/* Copyright (c) 2003-2004, Roger Dingledine * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. * Copyright (c) 2007-2021, The Tor Project, Inc. */ /* See LICENSE for licensing information */ /** * \file compat_time.c * \brief Portable wrappers for finding out the current time, running * timers, etc. **/ #define COMPAT_TIME_PRIVATE #include "lib/time/compat_time.h" #include "lib/err/torerr.h" #include "lib/log/log.h" #include "lib/log/util_bug.h" #include "lib/intmath/muldiv.h" #include "lib/intmath/bits.h" #include "lib/fs/winlib.h" #include "lib/wallclock/timeval.h" #ifdef _WIN32 #include #include #endif #ifdef HAVE_SYS_TYPES_H #include #endif #ifdef HAVE_SYS_TIME_H #include #endif #ifdef HAVE_UNISTD_H #include #endif #ifdef TOR_UNIT_TESTS #if !defined(HAVE_USLEEP) && defined(HAVE_SYS_SELECT_H) /* as fallback implementation for tor_sleep_msec */ #include #endif #endif /* defined(TOR_UNIT_TESTS) */ #ifdef __APPLE__ #include #endif #include #include #include #ifdef _WIN32 #undef HAVE_CLOCK_GETTIME #endif #ifdef TOR_UNIT_TESTS /** Delay for msec milliseconds. Only used in tests. */ void tor_sleep_msec(int msec) { #ifdef _WIN32 Sleep(msec); #elif defined(HAVE_USLEEP) sleep(msec / 1000); /* Some usleep()s hate sleeping more than 1 sec */ usleep((msec % 1000) * 1000); #elif defined(HAVE_SYS_SELECT_H) struct timeval tv = { msec / 1000, (msec % 1000) * 1000}; select(0, NULL, NULL, NULL, &tv); #else sleep(CEIL_DIV(msec, 1000)); #endif /* defined(_WIN32) || ... */ } #endif /* defined(TOR_UNIT_TESTS) */ #define ONE_MILLION ((int64_t) (1000 * 1000)) #define ONE_BILLION ((int64_t) (1000 * 1000 * 1000)) /** True iff monotime_init has been called. */ static int monotime_initialized = 0; static monotime_t initialized_at; #ifdef MONOTIME_COARSE_FN_IS_DIFFERENT static monotime_coarse_t initialized_at_coarse; #endif #ifdef TOR_UNIT_TESTS /** True if we are running unit tests and overriding the current monotonic * time. Note that mocked monotonic time might not be monotonic. */ static int monotime_mocking_enabled = 0; static monotime_t initialized_at_saved; static int64_t mock_time_nsec = 0; #ifdef MONOTIME_COARSE_FN_IS_DIFFERENT static int64_t mock_time_nsec_coarse = 0; static monotime_coarse_t initialized_at_coarse_saved; #endif void monotime_enable_test_mocking(void) { if (BUG(monotime_initialized == 0)) { monotime_init(); } tor_assert_nonfatal(monotime_mocking_enabled == 0); monotime_mocking_enabled = 1; memcpy(&initialized_at_saved, &initialized_at, sizeof(monotime_t)); memset(&initialized_at, 0, sizeof(monotime_t)); #ifdef MONOTIME_COARSE_FN_IS_DIFFERENT memcpy(&initialized_at_coarse_saved, &initialized_at_coarse, sizeof(monotime_coarse_t)); memset(&initialized_at_coarse, 0, sizeof(monotime_coarse_t)); #endif } void monotime_disable_test_mocking(void) { tor_assert_nonfatal(monotime_mocking_enabled == 1); monotime_mocking_enabled = 0; memcpy(&initialized_at, &initialized_at_saved, sizeof(monotime_t)); #ifdef MONOTIME_COARSE_FN_IS_DIFFERENT memcpy(&initialized_at_coarse, &initialized_at_coarse_saved, sizeof(monotime_coarse_t)); #endif } void monotime_set_mock_time_nsec(int64_t nsec) { tor_assert_nonfatal(monotime_mocking_enabled == 1); mock_time_nsec = nsec; } #ifdef MONOTIME_COARSE_FN_IS_DIFFERENT void monotime_coarse_set_mock_time_nsec(int64_t nsec) { tor_assert_nonfatal(monotime_mocking_enabled == 1); mock_time_nsec_coarse = nsec; } #endif /* defined(MONOTIME_COARSE_FN_IS_DIFFERENT) */ #endif /* defined(TOR_UNIT_TESTS) */ /* "ratchet" functions for monotonic time. */ #if defined(_WIN32) || defined(TOR_UNIT_TESTS) /** Protected by lock: last value returned by monotime_get(). */ static int64_t last_pctr = 0; /** Protected by lock: offset we must add to monotonic time values. */ static int64_t pctr_offset = 0; /* If we are using GetTickCount(), how many times has it rolled over? */ static uint32_t rollover_count = 0; /* If we are using GetTickCount(), what's the last value it returned? */ static int64_t last_tick_count = 0; /** Helper for windows: Called with a sequence of times that are supposed * to be monotonic; increments them as appropriate so that they actually * _are_ monotonic. * * The returned time may be the same as the previous returned time. * * Caller must hold lock. */ STATIC int64_t ratchet_performance_counter(int64_t count_raw) { /* must hold lock */ const int64_t count_adjusted = count_raw + pctr_offset; if (PREDICT_UNLIKELY(count_adjusted < last_pctr)) { /* Monotonicity failed! Pretend no time elapsed. */ pctr_offset = last_pctr - count_raw; return last_pctr; } else { last_pctr = count_adjusted; return count_adjusted; } } STATIC int64_t ratchet_coarse_performance_counter(const int64_t count_raw) { int64_t count = count_raw + (((int64_t)rollover_count) << 32); while (PREDICT_UNLIKELY(count < last_tick_count)) { ++rollover_count; count = count_raw + (((int64_t)rollover_count) << 32); } last_tick_count = count; return count; } #endif /* defined(_WIN32) || defined(TOR_UNIT_TESTS) */ #if defined(MONOTIME_USING_GETTIMEOFDAY) || defined(TOR_UNIT_TESTS) static struct timeval last_timeofday = { 0, 0 }; static struct timeval timeofday_offset = { 0, 0 }; /** Helper for gettimeofday(): Called with a sequence of times that are * supposed to be monotonic; increments them as appropriate so that they * actually _are_ monotonic. * * The returned time may be the same as the previous returned time. * * Caller must hold lock. */ STATIC void ratchet_timeval(const struct timeval *timeval_raw, struct timeval *out) { /* must hold lock */ timeradd(timeval_raw, &timeofday_offset, out); if (PREDICT_UNLIKELY(timercmp(out, &last_timeofday, OP_LT))) { /* time ran backwards. Instead, declare that no time occurred. */ timersub(&last_timeofday, timeval_raw, &timeofday_offset); memcpy(out, &last_timeofday, sizeof(struct timeval)); } else { memcpy(&last_timeofday, out, sizeof(struct timeval)); } } #endif /* defined(MONOTIME_USING_GETTIMEOFDAY) || defined(TOR_UNIT_TESTS) */ #ifdef TOR_UNIT_TESTS /** For testing: reset all the ratchets */ void monotime_reset_ratchets_for_testing(void) { last_pctr = pctr_offset = last_tick_count = 0; rollover_count = 0; memset(&last_timeofday, 0, sizeof(struct timeval)); memset(&timeofday_offset, 0, sizeof(struct timeval)); } #endif /* defined(TOR_UNIT_TESTS) */ #ifdef __APPLE__ /** Initialized on startup: tells is how to convert from ticks to * nanoseconds. */ static struct