->CellStatistics)
rep_hist_buffer_stats_add_circ(circ, time(NULL));
mem = ocirc;
memlen = sizeof(or_circuit_t);
tor_assert(circ->magic == OR_CIRCUIT_MAGIC);
should_free = (ocirc->workqueue_entry == NULL);
relay_crypto_clear(ô->crypto);
if (ocirc->rend_splice) {
or_circuit_t *other = ocirc->rend_splice;
tor_assert(other->base_.magic == OR_CIRCUIT_MAGIC);
other->rend_splice = NULL;
}
/* remove from map. */
circuit_set_p_circid_chan(ocirc, 0, NULL);
/* Clear cell queue _after_ removing it from the map. Otherwise our
* "active" checks will be violated. */
cell_queue_clear(ô->p_chan_cells);
}
extend_info_free(circ->n_hop);
tor_free(circ->n_chan_create_cell);
if (circ->global_circuitlist_idx != -1) {
int idx = circ->global_circuitlist_idx;
circuit_t *c2 = smartlist_get(global_circuitlist, idx);
tor_assert(c2 == circ);
smartlist_del(global_circuitlist, idx);
if (idx < smartlist_len(global_circuitlist)) {
c2 = smartlist_get(global_circuitlist, idx);
c2->global_circuitlist_idx = idx;
}
}
/* Remove from map. */
circuit_set_n_circid_chan(circ, 0, NULL);
/* Clear cell queue _after_ removing it from the map. Otherwise our
* "active" checks will be violated. */
cell_queue_clear(&circ->n_chan_cells);
log_info(LD_CIRC, "Circuit %u (id: %" PRIu32 ") has been freed.",
n_circ_id,
CIRCUIT_IS_ORIGIN(circ) ?
TO_ORIGIN_CIRCUIT(circ)->global_identifier : 0);
if (should_free) {
memwipe(mem, 0xAA, memlen); /* poison memory */
tor_free(mem);
} else {
/* If we made it here, this is an or_circuit_t that still has a pending
* cpuworker request which we weren't able to cancel. Instead, set up
* the magic value so that when the reply comes back, we'll know to discard
* the reply and free this structure.
*/
memwipe(mem, 0xAA, memlen);
circ->magic = DEAD_CIRCUIT_MAGIC;
}
}
/** Deallocate the linked list circ->cpath, and remove the cpath from
* circ. */
void
circuit_clear_cpath(origin_circuit_t *circ)
{
crypt_path_t *victim, *head, *cpath;
head = cpath = circ->cpath;
if (!cpath)
return;
/* it's a circular list, so we have to notice when we've
* gone through it once. */
while (cpath->next && cpath->next != head) {
victim = cpath;
cpath = victim->next;
circuit_free_cpath_node(victim);
}
circuit_free_cpath_node(cpath);
circ->cpath = NULL;
}
/** Release all storage held by circuits. */
void
circuit_free_all(void)
{
smartlist_t *lst = circuit_get_global_list();
SMARTLIST_FOREACH_BEGIN(lst, circuit_t *, tmp) {
if (! CIRCUIT_IS_ORIGIN(tmp)) {
or_circuit_t *or_circ = TO_OR_CIRCUIT(tmp);
while (or_circ->resolving_streams) {
edge_connection_t *next_conn;
next_conn = or_circ->resolving_streams->next_stream;
connection_free_(TO_CONN(or_circ->resolving_streams));
or_circ->resolving_streams = next_conn;
}
}
tmp->global_circuitlist_idx = -1;
circuit_about_to_free_atexit(tmp);
circuit_free(tmp);
SMARTLIST_DEL_CURRENT(lst, tmp);
} SMARTLIST_FOREACH_END(tmp);
smartlist_free(lst);
global_circuitlist = NULL;
smartlist_free(global_origin_circuit_list);
global_origin_circuit_list = NULL;
smartlist_free(circuits_pending_chans);
circuits_pending_chans = NULL;
smartlist_free(circuits_pending_close);
circuits_pending_close = NULL;
smartlist_free(circuits_pending_other_guards);
circuits_pending_other_guards = NULL;
{
chan_circid_circuit_map_t **elt, **next, *c;
for (elt = HT_START(chan_circid_map, &chan_circid_map);
elt;
elt = next) {
c = *elt;
next = HT_NEXT_RMV(chan_circid_map, &chan_circid_map, elt);
tor_assert(c->circuit == NULL);
tor_free(c);
}
}
HT_CLEAR(chan_circid_map, &chan_circid_map);
}
/** Deallocate space associated with the cpath node victim. */
static void
circuit_free_cpath_node(crypt_path_t *victim)
{
if (!victim)
return;
relay_crypto_clear(&victim->crypto);
onion_handshake_state_release(&victim->handshake_state);
crypto_dh_free(victim->rend_dh_handshake_state);
extend_info_free(victim->extend_info);
memwipe(victim, 0xBB, sizeof(crypt_path_t)); /* poison memory */
tor_free(victim);
}
/** Release a crypt_path_reference_t*, which may be NULL. */
static void
cpath_ref_decref(crypt_path_reference_t *cpath_ref)
{
if (cpath_ref != NULL) {
if (--(cpath_ref->refcount) == 0) {
circuit_free_cpath_node(cpath_ref->cpath);
tor_free(cpath_ref);
}
}
}
/** A helper function for circuit_dump_by_conn() below. Log a bunch
* of information about circuit circ.
*/
static void
circuit_dump_conn_details(int severity,
circuit_t *circ,
int conn_array_index,
const char *type,
circid_t this_circid,
circid_t other_circid)
{
tor_log(severity, LD_CIRC, "Conn %d has %s circuit: circID %u "
"(other side %u), state %d (%s), born %ld:",
conn_array_index, type, (unsigned)this_circid, (unsigned)other_circid,
circ->state, circuit_state_to_string(circ->state),
(long)circ->timestamp_began.tv_sec);
if (CIRCUIT_IS_ORIGIN(circ)) { /* circ starts at this node */
circuit_log_path(severity, LD_CIRC, TO_ORIGIN_CIRCUIT(circ));
}
}
/** Log, at severity severity, information about each circuit
* that is connected to conn.
*/
void
circuit_dump_by_conn(connection_t *conn, int severity)
{
edge_connection_t *tmpconn;
SMARTLIST_FOREACH_BEGIN(circuit_get_global_list(), circuit_t *, circ) {
circid_t n_circ_id = circ->n_circ_id, p_circ_id = 0;
if (circ->marked_for_close) {
continue;
}
if (!CIRCUIT_IS_ORIGIN(circ)) {
p_circ_id = TO_OR_CIRCUIT(circ)->p_circ_id;
}
if (CIRCUIT_IS_ORIGIN(circ)) {
for (tmpconn=TO_ORIGIN_CIRCUIT(circ)->p_streams; tmpconn;
tmpconn=tmpconn->next_stream) {
if (TO_CONN(tmpconn) == conn) {
circuit_dump_conn_details(severity, circ, conn->conn_array_index,
"App-ward", p_circ_id, n_circ_id);
}
}
}
if (! CIRCUIT_IS_ORIGIN(circ)) {
for (tmpconn=TO_OR_CIRCUIT(circ)->n_streams; tmpconn;
tmpconn=tmpconn->next_stream) {
if (TO_CONN(tmpconn) == conn) {
circuit_dump_conn_details(severity, circ, conn->conn_array_index,
"Exit-ward", n_circ_id, p_circ_id);
}
}
}
}
SMARTLIST_FOREACH_END(circ);
}
/** Return the circuit whose global ID is id, or NULL if no
* such circuit exists. */
origin_circuit_t *
circuit_get_by_global_id(uint32_t id)
{
SMARTLIST_FOREACH_BEGIN(circuit_get_global_list(), circuit_t *, circ) {
if (CIRCUIT_IS_ORIGIN(circ) &&
TO_ORIGIN_CIRCUIT(circ)->global_identifier == id) {
if (circ->marked_for_close)
return NULL;
else
return TO_ORIGIN_CIRCUIT(circ);
}
}
SMARTLIST_FOREACH_END(circ);
return NULL;
}
/** Return a circ such that:
* - circ-\>n_circ_id or circ-\>p_circ_id is equal to circ_id, and
* - circ is attached to chan, either as p_chan or n_chan.
