/* Copyright 2001 Matej Pfajfar. * Copyright 2001-2004 Roger Dingledine. * Copyright 2004-2005 Roger Dingledine, Nick Mathewson. */ /* See LICENSE for licensing information */ /* $Id$ */ const char buffers_c_id[] = "$Id$"; /** * \file buffers.c * \brief Abstractions for buffered IO. **/ #include "or.h" #define SENTINELS #undef CHECK_AFTER_RESIZE #undef PARANOIA #undef NOINLINE #ifdef SENTINELS /* If SENTINELS is defined, check for attempts to write beyond the * end/before the start of the buffer. */ #define START_MAGIC 0x70370370u #define END_MAGIC 0xA0B0C0D0u #define RAW_MEM(m) ((void*)(((char*)m)-4)) #define GUARDED_MEM(m) ((void*)(((char*)m)+4)) #define ALLOC_LEN(ln) ((ln)+8) #define SET_GUARDS(m, ln) \ do { set_uint32((m)-4,START_MAGIC); set_uint32((m)+ln,END_MAGIC); } while (0) #else #define RAW_MEM(m) (m) #define GUARDED_MEM(m) (m) #define ALLOC_LEN(ln) (ln) #define SET_GUARDS(m,ln) do {} while (0) #endif #ifdef PARANOIA #define check() do { assert_buf_ok(buf); } while (0) #else #define check() do { } while (0) #endif #ifdef NOINLINE #undef INLINE #define INLINE #endif #define BUFFER_MAGIC 0xB0FFF312u struct buf_t { uint32_t magic; /**< Magic cookie for debugging: Must be set to BUFFER_MAGIC */ char *mem; /**< Storage for data in the buffer */ char *cur; /**< The first byte used for storing data in the buffer. */ size_t highwater; /**< Largest observed datalen since last buf_shrink */ size_t len; /**< Maximum amount of data that mem can hold. */ size_t datalen; /**< Number of bytes currently in mem. */ }; uint64_t buf_total_used = 0; uint64_t buf_total_alloc = 0; /** Size, in bytes, for newly allocated buffers. Should be a power of 2. */ #define INITIAL_BUF_SIZE (4*1024) /** Size, in bytes, for minimum 'shrink' size for buffers. Buffers may start * out smaller than this, but they will never autoshrink to less * than this size. */ #define MIN_GREEDY_SHRINK_SIZE (16*1024) #define MIN_LAZY_SHRINK_SIZE (4*1024) static INLINE void peek_from_buf(char *string, size_t string_len, buf_t *buf); /** If the contents of buf wrap around the end of the allocated space, * malloc a new buf and copy the contents in starting at the * beginning. This operation is relatively expensive, so it shouldn't * be used e.g. for every single read or write. */ static void buf_normalize(buf_t *buf) { check(); if (buf->cur + buf->datalen <= buf->mem+buf->len) { return; } else { char *newmem; size_t sz = (buf->mem+buf->len)-buf->cur; log_fn(LOG_WARN, "Unexpected non-normalized buffer."); newmem = GUARDED_MEM(tor_malloc(ALLOC_LEN(buf->len))); SET_GUARDS(newmem, buf->len); memcpy(newmem, buf->cur, sz); memcpy(newmem+sz, buf->mem, buf->datalen-sz); free(RAW_MEM(buf->mem)); buf->mem = buf->cur = newmem; check(); } } /** Return the point in the buffer where the next byte will get stored. */ static INLINE char *_buf_end(buf_t *buf) { char *next = buf->cur + buf->datalen; char *end = buf->mem + buf->len; return (next < end) ? next : (next - buf->len); } /** If the pointer cp has passed beyond the end of the buffer, wrap it * around. */ static INLINE char *_wrap_ptr(buf_t *buf, char *cp) { return (cp >= buf->mem + buf->len) ? (cp - buf->len) : cp; } /** If the range of *len bytes starting at at wraps around the * end of the buffer, then set *len to the number of bytes starting * at at, and set *more_len to the number of bytes starting * at buf->mem. Otherwise, set *more_len to 0. */ static INLINE void _split_range(buf_t *buf, char *at, size_t *len, size_t *more_len) { char *eos = at + *len; check(); if (eos >= (buf->mem + buf->len)) { *more_len = eos - (buf->mem + buf->len); *len -= *more_len; } else { *more_len = 0; } } /** Change a buffer's capacity. new_capacity must be \>= buf->datalen. */ static void buf_resize(buf_t *buf, size_t new_capacity) { off_t offset; #ifdef CHECK_AFTER_RESIZE char *tmp, *tmp2; #endif tor_assert(buf->datalen <= new_capacity); tor_assert(new_capacity); #ifdef CHECK_AFTER_RESIZE assert_buf_ok(buf); tmp = tor_malloc(buf->datalen); tmp2 = tor_malloc(buf->datalen); peek_from_buf(tmp, buf->datalen, buf); #endif if (buf->len == new_capacity) return; offset = buf->cur - buf->mem; if (offset + buf->datalen > new_capacity) { /* We need to move stuff before we shrink. */ if (offset + buf->datalen > buf->len) { /* We have: * * mem[0] ... mem[datalen-(len-offset)] (end of data) * mem[offset] ... mem[len-1] (the start of the data) * * We're shrinking the buffer by (len-new_capacity) bytes, so we need * to move the start portion back by that many bytes. */ memmove(buf->cur-(buf->len-new_capacity), buf->cur, buf->len-offset); offset -= (buf->len-new_capacity); } else { /* The data doesn't wrap around, but it does extend beyond the new * buffer length: * mem[offset] ... mem[offset+datalen-1] (the data) */ memmove(buf->mem, buf->cur, buf->datalen); offset = 0; } } /* XXX Some play code to throw away old buffers sometimes rather * than constantly reallocing them; just in case this is our memory * problem. It looks for now like it isn't, so disabled. -RD */ if (0 && new_capacity == MIN_LAZY_SHRINK_SIZE && !buf->datalen && buf->len >= 1<<16) { /* don't realloc; free and malloc */ char *newmem = GUARDED_MEM(tor_malloc(ALLOC_LEN(new_capacity))); SET_GUARDS(newmem, new_capacity); free(RAW_MEM(buf->mem)); buf->mem = buf->cur = newmem; } else { buf->mem = GUARDED_MEM(tor_realloc(RAW_MEM(buf->mem), ALLOC_LEN(new_capacity))); SET_GUARDS(buf->mem, new_capacity); buf->cur = buf->mem+offset; } buf_total_alloc += new_capacity; buf_total_alloc -= buf->len; if (offset + buf->datalen > buf->len) { /* We need to move data now that we are done growing. The buffer * now contains: * * mem[0] ... mem[datalen-(len-offset)] (end of data) * mem[offset] ... mem[len-1] (the start of the data) * mem[len]...mem[new_capacity] (empty space) * * We're growing by (new_capacity-len) bytes, so we need to move the * end portion forward by that many bytes. */ memmove(buf->cur+(new_capacity-buf->len), buf->cur, buf->len-offset); buf->cur += new_capacity-buf->len; } buf->len = new_capacity; #ifdef CHECK_AFTER_RESIZE assert_buf_ok(buf); peek_from_buf(tmp2, buf->datalen, buf); if (memcmp(tmp, tmp2, buf->datalen)) { tor_assert(0); } tor_free(tmp); tor_free(tmp2); #endif } /** If the buffer is not large enough to hold capacity bytes, resize * it so that it can. (The new size will be a power of 2 times the old * size.) */ static INLINE int buf_ensure_capacity(buf_t *buf, size_t capacity) { size_t new_len; if (buf->len >= capacity) /* Don't grow if we're already big enough. */ return 0; if (capacity > MAX_BUF_SIZE) /* Don't grow past the maximum. */ return -1; /* Find the smallest new_len equal to (2**X)*len for some X; such that * new_len is at least capacity. */ new_len = buf->len*2; while (new_len < capacity) new_len *= 2; /* Resize the buffer. */ log_fn(LOG_DEBUG,"Growing buffer from %d to %d bytes.", (int)buf->len, (int)new_len); buf_resize(buf,new_len); return 0; } #if 0 /** If the buffer is at least 2*MIN_GREEDY_SHRINK_SIZE bytes in capacity, * and if the buffer is less than 1/8 full, shrink the buffer until * one of the above no longer holds. (We shrink the buffer by * dividing by powers of 2.) */ static INLINE void buf_shrink_if_underfull(buf_t *buf) { size_t new_len; /* If the buffer is at least 1/8 full, or if shrinking the buffer would * put it under MIN_GREEDY_SHRINK_SIZE, don't do it. */ if (buf->datalen >= (buf->len>>3) || buf->len < MIN_GREEDY_SHRINK_SIZE*2) return; /* Shrink new_len by powers of 2 until: datalen is at