mach_timebase_info mach_time_info; static struct mach_timebase_info mach_time_info_msec_cvt; static int32_t mach_time_msec_cvt_threshold; static int monotime_shift = 0; static void monotime_init_internal(void) { tor_assert(!monotime_initialized); int r = mach_timebase_info(&mach_time_info); tor_assert(r == 0); tor_assert(mach_time_info.denom != 0); { // We want to compute this, approximately: // uint64_t ns_per_tick = mach_time_info.numer / mach_time_info.denom; // uint64_t ticks_per_ms = ONE_MILLION / ns_per_tick; // This calculation multiplies first, though, to improve accuracy. uint64_t ticks_per_ms = (ONE_MILLION * mach_time_info.denom) / mach_time_info.numer; // requires that tor_log2(0) == 0. monotime_shift = tor_log2(ticks_per_ms); } { // For converting ticks to milliseconds in a 32-bit-friendly way, we // will first right-shift by 20, and then multiply by 2048/1953, since // (1<<20) * 1953/2048 is about 1e6. We precompute a new numerator and // denominator here to avoid multiple multiplies. mach_time_info_msec_cvt.numer = mach_time_info.numer * 2048; mach_time_info_msec_cvt.denom = mach_time_info.denom * 1953; // For any value above this amount, we should divide before multiplying, // to avoid overflow. For a value below this, we should multiply // before dividing, to improve accuracy. mach_time_msec_cvt_threshold = INT32_MAX / mach_time_info_msec_cvt.numer; } } /** * Set "out" to the most recent monotonic time value. * * The returned time may be the same as the previous returned time. */ void monotime_get(monotime_t *out) { #ifdef TOR_UNIT_TESTS if (monotime_mocking_enabled) { out->abstime_ = (mock_time_nsec * mach_time_info.denom) / mach_time_info.numer; return; } #endif /* defined(TOR_UNIT_TESTS) */ out->abstime_ = mach_absolute_time(); } #if defined(HAVE_MACH_APPROXIMATE_TIME) void monotime_coarse_get(monotime_coarse_t *out) { #ifdef TOR_UNIT_TESTS if (monotime_mocking_enabled) { out->abstime_ = (mock_time_nsec_coarse * mach_time_info.denom) / mach_time_info.numer; return; } #endif /* defined(TOR_UNIT_TESTS) */ out->abstime_ = mach_approximate_time(); } #endif /* defined(HAVE_MACH_APPROXIMATE_TIME) */ /** * Return the number of nanoseconds between start and end. * * The returned value may be equal to zero. */ int64_t monotime_diff_nsec(const monotime_t *start, const monotime_t *end) { if (BUG(mach_time_info.denom == 0)) { monotime_init(); } const int64_t diff_ticks = end->abstime_ - start->abstime_; const int64_t diff_nsec = (diff_ticks * mach_time_info.numer) / mach_time_info.denom; return diff_nsec; } int32_t monotime_coarse_diff_msec32_(const monotime_coarse_t *start, const monotime_coarse_t *end) { if (BUG(mach_time_info.denom == 0)) { monotime_init(); } const int64_t diff_ticks = end->abstime_ - start->abstime_; /* We already require in di_ops.c that right-shift performs a sign-extend. */ const int32_t diff_microticks = (int32_t)(diff_ticks >> 20); if (diff_microticks >= mach_time_msec_cvt_threshold) { return (diff_microticks / mach_time_info_msec_cvt.denom) * mach_time_info_msec_cvt.numer; } else { return (diff_microticks * mach_time_info_msec_cvt.numer) / mach_time_info_msec_cvt.denom; } } uint32_t monotime_coarse_to_stamp(const