* Return NULL if no such circuit exists.
*
* If found_entry_out is provided, set it to true if we have a
* placeholder entry for circid/chan, and leave it unset otherwise.
*/
static inline circuit_t *
circuit_get_by_circid_channel_impl(circid_t circ_id, channel_t *chan,
int *found_entry_out)
{
chan_circid_circuit_map_t search;
chan_circid_circuit_map_t *found;
if (_last_circid_chan_ent &&
circ_id == _last_circid_chan_ent->circ_id &&
chan == _last_circid_chan_ent->chan) {
found = _last_circid_chan_ent;
} else {
search.circ_id = circ_id;
search.chan = chan;
found = HT_FIND(chan_circid_map, &chan_circid_map, &search);
_last_circid_chan_ent = found;
}
if (found && found->circuit) {
log_debug(LD_CIRC,
"circuit_get_by_circid_channel_impl() returning circuit %p for"
" circ_id %u, channel ID " U64_FORMAT " (%p)",
found->circuit, (unsigned)circ_id,
U64_PRINTF_ARG(chan->global_identifier), chan);
if (found_entry_out)
*found_entry_out = 1;
return found->circuit;
}
log_debug(LD_CIRC,
"circuit_get_by_circid_channel_impl() found %s for"
" circ_id %u, channel ID " U64_FORMAT " (%p)",
found ? "placeholder" : "nothing",
(unsigned)circ_id,
U64_PRINTF_ARG(chan->global_identifier), chan);
if (found_entry_out)
*found_entry_out = found ? 1 : 0;
return NULL;
/* The rest of this checks for bugs. Disabled by default. */
/* We comment it out because coverity complains otherwise.
{
circuit_t *circ;
TOR_LIST_FOREACH(circ, &global_circuitlist, head) {
if (! CIRCUIT_IS_ORIGIN(circ)) {
or_circuit_t *or_circ = TO_OR_CIRCUIT(circ);
if (or_circ->p_chan == chan && or_circ->p_circ_id == circ_id) {
log_warn(LD_BUG,
"circuit matches p_chan, but not in hash table (Bug!)");
return circ;
}
}
if (circ->n_chan == chan && circ->n_circ_id == circ_id) {
log_warn(LD_BUG,
"circuit matches n_chan, but not in hash table (Bug!)");
return circ;
}
}
return NULL;
} */
}
/** Return a circ such that:
* - circ-\>n_circ_id or circ-\>p_circ_id is equal to circ_id, and
* - circ is attached to chan, either as p_chan or n_chan.
* - circ is not marked for close.
* Return NULL if no such circuit exists.
*/
circuit_t *
circuit_get_by_circid_channel(circid_t circ_id, channel_t *chan)
{
circuit_t *circ = circuit_get_by_circid_channel_impl(circ_id, chan, NULL);
if (!circ || circ->marked_for_close)
return NULL;
else
return circ;
}
/** Return a circ such that:
* - circ-\>n_circ_id or circ-\>p_circ_id is equal to circ_id, and
* - circ is attached to chan, either as p_chan or n_chan.
* Return NULL if no such circuit exists.
*/
circuit_t *
circuit_get_by_circid_channel_even_if_marked(circid_t circ_id,
channel_t *chan)
{
return circuit_get_by_circid_channel_impl(circ_id, chan, NULL);
}
/** Return true iff the circuit ID circ_id is currently used by a
* circuit, marked or not, on chan, or if the circ ID is reserved until
* a queued destroy cell can be sent.
*
* (Return 1 if the circuit is present, marked or not; Return 2
* if the circuit ID is pending a destroy.)
**/
int
circuit_id_in_use_on_channel(circid_t circ_id, channel_t *chan)
{
int found = 0;
if (circuit_get_by_circid_channel_impl(circ_id, chan, &found) != NULL)
return 1;
if (found)
return 2;
return 0;
}
/** Helper for debugging 12184. Returns the time since which 'circ_id' has
* been marked unusable on 'chan'. */
time_t
circuit_id_when_marked_unusable_on_channel(circid_t circ_id, channel_t *chan)
{
chan_circid_circuit_map_t search;
chan_circid_circuit_map_t *found;
memset(&search, 0, sizeof(search));
search.circ_id = circ_id;
search.chan = chan;
found = HT_FIND(chan_circid_map, &chan_circid_map, &search);
if (! found || found->circuit)
return 0;
return found->made_placeholder_at;
}
/** Return the circuit that a given edge connection is using. */
circuit_t *
circuit_get_by_edge_conn(edge_connection_t *conn)
{
circuit_t *circ;
circ = conn->on_circuit;
tor_assert(!circ ||
(CIRCUIT_IS_ORIGIN(circ) ? circ->magic == ORIGIN_CIRCUIT_MAGIC
: circ->magic == OR_CIRCUIT_MAGIC));
return circ;
}
/** For each circuit that has chan as n_chan or p_chan, unlink the
* circuit from the chan,circid map, and mark it for close if it hasn't
* been marked already.
*/
void
circuit_unlink_all_from_channel(channel_t *chan, int reason)
{
smartlist_t *detached = smartlist_new();
/* #define DEBUG_CIRCUIT_UNLINK_ALL */
channel_unlink_all_circuits(chan, detached);
#ifdef DEBUG_CIRCUIT_UNLINK_ALL
{
smartlist_t *detached_2 = smartlist_new();
int mismatch = 0, badlen = 0;
SMARTLIST_FOREACH_BEGIN(circuit_get_global_list(), circuit_t *, circ) {
if (circ->n_chan == chan ||
(!CIRCUIT_IS_ORIGIN(circ) &&
TO_OR_CIRCUIT(circ)->p_chan == chan)) {
smartlist_add(detached_2, circ);
}
}
SMARTLIST_FOREACH_END(circ);
if (smartlist_len(detached) != smartlist_len(detached_2)) {
log_warn(LD_BUG, "List of detached circuits had the wrong length! "
"(got %d, should have gotten %d)",
(int)smartlist_len(detached),
(int)smartlist_len(detached_2));
badlen = 1;
}
smartlist_sort_pointers(detached);
smartlist_sort_pointers(detached_2);
SMARTLIST_FOREACH(detached, circuit_t *, c,
if (c != smartlist_get(detached_2, c_sl_idx))
mismatch = 1;
);
if (mismatch)
log_warn(LD_BUG, "Mismatch in list of detached circuits.");
if (badlen || mismatch) {
smartlist_free(detached);
detached = detached_2;
} else {
log_notice(LD_CIRC, "List of %d circuits was as expected.",
(int)smartlist_len(detached));
smartlist_free(detached_2);
}
}
#endif /* defined(DEBUG_CIRCUIT_UNLINK_ALL) */
SMARTLIST_FOREACH_BEGIN(detached, circuit_t *, circ) {
int mark = 0;
if (circ->n_chan == chan) {
circuit_set_n_circid_chan(circ, 0, NULL);
mark = 1;
/* If we didn't request this closure, pass the remote
* bit to mark_for_close. */
if (chan->reason_for_closing != CHANNEL_CLOSE_REQUESTED)
reason |= END_CIRC_REASON_FLAG_REMOTE;
}
if (! CIRCUIT_IS_ORIGIN(circ)) {
or_circuit_t *or_circ = TO_OR_CIRCUIT(circ);
if (or_circ->p_chan == chan) {
circuit_set_p_circid_chan(or_circ, 0, NULL);
mark = 1;
}
}
if (!mark) {
log_warn(LD_BUG, "Circuit on detached list which I had no reason "
"to mark");
continue;
}
if (!circ->marked_for_close)
circuit_mark_for_close(circ, reason);
} SMARTLIST_FOREACH_END(circ);
smartlist_free(detached);
}
/** Return a circ such that
* - circ-\>rend_data-\>onion_address is equal to
* rend_data-\>onion_address,
* - circ-\>rend_data-\>rend_cookie is equal to
* rend_data-\>rend_cookie, and
* - circ-\>purpose is equal to CIRCUIT_PURPOSE_C_REND_READY.
