/* Copyright (c) 2003-2004, Roger Dingledine * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. * Copyright (c) 2007-2020, The Tor Project, Inc. */ /* See LICENSE for licensing information */ /** * \file muldiv.c * * \brief Integer math related to multiplication, division, and rounding. **/ #include "lib/intmath/muldiv.h" #include "lib/err/torerr.h" #include /** Return the lowest x such that x is at least number, and x modulo * divisor == 0. If no such x can be expressed as an unsigned, return * UINT_MAX. Asserts if divisor is zero. */ unsigned round_to_next_multiple_of(unsigned number, unsigned divisor) { raw_assert(divisor > 0); if (UINT_MAX - divisor + 1 < number) return UINT_MAX; number += divisor - 1; number -= number % divisor; return number; } /** Return the lowest x such that x is at least number, and x modulo * divisor == 0. If no such x can be expressed as a uint32_t, return * UINT32_MAX. Asserts if divisor is zero. */ uint32_t round_uint32_to_next_multiple_of(uint32_t number, uint32_t divisor) { raw_assert(divisor > 0); if (UINT32_MAX - divisor + 1 < number) return UINT32_MAX; number += divisor - 1; number -= number % divisor; return number; } /** Return the lowest x such that x is at least number, and x modulo * divisor == 0. If no such x can be expressed as a uint64_t, return * UINT64_MAX. Asserts if divisor is zero. */ uint64_t round_uint64_to_next_multiple_of(uint64_t number, uint64_t divisor) { raw_assert(divisor > 0); if (UINT64_MAX - divisor + 1 < number) return UINT64_MAX; number += divisor - 1; number -= number % divisor; return number; } /* Helper: return greatest common divisor of a,b */ static uint64_t gcd64(uint64_t a, uint64_t b) { while (b) { uint64_t t = b; b = a % b; a = t; } return a; } /** Return the unsigned integer product of a and b. If overflow * is detected, return UINT64_MAX instead. */ uint64_t tor_mul_u64_nowrap(uint64_t a, uint64_t b) { if (a == 0 || b == 0) { return 0; } else if (PREDICT_UNLIKELY(UINT64_MAX / a < b)) { return UINT64_MAX; } else { return a*b; } } /* Given a fraction *numer / *denom, simplify it. * Requires that the denominator is greater than 0. */ void simplify_fraction64(uint64_t *numer, uint64_t *denom) { raw_assert(denom); uint64_t gcd = gcd64(*numer, *denom); *numer /= gcd; *denom /= gcd; }