monotime_coarse_t *t) { return (uint32_t)(t->abstime_ >> monotime_shift); } int monotime_is_zero(const monotime_t *val) { return val->abstime_ == 0; } void monotime_add_msec(monotime_t *out, const monotime_t *val, uint32_t msec) { const uint64_t nsec = msec * ONE_MILLION; const uint64_t ticks = (nsec * mach_time_info.denom) / mach_time_info.numer; out->abstime_ = val->abstime_ + ticks; } /* end of "__APPLE__" */ #elif defined(HAVE_CLOCK_GETTIME) #ifdef CLOCK_MONOTONIC_COARSE /** * Which clock should we use for coarse-grained monotonic time? By default * this is CLOCK_MONOTONIC_COARSE, but it might not work -- for example, * if we're compiled with newer Linux headers and then we try to run on * an old Linux kernel. In that case, we will fall back to CLOCK_MONOTONIC. */ static int clock_monotonic_coarse = CLOCK_MONOTONIC_COARSE; #endif /* defined(CLOCK_MONOTONIC_COARSE) */ static void monotime_init_internal(void) { #ifdef CLOCK_MONOTONIC_COARSE struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC_COARSE, &ts) < 0) { log_info(LD_GENERAL, "CLOCK_MONOTONIC_COARSE isn't working (%s); " "falling back to CLOCK_MONOTONIC.", strerror(errno)); clock_monotonic_coarse = CLOCK_MONOTONIC; } #endif /* defined(CLOCK_MONOTONIC_COARSE) */ } void monotime_get(monotime_t *out) { #ifdef TOR_UNIT_TESTS if (monotime_mocking_enabled) { out->ts_.tv_sec = (time_t) (mock_time_nsec / ONE_BILLION); out->ts_.tv_nsec = (int) (mock_time_nsec % ONE_BILLION); return; } #endif /* defined(TOR_UNIT_TESTS) */ int r = clock_gettime(CLOCK_MONOTONIC, &out->ts_); tor_assert(r == 0); } #ifdef CLOCK_MONOTONIC_COARSE void monotime_coarse_get(monotime_coarse_t *out) { #ifdef TOR_UNIT_TESTS if (monotime_mocking_enabled) { out->ts_.tv_sec = (time_t) (mock_time_nsec_coarse / ONE_BILLION); out->ts_.tv_nsec = (int) (mock_time_nsec_coarse % ONE_BILLION); return; } #endif /* defined(TOR_UNIT_TESTS) */ int r = clock_gettime(clock_monotonic_coarse, &out->ts_); if (PREDICT_UNLIKELY(r < 0) && errno == EINVAL && clock_monotonic_coarse == CLOCK_MONOTONIC_COARSE) { /* We should have caught this at startup in monotime_init_internal! */ log_warn(LD_BUG, "Falling back to non-coarse monotonic time %s initial " "system start?", monotime_initialized?"after":"without"); clock_monotonic_coarse = CLOCK_MONOTONIC; r = clock_gettime(clock_monotonic_coarse, &out->ts_); } tor_assert(r == 0); } #endif /* defined(CLOCK_MONOTONIC_COARSE) */ int64_t monotime_diff_nsec(const monotime_t *start, const monotime_t *end) { const int64_t diff_sec = end->ts_.tv_sec - start->ts_.tv_sec; const int64_t diff_nsec = diff_sec * ONE_BILLION + (end->ts_.tv_nsec - start->ts_.tv_nsec); return diff_nsec; } int32_t monotime_coarse_diff_msec32_(const monotime_coarse_t *start, const monotime_coarse_t *end) { const int32_t diff_sec = (int32_t)(end->ts_.tv_sec - start->ts_.tv_sec); const int32_t diff_nsec = (int32_t)(end->ts_.tv_nsec - start->ts_.tv_nsec); return diff_sec * 1000 + diff_nsec / ONE_MILLION; } /* This value is ONE_BILLION >> 20. */ static const uint32_t STAMP_TICKS_PER_SECOND = 953; uint32_t monotime_coarse_to_stamp(const monotime_coarse_t *t) { uint32_t nsec = (uint32_t)t->ts_.tv_nsec; uint32_t sec = (uint32_t)t->ts_.tv_sec; return (sec * STAMP_TICKS_PER_SECOND) + (nsec >> 20); } int monotime_is_zero(const monotime_t *val) { return val->ts_.tv_sec == 0 && val->ts_.tv_nsec == 0; } void monotime_add_msec(monotime_t *out, const monotime_t *val, uint32_t msec) { const uint32_t sec = msec / 1000; const uint32_t msec_remainder = msec % 1000; out->ts_.tv_sec = val->ts_.tv_sec + sec; out->ts_.tv_nsec = val->ts_.tv_nsec + (msec_remainder * ONE_MILLION); if (out->ts_.tv_nsec > ONE_BILLION) { out->ts_.tv_nsec -= ONE_BILLION; out->ts_.tv_sec += 1; } } /* end of "HAVE_CLOCK_GETTIME" */ #elif defined (_WIN32) /** Result of QueryPerformanceFrequency, in terms needed to * convert ticks to nanoseconds. */ static int64_t nsec_per_tick_numer = 1; static int64_t nsec_per_tick_denom = 1; /** Lock to protect last_pctr and pctr_offset */ static CRITICAL_SECTION monotime_lock; /** Lock to protect rollover_count and last_tick_count */ static CRITICAL_SECTION monotime_coarse_lock; typedef ULONGLONG (WINAPI *GetTickCount64_fn_t)(void); static GetTickCount64_fn_t GetTickCount64_fn = NULL; static void monotime_init_internal(void) { tor_assert(!monotime_initialized); BOOL ok = InitializeCriticalSectionAndSpinCount(&monotime_lock, 200); tor_assert(ok); ok = InitializeCriticalSectionAndSpinCount(&monotime_coarse_lock, 200); tor_assert(ok); LARGE_INTEGER li; ok = QueryPerformanceFrequency(&li); tor_assert(ok); tor_assert(li.QuadPart); uint64_t n = ONE_BILLION; uint64_t d = li.QuadPart; /* We need to simplify this or we'll probably overflow the int64. */ simplify_fraction64(&n, &d); tor_assert(n <= INT64_MAX); tor_assert(d <= INT64_MAX); nsec_per_tick_numer = (int64_t) n; nsec_per_tick_denom = (int64_t) d; last_pctr = 0; pctr_offset = 0; HANDLE h = load_windows_system_library(TEXT("kernel32.dll")); if (h) { GetTickCount64_fn = (GetTickCount64_fn_t) (void(*)(void)) GetProcAddress(h, "GetTickCount64"); } // We can't call FreeLibrary(h) here, because freeing the handle may // unload the library, and cause future calls to GetTickCount64_fn() // to fail. See 29642 for details. } void monotime_get(monotime_t *out) { if (BUG(monotime_initialized == 0)) { monotime_init(); } #ifdef TOR_UNIT_TESTS if (monotime_mocking_enabled) { out->pcount_ = (mock_time_nsec * nsec_per_tick_denom) / nsec_per_tick_numer; return; } #endif /* defined(TOR_UNIT_TESTS) */ /* Alas, QueryPerformanceCounter is not always monotonic: see bug list at https://www.python.org/dev/peps/pep-0418/#windows-queryperformancecounter */ EnterCriticalSection(&monotime_lock); LARGE_INTEGER res; BOOL ok = QueryPerformanceCounter(&res); tor_assert(ok); const int64_t count_raw = res.QuadPart; out->pcount_ = ratchet_performance_counter(count_raw); LeaveCriticalSection(&monotime_lock); } void monotime_coarse_get(monotime_coarse_t *out) { #ifdef TOR_UNIT_TESTS if (monotime_mocking_enabled) { out->tick_count_ = mock_time_nsec_coarse / ONE_MILLION; return; } #endif /* defined(TOR_UNIT_TESTS) */ if (GetTickCount64_fn) { out->tick_count_ = (int64_t)GetTickCount64_fn(); } else { EnterCriticalSection(&monotime_coarse_lock); DWORD tick = GetTickCount(); out->tick_count_ = ratchet_coarse_performance_counter(tick); LeaveCriticalSection(&monotime_coarse_lock); } } int64_t