least 1/4 of * new_len, OR shrinking new_len more would put it under * MIN_GREEDY_SHRINK_SIZE. */ new_len = (buf->len>>1); while (buf->datalen < (new_len>>3) && new_len > MIN_GREEDY_SHRINK_SIZE*2) new_len >>= 1; log_fn(LOG_DEBUG,"Shrinking buffer from %d to %d bytes.", (int)buf->len, (int)new_len); buf_resize(buf, new_len); } #else #define buf_shrink_if_underfull(buf) do {} while (0) #endif /** Resize buf so it won't hold extra memory that we haven't been * using lately (that is, since the last time we called buf_shrink). * Try to shrink the buf until it is the largest factor of two that * can contain buf->highwater, but never smaller than * MIN_LAZY_SHRINK_SIZE. */ void buf_shrink(buf_t *buf) { size_t new_len; new_len = buf->len; while (buf->highwater < (new_len>>2) && new_len > MIN_LAZY_SHRINK_SIZE*2) new_len >>= 1; buf->highwater = buf->datalen; if (new_len == buf->len) return; log_fn(LOG_DEBUG,"Shrinking buffer from %d to %d bytes.", (int)buf->len, (int)new_len); buf_resize(buf, new_len); } /** Remove the first n bytes from buf. */ static INLINE void buf_remove_from_front(buf_t *buf, size_t n) { tor_assert(buf->datalen >= n); buf->datalen -= n; buf_total_used -= n; if (buf->datalen) { buf->cur = _wrap_ptr(buf, buf->cur+n); } else { buf->cur = buf->mem; } buf_shrink_if_underfull(buf); check(); } /** Make sure that the memory in buf ends with a zero byte. */ static INLINE int buf_nul_terminate(buf_t *buf) { if (buf_ensure_capacity(buf,buf->datalen+1)<0) return -1; *_buf_end(buf) = '\0'; return 0; } /** Create and return a new buf with capacity size. */ buf_t *buf_new_with_capacity(size_t size) { buf_t *buf; buf = tor_malloc_zero(sizeof(buf_t)); buf->magic = BUFFER_MAGIC; buf->cur = buf->mem = GUARDED_MEM(tor_malloc(ALLOC_LEN(size))); SET_GUARDS(buf->mem, size); buf->len = size; buf_total_alloc += size; assert_buf_ok(buf); return buf; } /** Allocate and return a new buffer with default capacity. */ buf_t *buf_new() { return buf_new_with_capacity(INITIAL_BUF_SIZE); } /** Remove all data from buf */ void buf_clear(buf_t *buf) { buf_total_used -= buf->datalen; buf->datalen = 0; buf->cur = buf->mem; } /** Return the number of bytes stored in buf */ size_t buf_datalen(const buf_t *buf) { return buf->datalen; } /** Return the maximum bytes that can be stored in buf before buf * needs to resize. */ size_t buf_capacity(const buf_t *buf) { return buf->len; } /** For testing only: Return a pointer to the raw memory stored in buf. */ const char *_buf_peek_raw_buffer(const buf_t *buf) { return buf->cur; } /** Release storage held by buf. */ void buf_free(buf_t *buf) { assert_buf_ok(buf); buf->magic = 0xDEADBEEF; free(RAW_MEM(buf->mem)); buf_total_alloc -= buf->len; buf_total_used -= buf->datalen; tor_free(buf); } static INLINE int read_to_buf_impl(int s, size_t at_most, buf_t *buf, char *pos, int *reached_eof) { int read_result; // log_fn(LOG_DEBUG,"reading at most %d bytes.",at_most); read_result = recv(s, pos, at_most, 0); if (read_result < 0) { int e = tor_socket_errno(s); if (!ERRNO_IS_EAGAIN(e)) { /* it's a real error */ return -1; } return 0; /* would block. */ } else if (read_result == 0) { log_fn(LOG_DEBUG,"Encountered eof"); *reached_eof = 1; return 0; } else { /* we read some bytes */ buf->datalen += read_result; buf_total_used += read_result; if (buf->datalen > buf->highwater) buf->highwater = buf->datalen; log_fn(LOG_DEBUG,"Read %d bytes. %d on inbuf.",read_result, (int)buf->datalen); return read_result; } } /** Read from socket s, writing onto end of buf. Read at most * at_most bytes, resizing the buffer as necessary. If recv() * returns 0, set *reached_eof to 1 and return 0. Return -1 on error; * else return the number of bytes read. Return 0 if recv() would * block. */ int read_to_buf(int