*
* Return NULL if no such circuit exists.
*/
origin_circuit_t *
circuit_get_ready_rend_circ_by_rend_data(const rend_data_t *rend_data)
{
SMARTLIST_FOREACH_BEGIN(circuit_get_global_list(), circuit_t *, circ) {
if (!circ->marked_for_close &&
circ->purpose == CIRCUIT_PURPOSE_C_REND_READY) {
origin_circuit_t *ocirc = TO_ORIGIN_CIRCUIT(circ);
if (ocirc->rend_data == NULL) {
continue;
}
if (!rend_cmp_service_ids(rend_data_get_address(rend_data),
rend_data_get_address(ocirc->rend_data)) &&
tor_memeq(ocirc->rend_data->rend_cookie,
rend_data->rend_cookie,
REND_COOKIE_LEN))
return ocirc;
}
}
SMARTLIST_FOREACH_END(circ);
return NULL;
}
/** Return the first service introduction circuit originating from the global
* circuit list after start or at the start of the list if start
* is NULL. Return NULL if no circuit is found.
*
* A service introduction point circuit has a purpose of either
* CIRCUIT_PURPOSE_S_ESTABLISH_INTRO or CIRCUIT_PURPOSE_S_INTRO. This does not
* return a circuit marked for close and its state must be open. */
origin_circuit_t *
circuit_get_next_service_intro_circ(origin_circuit_t *start)
{
int idx = 0;
smartlist_t *lst = circuit_get_global_list();
if (start) {
idx = TO_CIRCUIT(start)->global_circuitlist_idx + 1;
}
for ( ; idx < smartlist_len(lst); ++idx) {
circuit_t *circ = smartlist_get(lst, idx);
/* Ignore a marked for close circuit or purpose not matching a service
* intro point or if the state is not open. */
if (circ->marked_for_close || circ->state != CIRCUIT_STATE_OPEN ||
(circ->purpose != CIRCUIT_PURPOSE_S_ESTABLISH_INTRO &&
circ->purpose != CIRCUIT_PURPOSE_S_INTRO)) {
continue;
}
/* The purposes we are looking for are only for origin circuits so the
* following is valid. */
return TO_ORIGIN_CIRCUIT(circ);
}
/* Not found. */
return NULL;
}
/** Return the first service rendezvous circuit originating from the global
* circuit list after start or at the start of the list if start
* is NULL. Return NULL if no circuit is found.
*
* A service rendezvous point circuit has a purpose of either
* CIRCUIT_PURPOSE_S_CONNECT_REND or CIRCUIT_PURPOSE_S_REND_JOINED. This does
* not return a circuit marked for close and its state must be open. */
origin_circuit_t *
circuit_get_next_service_rp_circ(origin_circuit_t *start)
{
int idx = 0;
smartlist_t *lst = circuit_get_global_list();
if (start) {
idx = TO_CIRCUIT(start)->global_circuitlist_idx + 1;
}
for ( ; idx < smartlist_len(lst); ++idx) {
circuit_t *circ = smartlist_get(lst, idx);
/* Ignore a marked for close circuit or purpose not matching a service
* intro point or if the state is not open. */
if (circ->marked_for_close || circ->state != CIRCUIT_STATE_OPEN ||
(circ->purpose != CIRCUIT_PURPOSE_S_CONNECT_REND &&
circ->purpose != CIRCUIT_PURPOSE_S_REND_JOINED)) {
continue;
}
/* The purposes we are looking for are only for origin circuits so the
* following is valid. */
return TO_ORIGIN_CIRCUIT(circ);
}
/* Not found. */
return NULL;
}
/** Return the first circuit originating here in global_circuitlist after
* start whose purpose is purpose, and where digest (if
* set) matches the private key digest of the rend data associated with the
* circuit. Return NULL if no circuit is found. If start is NULL,
* begin at the start of the list.
*/
origin_circuit_t *
circuit_get_next_by_pk_and_purpose(origin_circuit_t *start,
const uint8_t *digest, uint8_t purpose)
{
int idx;
smartlist_t *lst = circuit_get_global_list();
tor_assert(CIRCUIT_PURPOSE_IS_ORIGIN(purpose));
if (start == NULL)
idx = 0;
else
idx = TO_CIRCUIT(start)->global_circuitlist_idx + 1;
for ( ; idx < smartlist_len(lst); ++idx) {
circuit_t *circ = smartlist_get(lst, idx);
origin_circuit_t *ocirc;
if (circ->marked_for_close)
continue;
if (circ->purpose != purpose)
continue;
/* At this point we should be able to get a valid origin circuit because
* the origin purpose we are looking for matches this circuit. */
if (BUG(!CIRCUIT_PURPOSE_IS_ORIGIN(circ->purpose))) {
break;
}
ocirc = TO_ORIGIN_CIRCUIT(circ);
if (!digest)
return ocirc;
if (rend_circuit_pk_digest_eq(ocirc, digest)) {
return ocirc;
}
}
return NULL;
}
/** We might cannibalize this circuit: Return true if its last hop can be used
* as a v3 rendezvous point. */
static int
circuit_can_be_cannibalized_for_v3_rp(const origin_circuit_t *circ)
{
if (!circ->build_state) {
return 0;
}
extend_info_t *chosen_exit = circ->build_state->chosen_exit;
if (BUG(!chosen_exit)) {
return 0;
}
const node_t *rp_node = node_get_by_id(chosen_exit->identity_digest);
if (rp_node) {
if (node_supports_v3_rendezvous_point(rp_node)) {
return 1;
}
}
return 0;
}
/** We are trying to create a circuit of purpose purpose and we are
* looking for cannibalizable circuits. Return the circuit purpose we would be
* willing to cannibalize. */
static uint8_t
get_circuit_purpose_needed_to_cannibalize(uint8_t purpose)
{
if (circuit_should_use_vanguards(purpose)) {
/* If we are using vanguards, then we should only cannibalize vanguard
* circuits so that we get the same path construction logic. */
return CIRCUIT_PURPOSE_HS_VANGUARDS;
} else {
/* If no vanguards are used just get a general circuit! */
return CIRCUIT_PURPOSE_C_GENERAL;
}
}
/** Return a circuit that is open, is CIRCUIT_PURPOSE_C_GENERAL,
* has a timestamp_dirty value of 0, has flags matching the CIRCLAUNCH_*
* flags in flags, and if info is defined, does not already use info
* as any of its hops; or NULL if no circuit fits this description.
