/* Copyright (c) 2001, Matej Pfajfar. * Copyright (c) 2001-2004, Roger Dingledine. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. * Copyright (c) 2007-2020, The Tor Project, Inc. */ /* See LICENSE for licensing information */ /** * \file crypto_digest_openssl.c * \brief Block of functions related with digest and xof utilities and * operations (OpenSSL specific implementations). **/ #include "lib/container/smartlist.h" #include "lib/crypt_ops/crypto_digest.h" #include "lib/crypt_ops/crypto_util.h" #include "lib/log/log.h" #include "lib/log/util_bug.h" #include "keccak-tiny/keccak-tiny.h" #include #include #include "lib/arch/bytes.h" #include "lib/crypt_ops/crypto_openssl_mgt.h" DISABLE_GCC_WARNING("-Wredundant-decls") #include #include ENABLE_GCC_WARNING("-Wredundant-decls") /* Crypto digest functions */ /** Compute the SHA1 digest of the len bytes on data stored in * m. Write the DIGEST_LEN byte result into digest. * Return 0 on success, -1 on failure. */ MOCK_IMPL(int, crypto_digest,(char *digest, const char *m, size_t len)) { tor_assert(m); tor_assert(digest); if (SHA1((const unsigned char*)m,len,(unsigned char*)digest) == NULL) { return -1; } return 0; } /** Compute a 256-bit digest of len bytes in data stored in m, * using the algorithm algorithm. Write the DIGEST_LEN256-byte result * into digest. Return 0 on success, -1 on failure. */ int crypto_digest256(char *digest, const char *m, size_t len, digest_algorithm_t algorithm) { tor_assert(m); tor_assert(digest); tor_assert(algorithm == DIGEST_SHA256 || algorithm == DIGEST_SHA3_256); int ret = 0; if (algorithm == DIGEST_SHA256) { ret = (SHA256((const uint8_t*)m,len,(uint8_t*)digest) != NULL); } else { #ifdef OPENSSL_HAS_SHA3 unsigned int dlen = DIGEST256_LEN; ret = EVP_Digest(m, len, (uint8_t*)digest, &dlen, EVP_sha3_256(), NULL); #else ret = (sha3_256((uint8_t *)digest, DIGEST256_LEN,(const uint8_t *)m, len) > -1); #endif /* defined(OPENSSL_HAS_SHA3) */ } if (!ret) return -1; return 0; } /** Compute a 512-bit digest of len bytes in data stored in m, * using the algorithm algorithm. Write the DIGEST_LEN512-byte result * into digest. Return 0 on success, -1 on failure. */ int crypto_digest512(char *digest, const char *m, size_t len, digest_algorithm_t algorithm) { tor_assert(m); tor_assert(digest); tor_assert(algorithm == DIGEST_SHA512 || algorithm == DIGEST_SHA3_512); int ret = 0; if (algorithm == DIGEST_SHA512) { ret = (SHA512((const unsigned char*)m,len,(unsigned char*)digest) != NULL); } else { #ifdef OPENSSL_HAS_SHA3 unsigned int dlen = DIGEST512_LEN; ret = EVP_Digest(m, len, (uint8_t*)digest, &dlen, EVP_sha3_512(), NULL); #else ret = (sha3_512((uint8_t*)digest, DIGEST512_LEN, (const uint8_t*)m, len) > -1); #endif /* defined(OPENSSL_HAS_SHA3) */ } if (!ret) return -1; return 0; } /** Intermediate information about the digest of a stream of data. */ struct crypto_digest_t { digest_algorithm_t algorithm; /**< Which algorithm is in use? */ /** State for the digest we're using. Only one member of the * union is usable, depending on the value of algorithm. Note also * that space for other members might not even be allocated! */ union { SHA_CTX sha1; /**< state for SHA1 */ SHA256_CTX sha2; /**< state for SHA256 */ SHA512_CTX sha512; /**< state for SHA512 */ #ifdef OPENSSL_HAS_SHA3 EVP_MD_CTX *md; #else keccak_state sha3; /**< state for SHA3-[256,512] */ #endif } d; }; #ifdef TOR_UNIT_TESTS digest_algorithm_t crypto_digest_get_algorithm(crypto_digest_t *digest) { tor_assert(digest); return digest->algorithm; } #endif /* defined(TOR_UNIT_TESTS) */ /** * Return the number of bytes we need to malloc in order to get a * crypto_digest_t for alg, or the number of bytes we need to wipe * when we free one. */ static size_t crypto_digest_alloc_bytes(digest_algorithm_t alg) { /** Helper: returns the number of bytes in the 'f' field of 'st' */ #define STRUCT_FIELD_SIZE(st, f) (sizeof( ((st*)0)->f )) /** Gives the length of crypto_digest_t through the end of the field 'd' */ #define END_OF_FIELD(f) (offsetof(crypto_digest_t, f) + \ STRUCT_FIELD_SIZE(crypto_digest_t, f)) switch (alg) { case DIGEST_SHA1: return END_OF_FIELD(d.sha1); case DIGEST_SHA256: return END_OF_FIELD(d.sha2); case DIGEST_SHA512: return END_OF_FIELD(d.sha512); #ifdef OPENSSL_HAS_SHA3 case DIGEST_SHA3_256: FALLTHROUGH; case DIGEST_SHA3_512: return END_OF_FIELD(d.md); #else case DIGEST_SHA3_256: FALLTHROUGH; case DIGEST_SHA3_512: return END_OF_FIELD(d.sha3); #endif /* defined(OPENSSL_HAS_SHA3) */ default: tor_assert(0); // LCOV_EXCL_LINE return 0; // LCOV_EXCL_LINE } #undef END_OF_FIELD #undef STRUCT_FIELD_SIZE } /** * Internal function: create and return a new digest object for 'algorithm'. * Does not typecheck the algorithm. */ static crypto_digest_t * crypto_digest_new_internal(digest_algorithm_t algorithm) { crypto_digest_t *r = tor_malloc(crypto_digest_alloc_bytes(algorithm)); r->algorithm = algorithm; switch (algorithm) { case DIGEST_SHA1: SHA1_Init(&r->d.sha1); break; case DIGEST_SHA256: SHA256_Init(&r->d.sha2); break; case DIGEST_SHA512: SHA512_Init(&r->d.sha512); break; #ifdef OPENSSL_HAS_SHA3 case DIGEST_SHA3_256: r->d.md = EVP_MD_CTX_new(); if (!EVP_DigestInit(r->d.md, EVP_sha3_256())) { crypto_digest_free(r); return NULL; } break; case DIGEST_SHA3_512: r->d.md = EVP_MD_CTX_new(); if (!EVP_DigestInit(r->d.md, EVP_sha3_512())) { crypto_digest_free(r); return NULL; } break; #else /* !defined(OPENSSL_HAS_SHA3) */ case DIGEST_SHA3_256: keccak_digest_init(&r->d.sha3, 256); break; case DIGEST_SHA3_512: keccak_digest_init(&r->d.sha3, 512); break; #endif /* defined(OPENSSL_HAS_SHA3) */ default: tor_assert_unreached(); } return r; } /** Allocate and return a new digest object to compute SHA1 digests. */ crypto_digest_t * crypto_digest_new(void) { return crypto_digest_new_internal(DIGEST_SHA1); } /** Allocate and return a new digest object to compute 256-bit digests * using algorithm. * * C_RUST_COUPLED: `external::crypto_digest::crypto_digest256_new` * C_RUST_COUPLED: `crypto::digest::Sha256::default` */ crypto_digest_t * crypto_digest256_new(digest_algorithm_t algorithm) { tor_assert(algorithm == DIGEST_SHA256 || algorithm == DIGEST_SHA3_256); return crypto_digest_new_internal(algorithm); } /** Allocate and return a new digest object to compute 512-bit digests * using algorithm. */ crypto_digest_t * crypto_digest512_new(digest_algorithm_t algorithm) { tor_assert(algorithm == DIGEST_SHA512 || algorithm == DIGEST_SHA3_512); return crypto_digest_new_internal(algorithm); } /** Deallocate a digest object. */ void crypto_digest_free_(crypto_digest_t *digest) { if (!digest) return; #ifdef OPENSSL_HAS_SHA3 if (digest->algorithm == DIGEST_SHA3_256 || digest->algorithm == DIGEST_SHA3_512) { if (digest->d.md) { EVP_MD_CTX_free(digest->d.md); } } #endif /* defined(OPENSSL_HAS_SHA3) */ size_t bytes = crypto_digest_alloc_bytes(digest->algorithm); memwipe(digest, 0, bytes); tor_free(digest); } /** Add len bytes from data to the digest object. * * C_RUST_COUPLED: `external::crypto_digest::crypto_digest_add_bytess` * C_RUST_COUPLED: `crypto::digest::Sha256::process` */ void crypto_digest_add_bytes(crypto_digest_t *digest, const char *data, size_t len) { tor_assert(digest); tor_assert(data); /* Using the SHA*_*() calls directly means we don't support doing * SHA in hardware. But so far the delay of getting the question * to the hardware, and hearing the answer, is likely higher than * just doing it ourselves. Hashes are fast. */ switch (digest->algorithm) { case DIGEST_SHA1: SHA1_Update(&digest->d.sha1, (void*)data, len); break; case DIGEST_SHA256: SHA256_Update(&digest->d.sha2, (void*)data, len); break; case DIGEST_SHA512: SHA512_Update(&digest->d.sha512, (void*)data, len); break; #ifdef OPENSSL_HAS_SHA3 case DIGEST_SHA3_256: FALLTHROUGH; case DIGEST_SHA3_512: { int r = EVP_DigestUpdate(digest->d.md, data, len); tor_assert(r); } break; #else /* !defined(OPENSSL_HAS_SHA3) */ case DIGEST_SHA3_256: FALLTHROUGH; case DIGEST_SHA3_512: keccak_digest_update(&digest->d.sha3, (const uint8_t *)data, len); break; #endif /* defined(OPENSSL_HAS_SHA3) */ default: /* LCOV_EXCL_START */ tor_fragile_assert(); break; /* LCOV_EXCL_STOP */ } } /** Compute the hash of the data that has been passed to the digest * object; write the first out_len bytes of the result to out. * out_len must be \<= DIGEST512_LEN. * * C_RUST_COUPLED: `external::crypto_digest::crypto_digest_get_digest` * C_RUST_COUPLED: `impl digest::FixedOutput for Sha256` */ void crypto_digest_get_digest(crypto_digest_t *digest, char *out, size_t out_len) { unsigned char r[DIGEST512_LEN]; tor_assert(digest); tor_assert(out); tor_assert(out_len <= crypto_digest_algorithm_get_length(digest->algorithm)); /* The SHA-3 code handles copying into a temporary ctx, and also can handle * short output buffers by truncating appropriately. */ if (digest->algorithm == DIGEST_SHA3_256 || digest->algorithm == DIGEST_SHA3_512) { #ifdef OPENSSL_HAS_SHA3 unsigned dlen = (unsigned) crypto_digest_algorithm_get_length(digest->algorithm); EVP_MD_CTX *tmp = EVP_MD_CTX_new(); EVP_MD_CTX_copy(tmp, digest->d.md); memset(r, 0xff, sizeof(r)); int res = EVP_DigestFinal(tmp, r, &dlen); EVP_MD_CTX_free(tmp); tor_assert(res == 1); goto done; #else /* !defined(OPENSSL_HAS_SHA3) */ /* Tiny-Keccak handles copying into a temporary ctx, and also can handle * short output buffers by truncating appropriately. */ keccak_digest_sum(&digest->d.sha3, (uint8_t *)out, out_len); return; #endif /* defined(OPENSSL_HAS_SHA3) */ } const size_t alloc_bytes = crypto_digest_alloc_bytes(digest->algorithm); crypto_digest_t tmpenv; /* memcpy into a temporary ctx, since SHA*_Final clears the context */ memcpy(&tmpenv, digest, alloc_bytes); switch (digest->algorithm) { case DIGEST_SHA1: SHA1_Final(r, &tmpenv.d.sha1); break; case DIGEST_SHA256: SHA256_Final(r, &tmpenv.d.sha2); break; case DIGEST_SHA512: SHA512_Final(r, &tmpenv.d.sha512); break; //LCOV_EXCL_START case DIGEST_SHA3_256: FALLTHROUGH; case DIGEST_SHA3_512: default: log_warn(LD_BUG, "Handling unexpected algorithm %d", digest->algorithm); /* This is fatal, because it should never happen. */ tor_assert_unreached(); break; //LCOV_EXCL_STOP } #ifdef OPENSSL_HAS_SHA3 done: #endif memcpy(out, r, out_len); memwipe(r, 0, sizeof(r)); } /** Allocate and return a new digest object with the same state as * digest * * C_RUST_COUPLED: `external::crypto_digest::crypto_digest_dup` * C_RUST_COUPLED: `impl Clone for crypto::digest::Sha256` */ crypto_digest_t * crypto_digest_dup(const crypto_digest_t *digest) { tor_assert(digest); const size_t alloc_bytes = crypto_digest_alloc_bytes(digest->algorithm); crypto_digest_t *result = tor_memdup(digest, alloc_bytes); #ifdef OPENSSL_HAS_SHA3 if (digest->algorithm == DIGEST_SHA3_256 || digest->algorithm == DIGEST_SHA3_512) { result->d.md = EVP_MD_CTX_new(); EVP_MD_CTX_copy(result->d.md, digest->d.md); } #endif /* defined(OPENSSL_HAS_SHA3) */ return result; } /** Temporarily save the state of digest in checkpoint. * Asserts that digest is a SHA1 digest object. */ void crypto_digest_checkpoint(crypto_digest_checkpoint_t *checkpoint, const crypto_digest_t *digest) { const size_t bytes = crypto_digest_alloc_bytes(digest->algorithm); tor_assert(bytes <= sizeof(checkpoint->mem)); memcpy(checkpoint->mem, digest, bytes); } /** Restore the state of digest from checkpoint. * Asserts that digest is a SHA1 digest object. Requires that the * state was previously stored with crypto_digest_checkpoint() */ void crypto_digest_restore(crypto_digest_t *digest, const crypto_digest_checkpoint_t *checkpoint) { const size_t bytes = crypto_digest_alloc_bytes(digest->algorithm); memcpy(digest, checkpoint->mem, bytes); } /** Replace the state of the digest object into with the state * of the digest object from. Requires that 'into' and 'from' * have the same digest type. */ void crypto_digest_assign(crypto_digest_t *into, const crypto_digest_t *from) { tor_assert(into); tor_assert(from); tor_assert(into->algorithm == from->algorithm); const size_t alloc_bytes = crypto_digest_alloc_bytes(from->algorithm); #ifdef OPENSSL_HAS_SHA3 if (from->algorithm == DIGEST_SHA3_256 || from->algorithm == DIGEST_SHA3_512) { EVP_MD_CTX_copy(into->d.md, from->d.md); return; } #endif /* defined(OPENSSL_HAS_SHA3) */ memcpy(into,from,alloc_bytes); } /** Given a list of strings in lst, set the len_out-byte digest * at digest_out to the hash of the concatenation of those strings, * plus the optional string append, computed with the algorithm * alg. * out_len must be \<= DIGEST512_LEN. */ void crypto_digest_smartlist(char *digest_out, size_t len_out, const smartlist_t *lst, const char *append, digest_algorithm_t alg) { crypto_digest_smartlist_prefix(digest_out, len_out, NULL, lst, append, alg); } /** Given a list of strings in lst, set the len_out-byte digest * at digest_out to the hash of the concatenation of: the * optional string prepend, those strings, * and the optional string append, computed with the algorithm * alg. * len_out must be \<= DIGEST512_LEN. */ void crypto_digest_smartlist_prefix(char *digest_out, size_t len_out, const char *prepend, const smartlist_t *lst, const char *append, digest_algorithm_t alg) { crypto_digest_t *d = crypto_digest_new_internal(alg); if (prepend) crypto_digest_add_bytes(d, prepend, strlen(prepend)); SMARTLIST_FOREACH(lst, const char *, cp, crypto_digest_add_bytes(d, cp, strlen(cp))); if (append) crypto_digest_add_bytes(d, append, strlen(append)); crypto_digest_get_digest(d, digest_out, len_out); crypto_digest_free(d); } /** Compute the HMAC-SHA-256 of the msg_len bytes in msg, using * the key of length key_len. Store the DIGEST256_LEN-byte * result in hmac_out. Asserts on failure. */ void crypto_hmac_sha256(char *hmac_out, const char *key, size_t key_len, const char *msg, size_t msg_len) { /* If we've got OpenSSL >=0.9.8 we can use its hmac implementation. */ tor_assert(key_len < INT_MAX); tor_assert(msg_len < INT_MAX); tor_assert(hmac_out); unsigned char *rv = NULL; rv = HMAC(EVP_sha256(), key, (int)key_len, (unsigned char*)msg, (int)msg_len, (unsigned char*)hmac_out, NULL); tor_assert(rv); }