s, size_t at_most, buf_t *buf, int *reached_eof) { int r; char *next; size_t at_start; assert_buf_ok(buf); tor_assert(reached_eof); tor_assert(s>=0); if (buf_ensure_capacity(buf,buf->datalen+at_most)) return -1; if (at_most + buf->datalen > buf->len) at_most = buf->len - buf->datalen; /* take the min of the two */ if (at_most == 0) return 0; /* we shouldn't read anything */ next = _buf_end(buf); _split_range(buf, next, &at_most, &at_start); r = read_to_buf_impl(s, at_most, buf, next, reached_eof); check(); if (r < 0 || (size_t)r < at_most) { return r; /* Either error, eof, block, or no more to read. */ } if (at_start) { int r2; tor_assert(_buf_end(buf) == buf->mem); r2 = read_to_buf_impl(s, at_start, buf, buf->mem, reached_eof); check(); if (r2 < 0) { return r2; } else { r += r2; } } return r; } static INLINE int read_to_buf_tls_impl(tor_tls *tls, size_t at_most, buf_t *buf, char *next) { int r; log_fn(LOG_DEBUG,"before: %d on buf, %d pending, at_most %d.", (int)buf_datalen(buf), (int)tor_tls_get_pending_bytes(tls), (int)at_most); r = tor_tls_read(tls, next, at_most); if (r<0) return r; buf->datalen += r; buf_total_used += r; if (buf->datalen > buf->highwater) buf->highwater = buf->datalen; log_fn(LOG_DEBUG,"Read %d bytes. %d on inbuf; %d pending",r, (int)buf->datalen,(int)tor_tls_get_pending_bytes(tls)); return r; } /** As read_to_buf, but reads from a TLS connection. */ int read_to_buf_tls(tor_tls *tls, size_t at_most, buf_t *buf) { int r; char *next; size_t at_start; tor_assert(tls); assert_buf_ok(buf); log_fn(LOG_DEBUG,"start: %d on buf, %d pending, at_most %d.", (int)buf_datalen(buf), (int)tor_tls_get_pending_bytes(tls), (int)at_most); if (buf_ensure_capacity(buf, at_most+buf->datalen)) return TOR_TLS_ERROR; if (at_most + buf->datalen > buf->len) at_most = buf->len - buf->datalen; if (at_most == 0) return 0; next = _buf_end(buf); _split_range(buf, next, &at_most, &at_start); r = read_to_buf_tls_impl(tls, at_most, buf, next); check(); if (r < 0 || (size_t)r < at_most) return r; /* Either error, eof, block, or no more to read. */ if (at_start) { int r2; tor_assert(_buf_end(buf) == buf->mem); r2 = read_to_buf_tls_impl(tls, at_start, buf, buf->mem); check(); if (r2 < 0) return r2; else r += r2; } return r; } static INLINE int flush_buf_impl(int s, buf_t *buf, size_t sz, size_t *buf_flushlen) { int write_result; write_result = send(s, buf->cur, sz, 0); if (write_result < 0) { int e = tor_socket_errno(s); if (!ERRNO_IS_EAGAIN(e)) { /* it's a real error */ return -1; } log_fn(LOG_DEBUG,"write() would block, returning."); return 0; } else { *buf_flushlen -= write_result; buf_remove_from_front(buf, write_result); return write_result; } } /** Write data from buf to the socket s. Write at most * *buf_flushlen bytes, decrement *buf_flushlen by * the number of bytes actually written, and remove the written bytes * from the buffer. Return the number of bytes written on success, * -1 on failure. Return 0 if write() would block. */ int flush_buf(int s, buf_t *buf, size_t *buf_flushlen) { int r; size_t flushed = 0; size_t flushlen0, flushlen1; assert_buf_ok(buf); tor_assert(buf_flushlen); tor_assert(s>=0); tor_assert(*buf_flushlen <= buf->datalen); if (*buf_flushlen == 0) /* nothing to flush */ return 0; flushlen0 = *buf_flushlen; _split_range(buf, buf->cur, &flushlen0, &flushlen1); r = flush_buf_impl(s, buf, flushlen0, buf_flushlen); check(); log_fn(LOG_DEBUG,"%d: flushed %d bytes, %d ready to flush, %d remain.", s,r,(int)*buf_flushlen,(int)buf->datalen); if (r < 0 || (size_t)r < flushlen0) return r; /* Error, or can't flush any more now. */ flushed = r; if (flushlen1) { tor_assert(buf->cur == buf->mem); r = flush_buf_impl(s, buf, flushlen1, buf_flushlen); check(); log_fn(LOG_DEBUG,"%d: flushed %d bytes, %d ready to flush, %d remain.", s,r,(int)*buf_flushlen,(int)buf->datalen); if (r<0) return r; flushed += r; } return flushed; } static INLINE int flush_buf_tls_impl(tor_tls *tls, buf_t *buf, size_t sz, size_t *buf_flushlen) { int r; r = tor_tls_write(tls, buf->cur, sz); if (r < 0) { return r; } *buf_flushlen -= r; buf_remove_from_front(buf, r); log_fn(LOG_DEBUG,"flushed %d bytes, %d ready to flush, %d remain.", r,(int)*buf_flushlen,(int)buf->datalen); return r; } /** As flush_buf, but writes data to a TLS connection. */ int flush_buf_tls(tor_tls *tls, buf_t *buf, size_t *buf_flushlen) { int r; size_t flushed=0; size_t flushlen0, flushlen1; assert_buf_ok(buf); tor_assert(tls); tor_assert(buf_flushlen); /* we want to let tls write even if flushlen is zero, because it might * have a partial record pending */ check_no_tls_errors(); flushlen0 = *buf_flushlen; _split_range(buf, buf->cur, &flushlen0, &flushlen1); r = flush_buf_tls_impl(tls, buf, flushlen0, buf_flushlen); check(); if (r < 0 || (size_t)r < flushlen0) return r; /* Error, or can't flush any more now. */ flushed = r; if (flushlen1) { tor_assert(buf->cur == buf->mem); r = flush_buf_tls_impl(tls, buf, flushlen1, buf_flushlen); check(); if (r<0) return r; flushed += r; } return flushed; } /** Append string_len bytes from string to the end of * buf. * * Return the new length of the buffer on success, -1 on failure. */ int write_to_buf(const char *string, size_t string_len, buf_t *buf) { char *next; size_t len2; /* append string to buf (growing as needed, return -1 if "too big") * return total number of bytes on the buf */ tor_assert(string); assert_buf_ok(buf); if (buf_ensure_capacity(buf, buf->datalen+string_len)) { log_fn(LOG_WARN, "buflen too small, can't hold %d bytes.", (int)(buf->datalen+string_len)); return -1; } next = _buf_end(buf); _split_range(buf, next, &string_len, &len2); memcpy(next, string, string_len); buf->datalen += string_len; buf_total_used += string_len; if (len2) { tor_assert(_buf_end(buf) == buf->mem); memcpy(buf->mem, string+string_len, len2); buf->datalen += len2; buf_total_used += len2; } if (buf->datalen > buf->highwater) buf->highwater = buf->datalen; log_fn(LOG_DEBUG,"added %d bytes to buf (now %d total).", (int)string_len, (int)buf->datalen); check(); return buf->datalen; } static INLINE void peek_from_buf(char *string, size_t string_len, buf_t *buf) { size_t len2; /* There must be string_len bytes in buf; write them onto string, * then memmove buf back (that is, remove them from buf). * * Return the number of bytes still on the buffer. */ tor_assert(string); tor_assert(string_len <= buf->datalen); /* make sure we don't ask for too much */ assert_buf_ok(buf); _split_range(buf, buf->cur, &string_len, &len2); memcpy(string, buf->cur, string_len); if (len2) { memcpy(string+string_len,buf->mem,len2); } } /** Remove string_len bytes from the front of buf, and store them * into string. Return the new buffer size. string_len must be \<= * the number of bytes on the buffer. */ int fetch_from_buf(char *string, size_t string_len, buf_t *buf) { /* There must be string_len bytes in buf; write them onto string, * then memmove buf back (that is, remove them from buf). * * Return the number of bytes still on the buffer. */ check(); peek_from_buf(string, string_len, buf); buf_remove_from_front(buf, string_len); check(); return buf->datalen; } /** There is a (possibly incomplete) http statement on buf, of the * form "\%s\\r\\n\\r\\n\%s", headers, body. (body may contain nuls.) * If a) the headers include a Content-Length field and all bytes in * the body are present, or b) there's no Content-Length field and * all headers are present, then: * * - strdup headers into *headers_out, and nul-terminate it. * - memdup