*
* The purpose argument refers to the purpose of the circuit we want to
* create, not the purpose of the circuit we want to cannibalize.
*
* If !CIRCLAUNCH_NEED_UPTIME, prefer returning non-uptime circuits.
*
* To "cannibalize" a circuit means to extend it an extra hop, and use it
* for some other purpose than we had originally intended. We do this when
* we want to perform some low-bandwidth task at a specific relay, and we
* would like the circuit to complete as soon as possible. (If we were going
* to use a lot of bandwidth, we wouldn't want a circuit with an extra hop.
* If we didn't care about circuit completion latency, we would just build
* a new circuit.)
*/
origin_circuit_t *
circuit_find_to_cannibalize(uint8_t purpose_to_produce, extend_info_t *info,
int flags)
{
origin_circuit_t *best=NULL;
int need_uptime = (flags & CIRCLAUNCH_NEED_UPTIME) != 0;
int need_capacity = (flags & CIRCLAUNCH_NEED_CAPACITY) != 0;
int internal = (flags & CIRCLAUNCH_IS_INTERNAL) != 0;
const or_options_t *options = get_options();
/* We want the circuit we are trying to cannibalize to have this purpose */
int purpose_to_search_for;
/* Make sure we're not trying to create a onehop circ by
* cannibalization. */
tor_assert(!(flags & CIRCLAUNCH_ONEHOP_TUNNEL));
purpose_to_search_for = get_circuit_purpose_needed_to_cannibalize(
purpose_to_produce);
tor_assert_nonfatal(purpose_to_search_for == CIRCUIT_PURPOSE_C_GENERAL ||
purpose_to_search_for == CIRCUIT_PURPOSE_HS_VANGUARDS);
log_debug(LD_CIRC,
"Hunting for a circ to cannibalize: purpose %d, uptime %d, "
"capacity %d, internal %d",
purpose_to_produce, need_uptime, need_capacity, internal);
SMARTLIST_FOREACH_BEGIN(circuit_get_global_list(), circuit_t *, circ_) {
if (CIRCUIT_IS_ORIGIN(circ_) &&
circ_->state == CIRCUIT_STATE_OPEN &&
!circ_->marked_for_close &&
circ_->purpose == purpose_to_search_for &&
!circ_->timestamp_dirty) {
origin_circuit_t *circ = TO_ORIGIN_CIRCUIT(circ_);
/* Only cannibalize from reasonable length circuits. If we
* want C_GENERAL, then only choose 3 hop circs. If we want
* HS_VANGUARDS, only choose 4 hop circs.
*/
if (circ->build_state->desired_path_len !=
route_len_for_purpose(purpose_to_search_for, NULL)) {
goto next;
}
/* Ignore any circuits for which we can't use the Guard. It is possible
* that the Guard was removed from the samepled set after the circuit
* was created so avoid using it. */
if (!entry_guard_could_succeed(circ->guard_state)) {
goto next;
}
if ((!need_uptime || circ->build_state->need_uptime) &&
(!need_capacity || circ->build_state->need_capacity) &&
(internal == circ->build_state->is_internal) &&
!circ->unusable_for_new_conns &&
circ->remaining_relay_early_cells &&
!circ->build_state->onehop_tunnel &&
!circ->isolation_values_set) {
if (info) {
/* need to make sure we don't duplicate hops */
crypt_path_t *hop = circ->cpath;
const node_t *ri1 = node_get_by_id(info->identity_digest);
do {
const node_t *ri2;
if (tor_memeq(hop->extend_info->identity_digest,
info->identity_digest, DIGEST_LEN))
goto next;
if (ri1 &&
(ri2 = node_get_by_id(hop->extend_info->identity_digest))
&& nodes_in_same_family(ri1, ri2))
goto next;
hop=hop->next;
} while (hop!=circ->cpath);
}
if (options->ExcludeNodes) {
/* Make sure no existing nodes in the circuit are excluded for
* general use. (This may be possible if StrictNodes is 0, and we
* thought we needed to use an otherwise excluded node for, say, a
* directory operation.) */
crypt_path_t *hop = circ->cpath;
do {
if (routerset_contains_extendinfo(options->ExcludeNodes,
hop->extend_info))
goto next;
hop = hop->next;
} while (hop != circ->cpath);
}
if ((flags & CIRCLAUNCH_IS_V3_RP) &&
!circuit_can_be_cannibalized_for_v3_rp(circ)) {
log_debug(LD_GENERAL, "Skipping uncannibalizable circuit for v3 "
"rendezvous point.");
goto next;
}
if (!best || (best->build_state->need_uptime && !need_uptime))
best = circ;
next: ;
}
}
}
SMARTLIST_FOREACH_END(circ_);
return best;
}
/**
* Check whether any of the origin circuits that are waiting to see if
* their guard is good enough to use can be upgraded to "ready". If so,
* return a new smartlist containing them. Otherwise return NULL.
*/
smartlist_t *
circuit_find_circuits_to_upgrade_from_guard_wait(void)
{
/* Only if some circuit is actually waiting on an upgrade should we
* run the algorithm. */
if (! circuits_pending_other_guards ||
smartlist_len(circuits_pending_other_guards)==0)
return NULL;
/* Only if we have some origin circuits should we run the algorithm. */
if (!global_origin_circuit_list)
return NULL;
/* Okay; we can pass our circuit list to entrynodes.c.*/
smartlist_t *result = smartlist_new();
int circuits_upgraded = entry_guards_upgrade_waiting_circuits(
get_guard_selection_info(),
global_origin_circuit_list,
result);
if (circuits_upgraded && smartlist_len(result)) {
return result;
} else {
smartlist_free(result);
return NULL;
}
}
/** Return the number of hops in circuit's path. If circ has no entries,
* or is NULL, returns 0. */
int
circuit_get_cpath_len(origin_circuit_t *circ)
{
int n = 0;
if (circ && circ->cpath) {
crypt_path_t *cpath, *cpath_next = NULL;
for (cpath = circ->cpath; cpath_next != circ->cpath; cpath = cpath_next) {
cpath_next = cpath->next;
++n;
}
}
return n;
}
/** Return the number of opened hops in circuit's path.
* If circ has no entries, or is NULL, returns 0. */
int
circuit_get_cpath_opened_len(const origin_circuit_t *circ)
{
int n = 0;
if (circ && circ->cpath) {
crypt_path_t *cpath, *cpath_next = NULL;
for (cpath = circ->cpath;
cpath->state == CPATH_STATE_OPEN
&& cpath_next != circ->cpath;
cpath = cpath_next) {
cpath_next = cpath->next;
++n;
}
}
return n;
}
/** Return the hopnumth hop in circ->cpath, or NULL if there
* aren't that many hops in the list. hopnum starts at 1.
* Returns NULL if hopnum is 0 or negative. */
crypt_path_t *
circuit_get_cpath_hop(origin_circuit_t *circ, int hopnum)
{
if (circ && circ->cpath && hopnum > 0) {
crypt_path_t *cpath, *cpath_next = NULL;
for (cpath = circ->cpath; cpath_next != circ->cpath; cpath = cpath_next) {
cpath_next = cpath->next;
if (--hopnum <= 0)
return cpath;
}
}
return NULL;
}
/** Go through the circuitlist; mark-for-close each circuit that starts
* at us but has not yet been used. */
void
circuit_mark_all_unused_circs(void)
{
SMARTLIST_FOREACH_BEGIN(circuit_get_global_list(), circuit_t *, circ) {
if (CIRCUIT_IS_ORIGIN(circ) &&
!circ->marked_for_close &&
!circ->timestamp_dirty)
circuit_mark_for_close(circ, END_CIRC_REASON_FINISHED);
}
SMARTLIST_FOREACH_END(circ);
}
/** Go through the circuitlist; for each circuit that starts at us
* and is dirty, frob its timestamp_dirty so we won't use it for any
* new streams.