monotime_diff_nsec(const monotime_t *start, const monotime_t *end) { if (BUG(monotime_initialized == 0)) { monotime_init(); } const int64_t diff_ticks = end->pcount_ - start->pcount_; return (diff_ticks * nsec_per_tick_numer) / nsec_per_tick_denom; } int64_t monotime_coarse_diff_msec(const monotime_coarse_t *start, const monotime_coarse_t *end) { const int64_t diff_ticks = end->tick_count_ - start->tick_count_; return diff_ticks; } int32_t monotime_coarse_diff_msec32_(const monotime_coarse_t *start, const monotime_coarse_t *end) { return (int32_t)monotime_coarse_diff_msec(start, end); } int64_t monotime_coarse_diff_usec(const monotime_coarse_t *start, const monotime_coarse_t *end) { return monotime_coarse_diff_msec(start, end) * 1000; } int64_t monotime_coarse_diff_nsec(const monotime_coarse_t *start, const monotime_coarse_t *end) { return monotime_coarse_diff_msec(start, end) * ONE_MILLION; } static const uint32_t STAMP_TICKS_PER_SECOND = 1000; uint32_t monotime_coarse_to_stamp(const monotime_coarse_t *t) { return (uint32_t) t->tick_count_; } int monotime_is_zero(const monotime_t *val) { return val->pcount_ == 0; } int monotime_coarse_is_zero(const monotime_coarse_t *val) { return val->tick_count_ == 0; } void monotime_add_msec(monotime_t *out, const monotime_t *val, uint32_t msec) { const uint64_t nsec = msec * ONE_MILLION; const uint64_t ticks = (nsec * nsec_per_tick_denom) / nsec_per_tick_numer; out->pcount_ = val->pcount_ + ticks; } void monotime_coarse_add_msec(monotime_coarse_t *out, const monotime_coarse_t *val, uint32_t msec) { out->tick_count_ = val->tick_count_ + msec; } /* end of "_WIN32" */ #elif defined(MONOTIME_USING_GETTIMEOFDAY) static tor_mutex_t monotime_lock; /** Initialize the monotonic timer subsystem. */ static void monotime_init_internal(void) { tor_assert(!monotime_initialized); tor_mutex_init(&monotime_lock); } void monotime_get(monotime_t *out) { if (BUG(monotime_initialized == 0)) { monotime_init(); } tor_mutex_acquire(&monotime_lock); struct timeval timeval_raw; tor_gettimeofday(&timeval_raw); ratchet_timeval(&timeval_raw, &out->tv_); tor_mutex_release(&monotime_lock); } int64_t monotime_diff_nsec(const monotime_t *start, const monotime_t *end) { struct timeval diff; timersub(&end->tv_, &start->tv_, &diff); return (diff.tv_sec * ONE_BILLION + diff.tv_usec * 1000); } int32_t monotime_coarse_diff_msec32_(const monotime_coarse_t *start, const monotime_coarse_t *end) { struct timeval diff; timersub(&end->tv_, &start->tv_, &diff); return diff.tv_sec * 1000 + diff.tv_usec / 1000; } /* This value is ONE_MILLION >> 10. */ static const uint32_t STAMP_TICKS_PER_SECOND = 976; uint32_t monotime_coarse_to_stamp(const monotime_coarse_t *t) { const uint32_t usec = (uint32_t)t->tv_.tv_usec; const uint32_t sec = (uint32_t)t->tv_.tv_sec; return (sec * STAMP_TICKS_PER_SECOND) | (nsec >> 10); } int monotime_is_zero(const monotime_t *val) { return val->tv_.tv_sec == 0 && val->tv_.tv_usec == 0; } void monotime_add_msec(monotime_t *out, const monotime_t *val, uint32_t msec) { const uint32_t sec = msec / 1000; const uint32_t msec_remainder = msec % 1000; out->tv_.tv_sec = val->tv_.tv_sec + sec; out->tv_.tv_usec = val->tv_.tv_nsec + (msec_remainder * 1000); if (out->tv_.tv_usec > ONE_MILLION) { out->tv_.tv_usec -= ONE_MILLION; out->tv_.tv_sec += 1; } } /* end of "MONOTIME_USING_GETTIMEOFDAY" */ #else #error "No way to implement monotonic timers." #endif /* defined(__APPLE__) || ... */ /** * Initialize the monotonic timer subsystem. Must be called before any * monotonic timer functions. This function is idempotent. */ void monotime_init(void) { if (!monotime_initialized) { monotime_init_internal(); monotime_initialized = 1; monotime_get(&initialized_at); #ifdef MONOTIME_COARSE_FN_IS_DIFFERENT monotime_coarse_get(&initialized_at_coarse); #endif } } void monotime_zero(monotime_t *out) { memset(out, 0, sizeof(*out)); } #ifdef MONOTIME_COARSE_TYPE_IS_DIFFERENT void monotime_coarse_zero(monotime_coarse_t *out) { memset(out, 0, sizeof(*out)); } #endif /* defined(MONOTIME_COARSE_TYPE_IS_DIFFERENT) */ int64_t monotime_diff_usec(const monotime_t *start, const monotime_t *end) { const int64_t nsec = monotime_diff_nsec(start, end); return CEIL_DIV(nsec, 1000); } int64_t monotime_diff_msec(const monotime_t *start, const monotime_t *end) { const int64_t nsec = monotime_diff_nsec(start, end); return CEIL_DIV(nsec, ONE_MILLION); } uint64_t monotime_absolute_nsec(void) { monotime_t now; if (BUG(monotime_initialized == 0)) { monotime_init(); } monotime_get(&now); return monotime_diff_nsec(&initialized_at, &now); } MOCK_IMPL(uint64_t, monotime_absolute_usec,(void)) { return monotime_absolute_nsec() / 1000; } uint64_t monotime_absolute_msec(void) { return monotime_absolute_nsec() / ONE_MILLION; } #ifdef MONOTIME_COARSE_FN_IS_DIFFERENT uint64_t monotime_coarse_absolute_nsec(void) { if (BUG(monotime_initialized == 0)) { monotime_init(); } monotime_coarse_t now; monotime_coarse_get(&now); return monotime_coarse_diff_nsec(&initialized_at_coarse, &now); } uint64_t monotime_coarse_absolute_usec(void) { return monotime_coarse_absolute_nsec() / 1000; } uint64_t monotime_coarse_absolute_msec(void) { return monotime_coarse_absolute_nsec() / ONE_MILLION; } #else /* !defined(MONOTIME_COARSE_FN_IS_DIFFERENT) */ #define initialized_at_coarse initialized_at #endif /* defined(MONOTIME_COARSE_FN_IS_DIFFERENT) */ /** * Return the current time "stamp" as described by monotime_coarse_to_stamp. */ uint32_t monotime_coarse_get_stamp(void) { monotime_coarse_t now; monotime_coarse_get(&now); return monotime_coarse_to_stamp(&now); } #ifdef __APPLE__ uint64_t monotime_coarse_stamp_units_to_approx_msec(uint64_t units) { /* Recover as much precision as we can. */ uint64_t abstime_diff = (units << monotime_shift); return (abstime_diff * mach_time_info.numer) / (mach_time_info.denom * ONE_MILLION); } uint64_t monotime_msec_to_approx_coarse_stamp_units(uint64_t msec) { uint64_t abstime_val = (((uint64_t)msec) * ONE_MILLION * mach_time_info.denom) / mach_time_info.numer; return abstime_val >> monotime_shift; } #else /* !defined(__APPLE__) */ uint64_t monotime_coarse_stamp_units_to_approx_msec(uint64_t units) { return (units * 1000) / STAMP_TICKS_PER_SECOND; } uint64_t monotime_msec_to_approx_coarse_stamp_units(uint64_t msec) { return (msec * STAMP_TICKS_PER_SECOND) / 1000; } #endif /* defined(__APPLE__) */