/* Copyright (c) 2001, Matej Pfajfar. * Copyright (c) 2001-2004, Roger Dingledine. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. * Copyright (c) 2007-2021, The Tor Project, Inc. */ /* See LICENSE for licensing information */ /** * \file crypto_rsa.c * \brief OpenSSL implementations of our RSA code. **/ #include "lib/crypt_ops/compat_openssl.h" #include "lib/crypt_ops/crypto_rsa.h" #include "lib/crypt_ops/crypto_util.h" #include "lib/ctime/di_ops.h" #include "lib/log/util_bug.h" #include "lib/fs/files.h" DISABLE_GCC_WARNING("-Wredundant-decls") #include #include #include #include #include #include #include #include ENABLE_GCC_WARNING("-Wredundant-decls") #include "lib/log/log.h" #include "lib/encoding/binascii.h" #include #include /** Declaration for crypto_pk_t structure. */ struct crypto_pk_t { int refs; /**< reference count, so we don't have to copy keys */ RSA *key; /**< The key itself */ }; /** Return true iff key contains the private-key portion of the RSA * key. */ int crypto_pk_key_is_private(const crypto_pk_t *k) { #ifdef OPENSSL_1_1_API if (!k || !k->key) return 0; const BIGNUM *p, *q; RSA_get0_factors(k->key, &p, &q); return p != NULL; /* XXX/yawning: Should we check q? */ #else /* !defined(OPENSSL_1_1_API) */ return k && k->key && k->key->p; #endif /* defined(OPENSSL_1_1_API) */ } /** used by tortls.c: wrap an RSA* in a crypto_pk_t. Takes ownership of * its argument. */ crypto_pk_t * crypto_new_pk_from_openssl_rsa_(RSA *rsa) { crypto_pk_t *env; tor_assert(rsa); env = tor_malloc(sizeof(crypto_pk_t)); env->refs = 1; env->key = rsa; return env; } /** Helper, used by tor-gencert.c. Return a copy of the private RSA from a * crypto_pk_t. */ RSA * crypto_pk_get_openssl_rsa_(crypto_pk_t *env) { return RSAPrivateKey_dup(env->key); } /** used by tortls.c: get an equivalent EVP_PKEY* for a crypto_pk_t. Iff * private is set, include the private-key portion of the key. Return a valid * pointer on success, and NULL on failure. */ MOCK_IMPL(EVP_PKEY *, crypto_pk_get_openssl_evp_pkey_,(crypto_pk_t *env, int private)) { RSA *key = NULL; EVP_PKEY *pkey = NULL; tor_assert(env->key); if (private) { if (!(key = RSAPrivateKey_dup(env->key))) goto error; } else { if (!(key = RSAPublicKey_dup(env->key))) goto error; } if (!(pkey = EVP_PKEY_new())) goto error; if (!(EVP_PKEY_assign_RSA(pkey, key))) goto error; return pkey; error: if (pkey) EVP_PKEY_free(pkey); if (key) RSA_free(key); return NULL; } /** Allocate and return storage for a public key. The key itself will not yet * be set. */ MOCK_IMPL(crypto_pk_t *, crypto_pk_new,(void)) { RSA *rsa; rsa = RSA_new(); tor_assert(rsa); return crypto_new_pk_from_openssl_rsa_(rsa); } /** Release a reference to an asymmetric key; when all the references * are released, free the key. */ void crypto_pk_free_(crypto_pk_t *env) { if (!env) return; if (--env->refs > 0) return; tor_assert(env->refs == 0); if (env->key) RSA_free(env->key); tor_free(env); } /** Generate a bits-bit new public/private keypair in env. * Return 0 on success, -1 on failure. */ MOCK_IMPL(int, crypto_pk_generate_key_with_bits,(crypto_pk_t *env, int bits)) { tor_assert(env); if (env->key) { RSA_free(env->key); env->key = NULL; } { BIGNUM *e = BN_new(); RSA *r = NULL; if (!e) goto done; if (! BN_set_word(e, TOR_RSA_EXPONENT)) goto done; r = RSA_new(); if (!r) goto done; if (RSA_generate_key_ex(r, bits, e, NULL) == -1) goto done; env->key = r; r = NULL; done: if (e) BN_clear_free(e); if (r) RSA_free(r); } if (!env->key) { crypto_openssl_log_errors(LOG_WARN, "generating RSA key"); return -1; } return 0; } /** Return true if env has a valid key; false otherwise. */ int crypto_pk_is_valid_private_key(const crypto_pk_t *env) { int r; tor_assert(env); r = RSA_check_key(env->key); if (r <= 0) { crypto_openssl_log_errors(LOG_WARN,"checking RSA key"); return 0; } else { return 1; } } /** Return true iff env contains a public key whose public exponent * equals TOR_RSA_EXPONENT. */ int crypto_pk_public_exponent_ok(const crypto_pk_t *env) { tor_assert(env); tor_assert(env->key); const BIGNUM *e; #ifdef OPENSSL_1_1_API const BIGNUM *n, *d; RSA_get0_key(env->key, &n, &e, &d); #else e = env->key->e; #endif /* defined(OPENSSL_1_1_API) */ return BN_is_word(e, TOR_RSA_EXPONENT); } /** Compare the public-key components of a and b. Return less than 0 * if a\b. A NULL key is * considered to be less than all non-NULL keys, and equal to itself. * * Note that this may leak information about the keys through timing. */ int crypto_pk_cmp_keys(const crypto_pk_t *a, const crypto_pk_t *b) { int result; char a_is_non_null = (a != NULL) && (a->key != NULL); char b_is_non_null = (b != NULL) && (b->key != NULL); char an_argument_is_null = !a_is_non_null | !b_is_non_null; result = tor_memcmp(&a_is_non_null, &b_is_non_null, sizeof(a_is_non_null)); if (an_argument_is_null) return result; const BIGNUM *a_n, *a_e; const BIGNUM *b_n, *b_e; #ifdef OPENSSL_1_1_API const BIGNUM *a_d, *b_d; RSA_get0_key(a->key, &a_n, &a_e, &a_d); RSA_get0_key(b->key, &b_n, &b_e, &b_d); #else a_n = a->key->n; a_e = a->key->e; b_n = b->key->n; b_e = b->key->e; #endif /* defined(OPENSSL_1_1_API) */ tor_assert(a_n != NULL && a_e != NULL); tor_assert(b_n != NULL && b_e != NULL); result = BN_cmp(a_n, b_n); if (result) return result; return BN_cmp(a_e, b_e); } /** Return the size of the public key modulus in env, in bytes. */ size_t crypto_pk_keysize(const crypto_pk_t *env) { tor_assert(env); tor_assert(env->key); return (size_t) RSA_size((RSA*)env->key); } /** Return the size of the public key modulus of env, in bits. */ int crypto_pk_num_bits(crypto_pk_t *env) { tor_assert(env); tor_assert(env->key); #ifdef OPENSSL_1_1_API /* It's so stupid that there's no other way to check that n is valid * before calling RSA_bits(). */ const BIGNUM *n, *e, *d; RSA_get0_key(env->key, &n, &e, &d); tor_assert(n != NULL); return RSA_bits(env->key); #else /* !defined(OPENSSL_1_1_API) */ tor_assert(env->key->n); return BN_num_bits(env->key->n); #endif /* defined(OPENSSL_1_1_API) */ } /** Increase the reference count of env, and return it. */ crypto_pk_t * crypto_pk_dup_key(crypto_pk_t *env) { tor_assert(env); tor_assert(env->key); env->refs++; return env; } /** Replace dest with src (private key only). (Dest must have a refcount * of 1) */ void crypto_pk_assign_private(crypto_pk_t *dest, const crypto_pk_t *src) { tor_assert(dest); tor_assert(dest->refs == 1); tor_assert(src); RSA_free(dest->key); dest->key = RSAPrivateKey_dup(src->key); } /** Replace dest with src (public key only). (Dest must have a refcount * of 1) */ void crypto_pk_assign_public(crypto_pk_t *dest, const crypto_pk_t *src) { tor_assert(dest); tor_assert(dest->refs == 1); tor_assert(src); RSA_free(dest->key); dest->key = RSAPublicKey_dup(src->key); } /** Make a real honest-to-goodness copy of env, and return it. * Returns NULL on failure. */ crypto_pk_t * crypto_pk_copy_full(crypto_pk_t *env) { RSA *new_key; int privatekey = 0; tor_assert(env); tor_assert(env->key); if (crypto_pk_key_is_private(env)) { new_key = RSAPrivateKey_dup(env->key); privatekey = 1; } else { new_key = RSAPublicKey_dup(env->key); } if (!new_key) { /* LCOV_EXCL_START * * We can't cause RSA*Key_dup() to fail, so we can't really test this. */ log_err(LD_CRYPTO, "Unable to duplicate a %s key: openssl failed.", privatekey?"private":"public"); crypto_openssl_log_errors(LOG_ERR, privatekey ? "Duplicating a private key" : "Duplicating a public