*
* This is useful for letting the user change pseudonyms, so new
* streams will not be linkable to old streams.
*/
void
circuit_mark_all_dirty_circs_as_unusable(void)
{
SMARTLIST_FOREACH_BEGIN(circuit_get_global_list(), circuit_t *, circ) {
if (CIRCUIT_IS_ORIGIN(circ) &&
!circ->marked_for_close &&
circ->timestamp_dirty) {
mark_circuit_unusable_for_new_conns(TO_ORIGIN_CIRCUIT(circ));
}
}
SMARTLIST_FOREACH_END(circ);
}
/**
* Report any queued cells on or_circuits as written in our bandwidth
* totals, for the specified channel direction.
*
* When we close a circuit or clear its cell queues, we've read
* data and recorded those bytes in our read statistics, but we're
* not going to write it. This discrepancy can be used by an adversary
* to infer information from our public relay statistics and perform
* attacks such as guard discovery.
*
* This function is in the critical path of circuit_mark_for_close().
* It must be (and is) O(1)!
*
* See https://trac.torproject.org/projects/tor/ticket/23512.
*/
void
circuit_synchronize_written_or_bandwidth(const circuit_t *c,
circuit_channel_direction_t dir)
{
uint64_t cells;
uint64_t cell_size;
uint64_t written_sync;
const channel_t *chan = NULL;
const or_circuit_t *or_circ;
if (!CIRCUIT_IS_ORCIRC(c))
return;
or_circ = CONST_TO_OR_CIRCUIT(c);
if (dir == CIRCUIT_N_CHAN) {
chan = c->n_chan;
cells = c->n_chan_cells.n;
} else {
chan = or_circ->p_chan;
cells = or_circ->p_chan_cells.n;
}
/* If we still know the chan, determine real cell size. Otherwise,
* assume it's a wide circid channel */
if (chan)
cell_size = get_cell_network_size(chan->wide_circ_ids);
else
cell_size = CELL_MAX_NETWORK_SIZE;
/* The missing written bytes are the cell counts times their cell
* size plus TLS per cell overhead */
written_sync = cells*(cell_size+TLS_PER_CELL_OVERHEAD);
/* Report the missing bytes as written, to avoid asymmetry.
* We must use time() for consistency with rephist, even though on
* some very old rare platforms, approx_time() may be faster. */
rep_hist_note_bytes_written(written_sync, time(NULL));
}
/** Mark circ to be closed next time we call
* circuit_close_all_marked(). Do any cleanup needed:
* - If state is onionskin_pending, remove circ from the onion_pending
* list.
* - If circ isn't open yet: call circuit_build_failed() if we're
* the origin.
* - If purpose is C_INTRODUCE_ACK_WAIT, report the intro point
* failure we just had to the hidden service client module.
* - If purpose is C_INTRODUCING and reason isn't TIMEOUT,
* report to the hidden service client module that the intro point
* we just tried may be unreachable.
* - Send appropriate destroys and edge_destroys for conns and
* streams attached to circ.
* - If circ->rend_splice is set (we are the midpoint of a joined
* rendezvous stream), then mark the other circuit to close as well.
*/
MOCK_IMPL(void,
circuit_mark_for_close_, (circuit_t *circ, int reason, int line,
const char *file))
{
int orig_reason = reason; /* Passed to the controller */
assert_circuit_ok(circ);
tor_assert(line);
tor_assert(file);
if (circ->marked_for_close) {
log_warn(LD_BUG,
"Duplicate call to circuit_mark_for_close at %s:%d"
" (first at %s:%d)", file, line,
circ->marked_for_close_file, circ->marked_for_close);
return;
}
if (reason == END_CIRC_AT_ORIGIN) {
if (!CIRCUIT_IS_ORIGIN(circ)) {
log_warn(LD_BUG, "Specified 'at-origin' non-reason for ending circuit, "
"but circuit was not at origin. (called %s:%d, purpose=%d)",
file, line, circ->purpose);
}
reason = END_CIRC_REASON_NONE;
}
if (CIRCUIT_IS_ORIGIN(circ)) {
if (pathbias_check_close(TO_ORIGIN_CIRCUIT(circ), reason) == -1) {
/* Don't close it yet, we need to test it first */
return;
}
/* We don't send reasons when closing circuits at the origin. */
reason = END_CIRC_REASON_NONE;
}
circuit_synchronize_written_or_bandwidth(circ, CIRCUIT_N_CHAN);
circuit_synchronize_written_or_bandwidth(circ, CIRCUIT_P_CHAN);
if (reason & END_CIRC_REASON_FLAG_REMOTE)
reason &= ~END_CIRC_REASON_FLAG_REMOTE;
if (reason < END_CIRC_REASON_MIN_ || reason > END_CIRC_REASON_MAX_) {
if (!(orig_reason & END_CIRC_REASON_FLAG_REMOTE))
log_warn(LD_BUG, "Reason %d out of range at %s:%d", reason, file, line);
reason = END_CIRC_REASON_NONE;
}
circ->marked_for_close = line;
circ->marked_for_close_file = file;
circ->marked_for_close_reason = reason;
circ->marked_for_close_orig_reason = orig_reason;
if (!CIRCUIT_IS_ORIGIN(circ)) {
or_circuit_t *or_circ = TO_OR_CIRCUIT(circ);
if (or_circ->rend_splice) {
if (!or_circ->rend_splice->base_.marked_for_close) {
/* do this after marking this circuit, to avoid infinite recursion. */
circuit_mark_for_close(TO_CIRCUIT(or_circ->rend_splice), reason);
}
or_circ->rend_splice = NULL;
}
}
/* Notify the HS subsystem that this circuit is closing. */
hs_circ_cleanup(circ);
if (circuits_pending_close == NULL)
circuits_pending_close = smartlist_new();
smartlist_add(circuits_pending_close, circ);
mainloop_schedule_postloop_cleanup();
log_info(LD_GENERAL, "Circuit %u (id: %" PRIu32 ") marked for close at "
"%s:%d (orig reason: %d, new reason: %d)",
circ->n_circ_id,
CIRCUIT_IS_ORIGIN(circ) ?
TO_ORIGIN_CIRCUIT(circ)->global_identifier : 0,
file, line, orig_reason, reason);
}
/** Called immediately before freeing a marked circuit circ from
* circuit_free_all() while shutting down Tor; this is a safe-at-shutdown
* version of circuit_about_to_free(). It's important that it at least
* do circuitmux_detach_circuit() when appropriate.
*/
static void
circuit_about_to_free_atexit(circuit_t *circ)
{
if (circ->n_chan) {
circuit_clear_cell_queue(circ, circ->n_chan);
circuitmux_detach_circuit(circ->n_chan->cmux, circ);
circuit_set_n_circid_chan(circ, 0, NULL);
}
if (! CIRCUIT_IS_ORIGIN(circ)) {
or_circuit_t *or_circ = TO_OR_CIRCUIT(circ);
if (or_circ->p_chan) {
circuit_clear_cell_queue(circ, or_circ->p_chan);
circuitmux_detach_circuit(or_circ->p_chan->cmux, circ);
circuit_set_p_circid_chan(or_circ, 0, NULL);
}
}
}
/** Called immediately before freeing a marked circuit circ.
* Disconnects the circuit from other data structures, launches events
* as appropriate, and performs other housekeeping.