body into *body_out, and nul-terminate it. * - Then remove them from buf, and return 1. * * - If headers or body is NULL, discard that part of the buf. * - If a headers or body doesn't fit in the arg, return -1. * (We ensure that the headers or body don't exceed max len, * _even if_ we're planning to discard them.) * * Else, change nothing and return 0. */ int fetch_from_buf_http(buf_t *buf, char **headers_out, size_t max_headerlen, char **body_out, size_t *body_used, size_t max_bodylen) { char *headers, *body, *p; size_t headerlen, bodylen, contentlen; assert_buf_ok(buf); buf_normalize(buf); if (buf_nul_terminate(buf)<0) { log_fn(LOG_WARN,"Couldn't nul-terminate buffer"); return -1; } headers = buf->cur; body = strstr(headers,"\r\n\r\n"); if (!body) { log_fn(LOG_DEBUG,"headers not all here yet."); return 0; } body += 4; /* Skip the the CRLFCRLF */ headerlen = body-headers; /* includes the CRLFCRLF */ bodylen = buf->datalen - headerlen; log_fn(LOG_DEBUG,"headerlen %d, bodylen %d.", (int)headerlen, (int)bodylen); if (max_headerlen <= headerlen) { log_fn(LOG_WARN,"headerlen %d larger than %d. Failing.", (int)headerlen, (int)max_headerlen-1); return -1; } if (max_bodylen <= bodylen) { log_fn(LOG_WARN,"bodylen %d larger than %d. Failing.", (int)bodylen, (int)max_bodylen-1); return -1; } #define CONTENT_LENGTH "\r\nContent-Length: " p = strstr(headers, CONTENT_LENGTH); if (p) { int i; i = atoi(p+strlen(CONTENT_LENGTH)); if (i < 0) { log_fn(LOG_WARN, "Content-Length is less than zero; it looks like someone is trying to crash us."); return -1; } contentlen = i; /* if content-length is malformed, then our body length is 0. fine. */ log_fn(LOG_DEBUG,"Got a contentlen of %d.",(int)contentlen); if (bodylen < contentlen) { log_fn(LOG_DEBUG,"body not all here yet."); return 0; /* not all there yet */ } if (bodylen > contentlen) { bodylen = contentlen; log_fn(LOG_DEBUG,"bodylen reduced to %d.",(int)bodylen); } } /* all happy. copy into the appropriate places, and return 1 */ if (headers_out) { *headers_out = tor_malloc(headerlen+1); memcpy(*headers_out,buf->cur,headerlen); (*headers_out)[headerlen] = 0; /* null terminate it */ } if (body_out) { tor_assert(body_used); *body_used = bodylen; *body_out = tor_malloc(bodylen+1); memcpy(*body_out,buf->cur+headerlen,bodylen); (*body_out)[bodylen] = 0; /* null terminate it */ } buf_remove_from_front(buf, headerlen+bodylen); return 1; } /** There is a (possibly incomplete) socks handshake on buf, of one * of the forms * - socks4: "socksheader username\\0" * - socks4a: "socksheader username\\0 destaddr\\0" * - socks5 phase one: "version #methods methods" * - socks5 phase two: "version command 0 addresstype..." * If it's a complete and valid handshake, and destaddr fits in * MAX_SOCKS_ADDR_LEN bytes, then pull the handshake off the buf, * assign to req, and return 1. * * If it's invalid or too big, return -1. * * Else it's not all there yet, leave buf alone and return 0. * * If you want to specify the socks reply, write it into req->reply * and set req->replylen, else leave req->replylen alone. * * If returning 0 or -1, req->address and req->port are undefined. */ int fetch_from_buf_socks(buf_t *buf, socks_request_t *req) { unsigned char len; char tmpbuf[INET_NTOA_BUF_LEN]; uint32_t destip; enum {socks4, socks4a} socks4_prot = socks4a; char *next, *startaddr; struct in_addr in; /* If the user connects with socks4 or the wrong variant of socks5, * then log a warning to let him know that it might be unwise. */ static int have_warned_about_unsafe_socks = 0; if (buf->datalen < 2) /* version and another byte */ return 0; buf_normalize(buf); switch (*(buf->cur)) { /* which version of socks? */ case 5: /* socks5 */ if (req->socks_version != 5) { /* we need to negotiate