key"); tor_fragile_assert(); return NULL; /* LCOV_EXCL_STOP */ } return crypto_new_pk_from_openssl_rsa_(new_key); } /** Encrypt fromlen bytes from from with the public key * in env, using the padding method padding. On success, * write the result to to, and return the number of bytes * written. On failure, return -1. * * tolen is the number of writable bytes in to, and must be * at least the length of the modulus of env. */ int crypto_pk_public_encrypt(crypto_pk_t *env, char *to, size_t tolen, const char *from, size_t fromlen, int padding) { int r; tor_assert(env); tor_assert(from); tor_assert(to); tor_assert(fromlen= crypto_pk_keysize(env)); r = RSA_public_encrypt((int)fromlen, (unsigned char*)from, (unsigned char*)to, env->key, crypto_get_rsa_padding(padding)); if (r<0) { crypto_openssl_log_errors(LOG_WARN, "performing RSA encryption"); return -1; } return r; } /** Decrypt fromlen bytes from from with the private key * in env, using the padding method padding. On success, * write the result to to, and return the number of bytes * written. On failure, return -1. * * tolen is the number of writable bytes in to, and must be * at least the length of the modulus of env. */ int crypto_pk_private_decrypt(crypto_pk_t *env, char *to, size_t tolen, const char *from, size_t fromlen, int padding, int warnOnFailure) { int r; tor_assert(env); tor_assert(from); tor_assert(to); tor_assert(env->key); tor_assert(fromlen= crypto_pk_keysize(env)); if (!crypto_pk_key_is_private(env)) /* Not a private key */ return -1; r = RSA_private_decrypt((int)fromlen, (unsigned char*)from, (unsigned char*)to, env->key, crypto_get_rsa_padding(padding)); if (r<0) { crypto_openssl_log_errors(warnOnFailure?LOG_WARN:LOG_DEBUG, "performing RSA decryption"); return -1; } return r; } /** Check the signature in from (fromlen bytes long) with the * public key in env, using PKCS1 padding. On success, write the * signed data to to, and return the number of bytes written. * On failure, return -1. * * tolen is the number of writable bytes in to, and must be * at least the length of the modulus of env. */ MOCK_IMPL(int, crypto_pk_public_checksig,(const crypto_pk_t *env, char *to, size_t tolen, const char *from, size_t fromlen)) { int r; tor_assert(env); tor_assert(from); tor_assert(to); tor_assert(fromlen < INT_MAX); tor_assert(tolen >= crypto_pk_keysize(env)); r = RSA_public_decrypt((int)fromlen, (unsigned char*)from, (unsigned char*)to, env->key, RSA_PKCS1_PADDING); if (r<0) { crypto_openssl_log_errors(LOG_INFO, "checking RSA signature"); return -1; } return r; } /** Sign fromlen bytes of data from from with the private key in * env, using PKCS1 padding. On success, write the signature to * to, and return the number of bytes written. On failure, return * -1. * * tolen is the number of writable bytes in to, and must be * at least the length of the modulus of env. */ int crypto_pk_private_sign(const crypto_pk_t *env, char *to, size_t tolen, const char *from, size_t fromlen) { int r; tor_assert(env); tor_assert(from); tor_assert(to); tor_assert(fromlen < INT_MAX); tor_assert(tolen >= crypto_pk_keysize(env)); if (!crypto_pk_key_is_private(env)) /* Not a private key */ return -1; r = RSA_private_encrypt((int)fromlen, (unsigned char*)from, (unsigned char*)to, (RSA*)env->key, RSA_PKCS1_PADDING); if (r<0) { crypto_openssl_log_errors(LOG_WARN, "generating RSA signature"); return -1; } return r; } /** ASN.1-encode the public portion of pk into dest. * Return -1 on error, or the number of characters used on success. */ int crypto_pk_asn1_encode(const crypto_pk_t *pk, char *dest, size_t dest_len) { int len; unsigned char *buf = NULL; len = i2d_RSAPublicKey(pk->key, &buf); if (len < 0 || buf == NULL) return -1; if ((size_t)len > dest_len || dest_len > SIZE_T_CEILING) { OPENSSL_free(buf); return -1; } /* We don't encode directly into 'dest', because that would be illegal * type-punning. (C99 is smarter than me, C99 is smarter than me...) */ memcpy(dest,buf,len); OPENSSL_free(buf); return len; } /** Decode an ASN.1-encoded public key from str; return the result on * success and NULL on failure. */ crypto_pk_t * crypto_pk_asn1_decode(const char *str, size_t len) { RSA *rsa; unsigned char *buf; const unsigned char *cp; cp = buf = tor_malloc(len); memcpy(buf,str,len); rsa = d2i_RSAPublicKey(NULL, &cp, len); tor_free(buf); if (!rsa) { crypto_openssl_log_errors(LOG_WARN,"decoding public key"); return NULL; } return crypto_new_pk_from_openssl_rsa_(rsa); } /** ASN.1-encode the private portion of pk into dest. * Return -1 on error, or the number of characters used on success. */ int crypto_pk_asn1_encode_private(const crypto_pk_t *pk, char *dest, size_t dest_len) { int len; unsigned char *buf = NULL; len = i2d_RSAPrivateKey(pk->key, &buf); if (len < 0 || buf == NULL) return -1; if ((size_t)len > dest_len || dest_len > SIZE_T_CEILING) { OPENSSL_free(buf); return -1; } /* We don't encode directly into 'dest', because that would be illegal * type-punning. (C99 is smarter than me, C99 is smarter than me...) */ memcpy(dest,buf,len); OPENSSL_free(buf); return len; } /** Check whether any component of a private key is too large in a way that * seems likely to make verification too expensive. Return true if it's too * long, and false otherwise. */ static bool rsa_private_key_too_long(RSA *rsa, int max_bits) { const BIGNUM *n, *e, *p, *q, *d, *dmp1, *dmq1, *iqmp; #ifdef OPENSSL_1_1_API #if OPENSSL_VERSION_NUMBER >= OPENSSL_V_SERIES(1,1,1) n = RSA_get0_n(rsa); e = RSA_get0_e(rsa); p = RSA_get0_p(rsa); q = RSA_get0_q(rsa); d = RSA_get0_d(rsa); dmp1 = RSA_get0_dmp1(rsa); dmq1 = RSA_get0_dmq1(rsa); iqmp = RSA_get0_iqmp(rsa); #else /* !(OPENSSL_VERSION_NUMBER >= OPENSSL_V_SERIES(1,1,1)) */ /* The accessors above did not exist in openssl 1.1.0. */ p = q = dmp1 = dmq1 = iqmp = NULL; RSA_get0_key(rsa, &n, &e, &d); #endif /* OPENSSL_VERSION_NUMBER >= OPENSSL_V_SERIES(1,1,1) */ if (RSA_bits(rsa) > max_bits) return true; #else /* !defined(OPENSSL_1_1_API) */ n = rsa->n; e = rsa->e; p = rsa->p; q = rsa->q; d = rsa->d; dmp1 = rsa->dmp1; dmq1 = rsa->dmq1; iqmp = rsa->iqmp; #endif /* defined(OPENSSL_1_1_API) */ if (n && BN_num_bits(n) > max_bits) return true; if (e && BN_num_bits(e) > max_bits) return true; if (p && BN_num_bits(p) > max_bits) return true; if (q && BN_num_bits(q) > max_bits) return true; if (d && BN_num_bits(d) > max_bits) return true; if (dmp1 && BN_num_bits(dmp1) > max_bits) return true; if (dmq1 && BN_num_bits(dmq1) > max_bits) return true; if (iqmp && BN_num_bits(iqmp) > max_bits) return true; return false; } /** Decode an ASN.1-encoded private key from str; return the result on * success and NULL on failure. * * If max_bits is nonnegative, reject any key longer than max_bits * without performing any expensive validation on it. */ crypto_pk_t * crypto_pk_asn1_decode_private(const char *str, size_t len, int max_bits) { RSA *rsa; unsigned char *buf; const unsigned char *cp; cp = buf = tor_malloc(len); memcpy(buf,str,len); rsa = d2i_RSAPrivateKey(NULL, &cp, len); tor_free(buf); if (!rsa) { crypto_openssl_log_errors(LOG_WARN,"decoding private key"); return NULL; } if (max_bits >= 0 && rsa_private_key_too_long(rsa, max_bits)) { log_info(LD_CRYPTO, "Private key longer than expected."); RSA_free(rsa); return NULL; } crypto_pk_t *result = crypto_new_pk_from_openssl_rsa_(rsa); if (! crypto_pk_is_valid_private_key(result)) { crypto_pk_free(result); return NULL; } return result; }