*/
static void
circuit_about_to_free(circuit_t *circ)
{
int reason = circ->marked_for_close_reason;
int orig_reason = circ->marked_for_close_orig_reason;
if (circ->state == CIRCUIT_STATE_ONIONSKIN_PENDING) {
onion_pending_remove(TO_OR_CIRCUIT(circ));
}
/* If the circuit ever became OPEN, we sent it to the reputation history
* module then. If it isn't OPEN, we send it there now to remember which
* links worked and which didn't.
*/
if (circ->state != CIRCUIT_STATE_OPEN &&
circ->state != CIRCUIT_STATE_GUARD_WAIT) {
if (CIRCUIT_IS_ORIGIN(circ)) {
origin_circuit_t *ocirc = TO_ORIGIN_CIRCUIT(circ);
circuit_build_failed(ocirc); /* take actions if necessary */
}
}
if (circ->state == CIRCUIT_STATE_CHAN_WAIT) {
if (circuits_pending_chans)
smartlist_remove(circuits_pending_chans, circ);
}
if (circuits_pending_other_guards) {
smartlist_remove(circuits_pending_other_guards, circ);
}
if (CIRCUIT_IS_ORIGIN(circ)) {
control_event_circuit_status(TO_ORIGIN_CIRCUIT(circ),
(circ->state == CIRCUIT_STATE_OPEN ||
circ->state == CIRCUIT_STATE_GUARD_WAIT) ?
CIRC_EVENT_CLOSED:CIRC_EVENT_FAILED,
orig_reason);
}
if (circ->purpose == CIRCUIT_PURPOSE_C_INTRODUCE_ACK_WAIT) {
origin_circuit_t *ocirc = TO_ORIGIN_CIRCUIT(circ);
int timed_out = (reason == END_CIRC_REASON_TIMEOUT);
tor_assert(circ->state == CIRCUIT_STATE_OPEN);
tor_assert(ocirc->build_state->chosen_exit);
if (orig_reason != END_CIRC_REASON_IP_NOW_REDUNDANT &&
ocirc->rend_data) {
/* treat this like getting a nack from it */
log_info(LD_REND, "Failed intro circ %s to %s (awaiting ack). %s",
safe_str_client(rend_data_get_address(ocirc->rend_data)),
safe_str_client(build_state_get_exit_nickname(ocirc->build_state)),
timed_out ? "Recording timeout." : "Removing from descriptor.");
rend_client_report_intro_point_failure(ocirc->build_state->chosen_exit,
ocirc->rend_data,
timed_out ?
INTRO_POINT_FAILURE_TIMEOUT :
INTRO_POINT_FAILURE_GENERIC);
}
} else if (circ->purpose == CIRCUIT_PURPOSE_C_INTRODUCING &&
reason != END_CIRC_REASON_TIMEOUT) {
origin_circuit_t *ocirc = TO_ORIGIN_CIRCUIT(circ);
if (ocirc->build_state->chosen_exit && ocirc->rend_data) {
if (orig_reason != END_CIRC_REASON_IP_NOW_REDUNDANT &&
ocirc->rend_data) {
log_info(LD_REND, "Failed intro circ %s to %s "
"(building circuit to intro point). "
"Marking intro point as possibly unreachable.",
safe_str_client(rend_data_get_address(ocirc->rend_data)),
safe_str_client(build_state_get_exit_nickname(
ocirc->build_state)));
rend_client_report_intro_point_failure(ocirc->build_state->chosen_exit,
ocirc->rend_data,
INTRO_POINT_FAILURE_UNREACHABLE);
}
}
}
if (circ->n_chan) {
circuit_clear_cell_queue(circ, circ->n_chan);
/* Only send destroy if the channel isn't closing anyway */
if (!CHANNEL_CONDEMNED(circ->n_chan)) {
channel_send_destroy(circ->n_circ_id, circ->n_chan, reason);
}
circuitmux_detach_circuit(circ->n_chan->cmux, circ);
circuit_set_n_circid_chan(circ, 0, NULL);
}
if (! CIRCUIT_IS_ORIGIN(circ)) {
or_circuit_t *or_circ = TO_OR_CIRCUIT(circ);
edge_connection_t *conn;
for (conn=or_circ->n_streams; conn; conn=conn->next_stream)
connection_edge_destroy(or_circ->p_circ_id, conn);
or_circ->n_streams = NULL;
while (or_circ->resolving_streams) {
conn = or_circ->resolving_streams;
or_circ->resolving_streams = conn->next_stream;
if (!conn->base_.marked_for_close) {
/* The client will see a DESTROY, and infer that the connections
* are closing because the circuit is getting torn down. No need
* to send an end cell. */
conn->edge_has_sent_end = 1;
conn->end_reason = END_STREAM_REASON_DESTROY;
conn->end_reason |= END_STREAM_REASON_FLAG_ALREADY_SENT_CLOSED;
connection_mark_for_close(TO_CONN(conn));
}
conn->on_circuit = NULL;
}
if (or_circ->p_chan) {
circuit_clear_cell_queue(circ, or_circ->p_chan);
/* Only send destroy if the channel isn't closing anyway */
if (!CHANNEL_CONDEMNED(or_circ->p_chan)) {
channel_send_destroy(or_circ->p_circ_id, or_circ->p_chan, reason);
}
circuitmux_detach_circuit(or_circ->p_chan->cmux, circ);
circuit_set_p_circid_chan(or_circ, 0, NULL);
}
} else {
origin_circuit_t *ocirc = TO_ORIGIN_CIRCUIT(circ);
edge_connection_t *conn;
for (conn=ocirc->p_streams; conn; conn=conn->next_stream)
connection_edge_destroy(circ->n_circ_id, conn);
ocirc->p_streams = NULL;
}
}
/** Given a marked circuit circ, aggressively free its cell queues to
* recover memory. */
static void
marked_circuit_free_cells(circuit_t *circ)
{
if (!circ->marked_for_close) {
log_warn(LD_BUG, "Called on non-marked circuit");
return;
}
cell_queue_clear(&circ->n_chan_cells);
if (circ->n_mux)
circuitmux_clear_num_cells(circ->n_mux, circ);
if (! CIRCUIT_IS_ORIGIN(circ)) {
or_circuit_t *orcirc = TO_OR_CIRCUIT(circ);
cell_queue_clear(&orcirc->p_chan_cells);
if (orcirc->p_mux)
circuitmux_clear_num_cells(orcirc->p_mux, circ);
}
}
static size_t
single_conn_free_bytes(connection_t *conn)
{
size_t result = 0;
if (conn->inbuf) {
result += buf_allocation(conn->inbuf);
buf_clear(conn->inbuf);
}
if (conn->outbuf) {
result += buf_allocation(conn->outbuf);
buf_clear(conn->outbuf);
conn->outbuf_flushlen = 0;
}
if (conn->type == CONN_TYPE_DIR) {
dir_connection_t *dir_conn = TO_DIR_CONN(conn);
if (dir_conn->compress_state) {
result += tor_compress_state_size(dir_conn->compress_state);
tor_compress_free(dir_conn->compress_state);
dir_conn->compress_state = NULL;
}
}
return result;
}
/** Aggressively free buffer contents on all the buffers of all streams in the
* list starting at stream. Return the number of bytes recovered. */
static size_t
marked_circuit_streams_free_bytes(edge_connection_t *stream)
{
size_t result = 0;
for ( ; stream; stream = stream->next_stream) {
connection_t *conn = TO_CONN(stream);
result += single_conn_free_bytes(conn);
if (conn->linked_conn) {
result += single_conn_free_bytes(conn->linked_conn);
}
}
return result;
}
/** Aggressively free buffer contents on all the buffers of all streams on
* circuit c. Return the number of bytes recovered. */
static size_t
marked_circuit_free_stream_bytes(circuit_t *c)
{
if (CIRCUIT_IS_ORIGIN(c)) {
return marked_circuit_streams_free_bytes(TO_ORIGIN_CIRCUIT(c)->p_streams);
} else {
return marked_circuit_streams_free_bytes(TO_OR_CIRCUIT(c)->n_streams);
}
}
/** Return the number of cells used by the circuit c's cell queues. */
STATIC size_t
n_cells_in_circ_queues(const circuit_t *c)
{
size_t n = c->n_chan_cells.n;
if (! CIRCUIT_IS_ORIGIN(c)) {
circuit_t *cc = (circuit_t *) c;
n += TO_OR_CIRCUIT(cc)->p_chan_cells.n;
}
return n;
}
/** Return the number of bytes allocated for c's half-open streams. */
static size_t
circuit_alloc_in_half_streams(const circuit_t *c)
{
if (! CIRCUIT_IS_ORIGIN(c)) {
return 0;
}
const origin_circuit_t *ocirc = CONST_TO_ORIGIN_CIRCUIT(c);
if (ocirc->half_streams)
return smartlist_len(ocirc->half_streams) * sizeof(half_edge_t);
else
return 0;
}
/**
* Return the age of the oldest cell queued on c, in timestamp units.