a method */ unsigned char nummethods = (unsigned char)*(buf->cur+1); tor_assert(!req->socks_version); if (buf->datalen < 2u+nummethods) return 0; if (!nummethods || !memchr(buf->cur+2, 0, nummethods)) { log_fn(LOG_WARN,"socks5: offered methods don't include 'no auth'. Rejecting."); req->replylen = 2; /* 2 bytes of response */ req->reply[0] = 5; req->reply[1] = '\xFF'; /* reject all methods */ return -1; } buf_remove_from_front(buf,2+nummethods);/* remove packet from buf */ req->replylen = 2; /* 2 bytes of response */ req->reply[0] = 5; /* socks5 reply */ req->reply[1] = SOCKS5_SUCCEEDED; req->socks_version = 5; /* remember that we've already negotiated auth */ log_fn(LOG_DEBUG,"socks5: accepted method 0"); return 0; } /* we know the method; read in the request */ log_fn(LOG_DEBUG,"socks5: checking request"); if (buf->datalen < 8) /* basic info plus >=2 for addr plus 2 for port */ return 0; /* not yet */ req->command = (unsigned char) *(buf->cur+1); if (req->command != SOCKS_COMMAND_CONNECT && req->command != SOCKS_COMMAND_RESOLVE) { /* not a connect or resolve? we don't support it. */ log_fn(LOG_WARN,"socks5: command %d not recognized. Rejecting.", req->command); return -1; } switch (*(buf->cur+3)) { /* address type */ case 1: /* IPv4 address */ log_fn(LOG_DEBUG,"socks5: ipv4 address type"); if (buf->datalen < 10) /* ip/port there? */ return 0; /* not yet */ destip = ntohl(*(uint32_t*)(buf->cur+4)); in.s_addr = htonl(destip); tor_inet_ntoa(&in,tmpbuf,sizeof(tmpbuf)); if (strlen(tmpbuf)+1 > MAX_SOCKS_ADDR_LEN) { log_fn(LOG_WARN,"socks5 IP takes %d bytes, which doesn't fit in %d. Rejecting.", (int)strlen(tmpbuf)+1,(int)MAX_SOCKS_ADDR_LEN); return -1; } strlcpy(req->address,tmpbuf,sizeof(req->address)); req->port = ntohs(*(uint16_t*)(buf->cur+8)); buf_remove_from_front(buf, 10); if (!have_warned_about_unsafe_socks) { log_fn(LOG_WARN,"Your application (using socks5 on port %d) is giving Tor only an IP address. Applications that do DNS resolves themselves may leak information. Consider using Socks4A (e.g. via privoxy or socat) instead.", req->port); // have_warned_about_unsafe_socks = 1; // (for now, warn every time) } return 1; case 3: /* fqdn */ log_fn(LOG_DEBUG,"socks5: fqdn address type"); len = (unsigned char)*(buf->cur+4); if (buf->datalen < 7u+len) /* addr/port there? */ return 0; /* not yet */ if (len+1 > MAX_SOCKS_ADDR_LEN) { log_fn(LOG_WARN,"socks5 hostname is %d bytes, which doesn't fit in %d. Rejecting.", len+1,MAX_SOCKS_ADDR_LEN); return -1; } memcpy(req->address,buf->cur+5,len); req->address[len] = 0; req->port = ntohs(get_uint16(buf->cur+5+len)); buf_remove_from_front(buf, 5+len+2); return 1; default: /* unsupported */ log_fn(LOG_WARN,"socks5: unsupported address type %d. Rejecting.",*(buf->cur+3)); return -1; } tor_assert(0); case 4: /* socks4 */ /* http://archive.socks.permeo.com/protocol/socks4.protocol */ /* http://archive.socks.permeo.com/protocol/socks4a.protocol */ req->socks_version = 4; if (buf->datalen < SOCKS4_NETWORK_LEN) /* basic info available? */ return 0; /* not yet */ req->command = (unsigned char) *(buf->cur+1); if (req->command != SOCKS_COMMAND_CONNECT && req->command != SOCKS_COMMAND_RESOLVE) { /* not a connect or resolve? we don't support it. */ log_fn(LOG_WARN,"socks4: command %d not recognized. Rejecting.", req->command); return -1; } req->port = ntohs(*(uint16_t*)(buf->cur+2)); destip = ntohl(*(uint32_t*)(buf->mem+4)); if ((!req->port && req->command!