/* Copyright 2001,2002 Roger Dingledine, Matej Pfajfar. */ /* See LICENSE for licensing information */ /* $Id$ */ #include "or.h" /********* START VARIABLES **********/ static circuit_t *global_circuitlist=NULL; char *circuit_state_to_string[] = { "receiving the onion", /* 0 */ "connecting to firsthop", /* 1 */ "open" /* 2 */ }; /********* END VARIABLES ************/ void circuit_add(circuit_t *circ) { if(!global_circuitlist) { /* first one */ global_circuitlist = circ; circ->next = NULL; } else { circ->next = global_circuitlist; global_circuitlist = circ; } } void circuit_remove(circuit_t *circ) { circuit_t *tmpcirc; assert(circ && global_circuitlist); if(global_circuitlist == circ) { global_circuitlist = global_circuitlist->next; return; } for(tmpcirc = global_circuitlist;tmpcirc->next;tmpcirc = tmpcirc->next) { if(tmpcirc->next == circ) { tmpcirc->next = circ->next; return; } } } circuit_t *circuit_new(aci_t p_aci, connection_t *p_conn) { circuit_t *circ; circ = (circuit_t *)malloc(sizeof(circuit_t)); if(!circ) return NULL; memset(circ,0,sizeof(circuit_t)); /* zero it out */ circ->p_aci = p_aci; circ->p_conn = p_conn; circ->state = CIRCUIT_STATE_OPEN_WAIT; /* ACIs */ circ->p_aci = p_aci; /* circ->n_aci remains 0 because we haven't identified the next hop yet */ circ->n_receive_window = RECEIVE_WINDOW_START; circ->p_receive_window = RECEIVE_WINDOW_START; circuit_add(circ); return circ; } void circuit_free(circuit_t *circ) { if (circ->n_crypto) crypto_free_cipher_env(circ->n_crypto); if (circ->p_crypto) crypto_free_cipher_env(circ->p_crypto); if(circ->onion) free(circ->onion); if(circ->cpath) circuit_free_cpath(circ->cpath, circ->cpathlen); free(circ); } void circuit_free_cpath(crypt_path_t **cpath, int cpathlen) { int i; for(i=0;ionion; assert(ol); log(LOG_DEBUG,"circuit_init(): starting"); circ->n_addr = ol->addr; circ->n_port = ol->port; log(LOG_DEBUG,"circuit_init(): Set port to %u.",ol->port); circ->p_f = ol->backf; log(LOG_DEBUG,"circuit_init(): Set BACKF to %u.",ol->backf); circ->n_f = ol->forwf; log(LOG_DEBUG,"circuit_init(): Set FORWF to %u.",ol->forwf); circ->state = CIRCUIT_STATE_OPEN; log(LOG_DEBUG,"circuit_init(): aci_type = %u.",aci_type); circ->n_aci = get_unique_aci_by_addr_port(circ->n_addr, circ->n_port, aci_type); log(LOG_DEBUG,"circuit_init(): Chosen ACI %u.",circ->n_aci); /* keys */ memset((void *)iv, 0, 16); crypto_SHA_digest(ol->keyseed,16,digest1); crypto_SHA_digest(digest1,20,digest2); crypto_SHA_digest(digest2,20,digest1); log(LOG_DEBUG,"circuit_init(): Computed keys."); if (!(circ->p_crypto = create_onion_cipher(circ->p_f,digest2,iv,1))) { log(LOG_ERR,"Cipher initialization failed (ACI %u).",circ->n_aci); return -1; } if (!(circ->n_crypto = create_onion_cipher(circ->n_f, digest1, iv, 0))) { log(LOG_ERR,"Cipher initialization failed (ACI %u).",circ->n_aci); return -1; } log(LOG_DEBUG,"circuit_init(): Cipher initialization complete."); circ->expire = ol->expire; return 0; } circuit_t *circuit_enumerate_by_naddr_nport(circuit_t *circ, uint32_t naddr, uint16_t nport) { if(!circ) /* use circ if it's defined, else start from the beginning */ circ = global_circuitlist; else circ = circ->next; for( ;circ;circ = circ->next) { if(circ->n_addr == naddr && circ->n_port == nport) return circ; } return NULL; } circuit_t *circuit_get_by_aci_conn(aci_t aci, connection_t *conn) { circuit_t *circ; for(circ=global_circuitlist;circ;circ = circ->next) { if(circ->p_conn == conn && circ->p_aci == aci) return circ; if(circ->n_conn == conn && circ->n_aci == aci) return circ; } return NULL; } circuit_t *circuit_get_by_conn(connection_t *conn) { circuit_t *circ; for(circ=global_circuitlist;circ;circ = circ->next) { if(circ->p_conn == conn) return circ; if(circ->n_conn == conn) return circ; } return NULL; } int circuit_deliver_data_cell(cell_t *cell, circuit_t *circ, connection_t *conn, int crypt_type) { /* first decrypt cell->length */ if(circuit_crypt(circ, &(cell->length), 1, crypt_type) < 0) { log(LOG_DEBUG,"circuit_deliver_data_cell(): length decryption failed. Dropping connection."); return -1; } /* then decrypt the payload */ if(circuit_crypt(circ, (char *)&(cell->payload), CELL_PAYLOAD_SIZE, crypt_type) < 0) { log(LOG_DEBUG,"circuit_deliver_data_cell(): payload decryption failed. Dropping connection."); return -1; } if(conn->type == CONN_TYPE_EXIT) { /* send payload directly */ // log(LOG_DEBUG,"circuit_deliver_data_cell(): Sending to exit."); return connection_exit_process_data_cell(cell, conn); } if(conn->type == CONN_TYPE_AP) { /* send payload directly */ // log(LOG_DEBUG,"circuit_deliver_data_cell(): Sending to AP."); return connection_ap_process_data_cell(cell, conn); } /* else send it as a cell */ // log(LOG_DEBUG,"circuit_deliver_data_cell(): Sending to connection."); return connection_write_cell_to_buf(cell, conn); } int circuit_crypt(circuit_t *circ, char *in, int inlen, char crypt_type) { char *out; int i; crypt_path_t *thishop; assert(circ && in); out = (char *)malloc(inlen); if(!out) return -1; if(crypt_type == 'e') { // log(LOG_DEBUG,"circuit_crypt(): Encrypting %d bytes.",inlen); if(circ->cpath) { /* we're at the beginning of the circuit. We'll want to do layered crypts. */ /* 'e' means we're preparing to send it out. */ for (i=0; i < circ->cpathlen; i++) /* moving from last to first hop * Remember : cpath is in reverse order, i.e. last hop first */ { // log(LOG_DEBUG,"circuit_crypt() : Encrypting via cpath: Processing hop %u",circ->cpathlen-i); thishop = circ->cpath[i]; /* encrypt */ if(crypto_cipher_encrypt(thishop->f_crypto, in, inlen, (unsigned char *)out)) { log(LOG_ERR,"Error performing encryption:%s",crypto_perror()); free(out); return -1; } /* copy ciphertext back to buf */ memcpy(in,out,inlen); } } else { /* we're in the middle. Just one crypt. */ if(crypto_cipher_encrypt(circ->p_crypto,in, inlen, out)) { log(LOG_ERR,"circuit_encrypt(): Encryption failed for ACI : %u (%s).", circ->p_aci, crypto_perror()); free(out); return -1; } memcpy(in,out,inlen); } } else if(crypt_type == 'd') { // log(LOG_DEBUG,"circuit_crypt(): Decrypting %d bytes.",inlen); if(circ->cpath) { /* we're at the beginning of the circuit. We'll want to do layered crypts. */ for (i=circ->cpathlen-1; i >= 0; i--) /* moving from first to last hop * Remember : cpath is in reverse order, i.e. last hop first */ { // log(LOG_DEBUG,"circuit_crypt() : Decrypting via cpath: Processing hop %u",circ->cpathlen-i); thishop = circ->cpath[i]; /* encrypt */ if(crypto_cipher_decrypt(thishop->b_crypto, in, inlen, out)) { log(LOG_ERR,"Error performing decryption:%s",crypto_perror()); free(out); return -1; } /* copy ciphertext back to buf */ memcpy(in,out,inlen); } } else { /* we're in the middle. Just one crypt. */ if(crypto_cipher_decrypt(circ->n_crypto,in, inlen, out)) { log(LOG_ERR,"circuit_crypt(): Decryption failed for ACI : %u (%s).", circ->n_aci, crypto_perror()); free(out); return -1; } memcpy(in,out,inlen); } } free(out); return 0; } void circuit_close(circuit_t *circ) { circuit_remove(circ); if(circ->n_conn) connection_send_destroy(circ->n_aci, circ->n_conn); if(circ->p_conn) connection_send_destroy(circ->p_aci, circ->p_conn); circuit_free(circ); } void circuit_about_to_close_connection(connection_t *conn) { /* send destroys for all circuits using conn */ /* currently, we assume it's too late to flush conn's buf here. * down the road, maybe we'll consider that eof doesn't mean can't-write */ circuit_t *circ; while((circ = circuit_get_by_conn(conn))) { circuit_remove(circ); if(circ->n_conn == conn) /* it's closing in front of us */ connection_send_destroy(circ->p_aci, circ->p_conn); if(circ->p_conn == conn) /* it's closing behind us */ connection_send_destroy(circ->n_aci, circ->n_conn); circuit_free(circ); } } void circuit_dump_by_conn(connection_t *conn) { circuit_t *circ; for(circ=global_circuitlist;circ;circ = circ->next) { if(circ->p_conn == conn) { printf("Conn %d has App-ward circuit: aci %d (other side %d), state %d (%s)\n", conn->poll_index, circ->p_aci, circ->n_aci, circ->state, circuit_state_to_string[circ->state]); } if(circ->n_conn == conn) { printf("Conn %d has Exit-ward circuit: aci %d (other side %d), state %d (%s)\n", conn->poll_index, circ->n_aci, circ->p_aci, circ->state, circuit_state_to_string[circ->state]); } } }