* Return 0 if there are no cells queued on c. Requires that now be
* the current coarse timestamp.
*
* This function will return incorrect results if the oldest cell queued on
* the circuit is older than about 2**32 msec (about 49 days) old.
*/
STATIC uint32_t
circuit_max_queued_cell_age(const circuit_t *c, uint32_t now)
{
uint32_t age = 0;
packed_cell_t *cell;
if (NULL != (cell = TOR_SIMPLEQ_FIRST(&c->n_chan_cells.head)))
age = now - cell->inserted_timestamp;
if (! CIRCUIT_IS_ORIGIN(c)) {
const or_circuit_t *orcirc = CONST_TO_OR_CIRCUIT(c);
if (NULL != (cell = TOR_SIMPLEQ_FIRST(&orcirc->p_chan_cells.head))) {
uint32_t age2 = now - cell->inserted_timestamp;
if (age2 > age)
return age2;
}
}
return age;
}
/** Return the age of the oldest buffer chunk on conn, where age is
* taken in timestamp units before the time now. If the connection has
* no data, treat it as having age zero.
**/
static uint32_t
conn_get_buffer_age(const connection_t *conn, uint32_t now_ts)
{
uint32_t age = 0, age2;
if (conn->outbuf) {
age2 = buf_get_oldest_chunk_timestamp(conn->outbuf, now_ts);
if (age2 > age)
age = age2;
}
if (conn->inbuf) {
age2 = buf_get_oldest_chunk_timestamp(conn->inbuf, now_ts);
if (age2 > age)
age = age2;
}
return age;
}
/** Return the age in timestamp units of the oldest buffer chunk on any stream
* in the linked list stream, where age is taken in timestamp units
* before the timestamp now. */
static uint32_t
circuit_get_streams_max_data_age(const edge_connection_t *stream, uint32_t now)
{
uint32_t age = 0, age2;
for (; stream; stream = stream->next_stream) {
const connection_t *conn = TO_CONN(stream);
age2 = conn_get_buffer_age(conn, now);
if (age2 > age)
age = age2;
if (conn->linked_conn) {
age2 = conn_get_buffer_age(conn->linked_conn, now);
if (age2 > age)
age = age2;
}
}
return age;
}
/** Return the age in timestamp units of the oldest buffer chunk on any stream
* attached to the circuit c, where age is taken before the timestamp
* now. */
STATIC uint32_t
circuit_max_queued_data_age(const circuit_t *c, uint32_t now)
{
if (CIRCUIT_IS_ORIGIN(c)) {
return circuit_get_streams_max_data_age(
CONST_TO_ORIGIN_CIRCUIT(c)->p_streams, now);
} else {
return circuit_get_streams_max_data_age(
CONST_TO_OR_CIRCUIT(c)->n_streams, now);
}
}
/** Return the age of the oldest cell or stream buffer chunk on the circuit
* c, where age is taken in timestamp units before the timestamp
* now */
STATIC uint32_t
circuit_max_queued_item_age(const circuit_t *c, uint32_t now)
{
uint32_t cell_age = circuit_max_queued_cell_age(c, now);
uint32_t data_age = circuit_max_queued_data_age(c, now);
if (cell_age > data_age)
return cell_age;
else
return data_age;
}
/** Helper to sort a list of circuit_t by age of oldest item, in descending
* order. */
static int
circuits_compare_by_oldest_queued_item_(const void **a_, const void **b_)
{
const circuit_t *a = *a_;
const circuit_t *b = *b_;
uint32_t age_a = a->age_tmp;
uint32_t age_b = b->age_tmp;
if (age_a < age_b)
return 1;
else if (age_a == age_b)
return 0;
else
return -1;
}
static uint32_t now_ts_for_buf_cmp;
/** Helper to sort a list of circuit_t by age of oldest item, in descending
* order. */
static int
conns_compare_by_buffer_age_(const void **a_, const void **b_)
{
const connection_t *a = *a_;
const connection_t *b = *b_;
time_t age_a = conn_get_buffer_age(a, now_ts_for_buf_cmp);
time_t age_b = conn_get_buffer_age(b, now_ts_for_buf_cmp);
if (age_a < age_b)
return 1;
else if (age_a == age_b)
return 0;
else
return -1;
}
#define FRACTION_OF_DATA_TO_RETAIN_ON_OOM 0.90
/** We're out of memory for cells, having allocated current_allocation
* bytes' worth. Kill the 'worst' circuits until we're under
* FRACTION_OF_DATA_TO_RETAIN_ON_OOM of our maximum usage. */
void
circuits_handle_oom(size_t current_allocation)
{
smartlist_t *circlist;
smartlist_t *connection_array = get_connection_array();
int conn_idx;
size_t mem_to_recover;
size_t mem_recovered=0;
int n_circuits_killed=0;
int n_dirconns_killed=0;
uint32_t now_ts;
log_notice(LD_GENERAL, "We're low on memory (cell queues total alloc:"
" %"TOR_PRIuSZ" buffer total alloc: %" TOR_PRIuSZ ","
" tor compress total alloc: %" TOR_PRIuSZ
" (zlib: %" TOR_PRIuSZ ", zstd: %" TOR_PRIuSZ ","
" lzma: %" TOR_PRIuSZ "),"
" rendezvous cache total alloc: %" TOR_PRIuSZ "). Killing"
" circuits withover-long queues. (This behavior is controlled by"
" MaxMemInQueues.)",
cell_queues_get_total_allocation(),
buf_get_total_allocation(),
tor_compress_get_total_allocation(),
tor_zlib_get_total_allocation(),
tor_zstd_get_total_allocation(),
tor_lzma_get_total_allocation(),
rend_cache_get_total_allocation());
{
size_t mem_target = (size_t)(get_options()->MaxMemInQueues *
FRACTION_OF_DATA_TO_RETAIN_ON_OOM);
if (current_allocation <= mem_target)
return;
mem_to_recover = current_allocation - mem_target;
}
now_ts = monotime_coarse_get_stamp();
circlist = circuit_get_global_list();
SMARTLIST_FOREACH_BEGIN(circlist, circuit_t *, circ) {
circ->age_tmp = circuit_max_queued_item_age(circ, now_ts);
} SMARTLIST_FOREACH_END(circ);
/* This is O(n log n); there are faster algorithms we could use instead.