=SOCKS_COMMAND_RESOLVE) || !destip) { log_fn(LOG_WARN,"socks4: Port or DestIP is zero. Rejecting."); return -1; } if (destip >> 8) { log_fn(LOG_DEBUG,"socks4: destip not in form 0.0.0.x."); in.s_addr = htonl(destip); tor_inet_ntoa(&in,tmpbuf,sizeof(tmpbuf)); if (strlen(tmpbuf)+1 > MAX_SOCKS_ADDR_LEN) { log_fn(LOG_WARN,"socks4 addr (%d bytes) too long. Rejecting.", (int)strlen(tmpbuf)); return -1; } log_fn(LOG_DEBUG,"socks4: successfully read destip (%s)", safe_str(tmpbuf)); socks4_prot = socks4; } next = memchr(buf->cur+SOCKS4_NETWORK_LEN, 0, buf->datalen-SOCKS4_NETWORK_LEN); if (!next) { log_fn(LOG_DEBUG,"socks4: Username not here yet."); return 0; } tor_assert(next < buf->cur+buf->datalen); startaddr = NULL; if (socks4_prot != socks4a && !have_warned_about_unsafe_socks) { log_fn(LOG_WARN,"Your application (using socks4 on port %d) is giving Tor only an IP address. Applications that do DNS resolves themselves may leak information. Consider using Socks4A (e.g. via privoxy or socat) instead.", req->port); // have_warned_about_unsafe_socks = 1; // (for now, warn every time) } if (socks4_prot == socks4a) { if (next+1 == buf->cur+buf->datalen) { log_fn(LOG_DEBUG,"socks4: No part of destaddr here yet."); return 0; } startaddr = next+1; next = memchr(startaddr, 0, buf->cur+buf->datalen-startaddr); if (!next) { log_fn(LOG_DEBUG,"socks4: Destaddr not all here yet."); return 0; } if (MAX_SOCKS_ADDR_LEN <= next-startaddr) { log_fn(LOG_WARN,"socks4: Destaddr too long. Rejecting."); return -1; } tor_assert(next < buf->cur+buf->datalen); } log_fn(LOG_DEBUG,"socks4: Everything is here. Success."); strlcpy(req->address, startaddr ? startaddr : tmpbuf, sizeof(req->address)); buf_remove_from_front(buf, next-buf->cur+1); /* next points to the final \0 on inbuf */ return 1; case 'G': /* get */ case 'H': /* head */ case 'P': /* put/post */ case 'C': /* connect */ strlcpy(req->reply, "HTTP/1.0 501 Tor is not an HTTP Proxy\r\n" "Content-Type: text/html; charset=iso-8859-1\r\n\r\n" "\n" "
\n" "\n" "It appears you have configured your web browser to use Tor as an HTTP Proxy.\n" "This is not correct: Tor provides a SOCKS proxy. Please configure your\n" "client accordingly.\n" "
\n" "\n" "See http://tor.eff.org/doc/tor-doc.html#installing for more information.\n" "\n" "
\n" "\n" "\n" , MAX_SOCKS_REPLY_LEN); req->replylen = strlen(req->reply)+1; /* fall through */ default: /* version is not socks4 or socks5 */ log_fn(LOG_WARN,"Socks version %d not recognized. (Tor is not an http proxy.)", *(buf->cur)); return -1; } } #define CONTROL_CMD_FRAGMENTHEADER 0x0010 #define CONTROL_CMD_FRAGMENT 0x0011 /** If there is a complete control message waiting on buf, then store * its contents into *type_out, store its body's length into * *len_out, allocate and store a string for its body into * *body_out, and return 1. (body_out will always be NUL-terminated, * even if the control message body doesn't end with NUL.) * * If there is not a complete control message waiting, return 0. * * Return -1 on error. */ int fetch_from_buf_control(buf_t *buf, uint32_t *len_out, uint16_t *type_out, char **body_out) { uint32_t msglen; uint16_t type; char tmp[4]; tor_assert(buf); tor_assert(len_out); tor_assert(type_out); tor_assert(body_out); if (buf->datalen < 4) return 0; peek_from_buf(tmp, 4, buf); msglen = ntohs(get_uint16(tmp)); if (buf->datalen < 4 + (unsigned)msglen) return 0; type = ntohs(get_uint16(tmp+2)); *len_out = msglen; *type_out = type; buf_remove_from_front(buf, 4); if (msglen) { *body_out = tor_malloc(msglen+1); fetch_from_buf(*body_out, msglen, buf); (*body_out)[msglen] = '\0'; } else { *body_out = NULL; } return 1; } /** Log an error and exit if buf is corrupted. */ void assert_buf_ok(buf_t *buf) { tor_assert(buf); tor_assert(buf->magic == BUFFER_MAGIC); tor_assert(buf->mem); tor_assert(buf->highwater <= buf->len); tor_assert(buf->datalen <= buf->highwater); #ifdef SENTINELS { uint32_t u32 = get_uint32(buf->mem - 4); tor_assert(u32 == START_MAGIC); u32 = get_uint32(buf->mem + buf->len); tor_assert(u32 == END_MAGIC); } #endif }