* Let's hope this doesn't happen enough to be in the critical path. */
smartlist_sort(circlist, circuits_compare_by_oldest_queued_item_);
/* Fix up the indices before we run into trouble */
SMARTLIST_FOREACH_BEGIN(circlist, circuit_t *, circ) {
circ->global_circuitlist_idx = circ_sl_idx;
} SMARTLIST_FOREACH_END(circ);
/* Now sort the connection array ... */
now_ts_for_buf_cmp = now_ts;
smartlist_sort(connection_array, conns_compare_by_buffer_age_);
now_ts_for_buf_cmp = 0;
/* Fix up the connection array to its new order. */
SMARTLIST_FOREACH_BEGIN(connection_array, connection_t *, conn) {
conn->conn_array_index = conn_sl_idx;
} SMARTLIST_FOREACH_END(conn);
/* Okay, now the worst circuits and connections are at the front of their
* respective lists. Let's mark them, and reclaim their storage
* aggressively. */
conn_idx = 0;
SMARTLIST_FOREACH_BEGIN(circlist, circuit_t *, circ) {
size_t n;
size_t freed;
/* Free storage in any non-linked directory connections that have buffered
* data older than this circuit. */
while (conn_idx < smartlist_len(connection_array)) {
connection_t *conn = smartlist_get(connection_array, conn_idx);
uint32_t conn_age = conn_get_buffer_age(conn, now_ts);
if (conn_age < circ->age_tmp) {
break;
}
if (conn->type == CONN_TYPE_DIR && conn->linked_conn == NULL) {
if (!conn->marked_for_close)
connection_mark_for_close(conn);
mem_recovered += single_conn_free_bytes(conn);
++n_dirconns_killed;
if (mem_recovered >= mem_to_recover)
goto done_recovering_mem;
}
++conn_idx;
}
/* Now, kill the circuit. */
n = n_cells_in_circ_queues(circ);
const size_t half_stream_alloc = circuit_alloc_in_half_streams(circ);
if (! circ->marked_for_close) {
circuit_mark_for_close(circ, END_CIRC_REASON_RESOURCELIMIT);
}
marked_circuit_free_cells(circ);
freed = marked_circuit_free_stream_bytes(circ);
++n_circuits_killed;
mem_recovered += n * packed_cell_mem_cost();
mem_recovered += half_stream_alloc;
mem_recovered += freed;
if (mem_recovered >= mem_to_recover)
goto done_recovering_mem;
} SMARTLIST_FOREACH_END(circ);
done_recovering_mem:
log_notice(LD_GENERAL, "Removed "U64_FORMAT" bytes by killing %d circuits; "
"%d circuits remain alive. Also killed %d non-linked directory "
"connections.",
U64_PRINTF_ARG(mem_recovered),
n_circuits_killed,
smartlist_len(circlist) - n_circuits_killed,
n_dirconns_killed);
}
/** Verify that cpath layer cp has all of its invariants
* correct. Trigger an assert if anything is invalid.
*/
void
assert_cpath_layer_ok(const crypt_path_t *cp)
{
// tor_assert(cp->addr); /* these are zero for rendezvous extra-hops */
// tor_assert(cp->port);
tor_assert(cp);
tor_assert(cp->magic == CRYPT_PATH_MAGIC);
switch (cp->state)
{
case CPATH_STATE_OPEN:
relay_crypto_assert_ok(&cp->crypto);
/* fall through */
case CPATH_STATE_CLOSED:
/*XXXX Assert that there's no handshake_state either. */
tor_assert(!cp->rend_dh_handshake_state);
break;
case CPATH_STATE_AWAITING_KEYS:
/* tor_assert(cp->dh_handshake_state); */
break;
default:
log_fn(LOG_ERR, LD_BUG, "Unexpected state %d", cp->state);
tor_assert(0);
}
tor_assert(cp->package_window >= 0);
tor_assert(cp->deliver_window >= 0);
}
/** Verify that cpath cp has all of its invariants
* correct. Trigger an assert if anything is invalid.
*/
static void
assert_cpath_ok(const crypt_path_t *cp)
{
const crypt_path_t *start = cp;
do {
assert_cpath_layer_ok(cp);
/* layers must be in sequence of: "open* awaiting? closed*" */
if (cp != start) {
if (cp->state == CPATH_STATE_AWAITING_KEYS) {
tor_assert(cp->prev->state == CPATH_STATE_OPEN);
} else if (cp->state == CPATH_STATE_OPEN) {
tor_assert(cp->prev->state == CPATH_STATE_OPEN);
}
}
cp = cp->next;
tor_assert(cp);
} while (cp != start);
}
/** Verify that circuit c has all of its invariants
* correct. Trigger an assert if anything is invalid.
*/
MOCK_IMPL(void,
assert_circuit_ok,(const circuit_t *c))
{
edge_connection_t *conn;
const or_circuit_t *or_circ = NULL;
const origin_circuit_t *origin_circ = NULL;
tor_assert(c);
tor_assert(c->magic == ORIGIN_CIRCUIT_MAGIC || c->magic == OR_CIRCUIT_MAGIC);
tor_assert(c->purpose >= CIRCUIT_PURPOSE_MIN_ &&
c->purpose <= CIRCUIT_PURPOSE_MAX_);
if (CIRCUIT_IS_ORIGIN(c))
origin_circ = CONST_TO_ORIGIN_CIRCUIT(c);
else
or_circ = CONST_TO_OR_CIRCUIT(c);
if (c->n_chan) {
tor_assert(!c->n_hop);
if (c->n_circ_id) {
/* We use the _impl variant here to make sure we don't fail on marked
* circuits, which would not be returned by the regular function. */
circuit_t *c2 = circuit_get_by_circid_channel_impl(c->n_circ_id,
c->n_chan, NULL);
tor_assert(c == c2);
}
}
if (or_circ && or_circ->p_chan) {
if (or_circ->p_circ_id) {
/* ibid */
circuit_t *c2 =
circuit_get_by_circid_channel_impl(or_circ->p_circ_id,
or_circ->p_chan, NULL);
tor_assert(c == c2);
}
}
if (or_circ)
for (conn = or_circ->n_streams; conn; conn = conn->next_stream)
tor_assert(conn->base_.type == CONN_TYPE_EXIT);
tor_assert(c->deliver_window >= 0);
tor_assert(c->package_window >= 0);
if (c->state == CIRCUIT_STATE_OPEN ||
c->state == CIRCUIT_STATE_GUARD_WAIT) {
tor_assert(!c->n_chan_create_cell);
if (or_circ) {
relay_crypto_assert_ok(&or_circ->crypto);
}
}
if (c->state == CIRCUIT_STATE_CHAN_WAIT && !c->marked_for_close) {
tor_assert(circuits_pending_chans &&
smartlist_contains(circuits_pending_chans, c));
} else {
tor_assert(!circuits_pending_chans ||
!smartlist_contains(circuits_pending_chans, c));
}
if (origin_circ && origin_circ->cpath) {
assert_cpath_ok(origin_circ->cpath);
}
if (c->purpose == CIRCUIT_PURPOSE_REND_ESTABLISHED) {
tor_assert(or_circ);
if (!c->marked_for_close) {
tor_assert(or_circ->rend_splice);
tor_assert(or_circ->rend_splice->rend_splice == or_circ);
}
tor_assert(or_circ->rend_splice != or_circ);
} else {
tor_assert(!or_circ || !or_circ->rend_splice);
}
}