/* Copyright (c) 2001 Matej Pfajfar. * Copyright (c) 2001-2004, Roger Dingledine. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. * Copyright (c) 2007-2021, The Tor Project, Inc. */ /* See LICENSE for licensing information */ /** * \file buffers.c * \brief Implements a generic buffer interface. * * A buf_t is a (fairly) opaque byte-oriented FIFO that can read to or flush * from memory, sockets, file descriptors, TLS connections, or another buf_t. * Buffers are implemented as linked lists of memory chunks. * * All socket-backed and TLS-based connection_t objects have a pair of * buffers: one for incoming data, and one for outcoming data. These are fed * and drained from functions in connection.c, triggered by events that are * monitored in main.c. * * This module only handles the buffer implementation itself. To use a buffer * with the network, a compressor, or a TLS connection, see the other buffer_* * modules. **/ #define BUFFERS_PRIVATE #include "orconfig.h" #include #include "lib/buf/buffers.h" #include "lib/cc/torint.h" #include "lib/log/log.h" #include "lib/log/util_bug.h" #include "lib/ctime/di_ops.h" #include "lib/malloc/malloc.h" #include "lib/string/printf.h" #include "lib/time/compat_time.h" #ifdef HAVE_UNISTD_H #include #endif #include #include //#define PARANOIA #ifdef PARANOIA /** Helper: If PARANOIA is defined, assert that the buffer in local variable * buf is well-formed. */ #define check() STMT_BEGIN buf_assert_ok(buf); STMT_END #else #define check() STMT_NIL #endif /* defined(PARANOIA) */ /* Implementation notes: * * After flirting with memmove, and dallying with ring-buffers, we're finally * getting up to speed with the 1970s and implementing buffers as a linked * list of small chunks. Each buffer has such a list; data is removed from * the head of the list, and added at the tail. The list is singly linked, * and the buffer keeps a pointer to the head and the tail. * * Every chunk, except the tail, contains at least one byte of data. Data in * each chunk is contiguous. * * When you need to treat the first N characters on a buffer as a contiguous * string, use the buf_pullup function to make them so. Don't do this more * than necessary. * * The major free Unix kernels have handled buffers like this since, like, * forever. */ /* Chunk manipulation functions */ #define CHUNK_HEADER_LEN offsetof(chunk_t, mem[0]) /* We leave this many NUL bytes at the end of the buffer. */ #ifdef DISABLE_MEMORY_SENTINELS #define SENTINEL_LEN 0 #else #define SENTINEL_LEN 4 #endif /* Header size plus NUL bytes at the end */ #define CHUNK_OVERHEAD (CHUNK_HEADER_LEN + SENTINEL_LEN) /** Return the number of bytes needed to allocate a chunk to hold * memlen bytes. */ #define CHUNK_ALLOC_SIZE(memlen) (CHUNK_OVERHEAD + (memlen)) /** Return the number of usable bytes in a chunk allocated with * malloc(memlen). */ #define CHUNK_SIZE_WITH_ALLOC(memlen) ((memlen) - CHUNK_OVERHEAD) #define DEBUG_SENTINEL #if defined(DEBUG_SENTINEL) && !defined(DISABLE_MEMORY_SENTINELS) #define DBG_S(s) s #else #define DBG_S(s) (void)0 #endif #ifndef COCCI #ifdef DISABLE_MEMORY_SENTINELS #define CHUNK_SET_SENTINEL(chunk, alloclen) STMT_NIL #else #define CHUNK_SET_SENTINEL(chunk, alloclen) do { \ uint8_t *a = (uint8_t*) &(chunk)->mem[(chunk)->memlen]; \ DBG_S(uint8_t *b = &((uint8_t*)(chunk))[(alloclen)-SENTINEL_LEN]); \ DBG_S(tor_assert(a == b)); \ memset(a,0,SENTINEL_LEN); \ } while (0) #endif /* defined(DISABLE_MEMORY_SENTINELS) */ #endif /* !defined(COCCI) */ /** Move all bytes stored in chunk to the front of chunk->mem, * to free up space at the end. */ static inline void chunk_repack(chunk_t *chunk) { if (chunk->datalen && chunk->data != &chunk->mem[0]) { memmove(chunk->mem, chunk->data, chunk->datalen); } chunk->data = &chunk->mem[0]; } /** Keep track of total size of allocated chunks for consistency asserts */ static size_t total_bytes_allocated_in_chunks = 0; static void buf_chunk_free_unchecked(chunk_t *chunk) { if (!chunk) return; #ifdef DEBUG_CHUNK_ALLOC tor_assert(CHUNK_ALLOC_SIZE(chunk->memlen) == chunk->DBG_alloc); #endif tor_assert(total_bytes_allocated_in_chunks >= CHUNK_ALLOC_SIZE(chunk->memlen)); total_bytes_allocated_in_chunks -= CHUNK_ALLOC_SIZE(chunk->memlen); tor_free(chunk); } static inline chunk_t * chunk_new_with_alloc_size(size_t alloc) { chunk_t *ch; ch = tor_malloc(alloc); ch->next = NULL; ch->datalen = 0; #ifdef DEBUG_CHUNK_ALLOC ch->DBG_alloc = alloc; #endif ch->memlen = CHUNK_SIZE_WITH_ALLOC(alloc); total_bytes_allocated_in_chunks += alloc; ch->data = &ch->mem[0]; CHUNK_SET_SENTINEL(ch, alloc); return ch; } /** Expand chunk until it can hold sz bytes, and return a * new pointer to chunk. Old pointers are no longer valid. */ static inline chunk_t * chunk_grow(chunk_t *chunk, size_t sz) { ptrdiff_t offset; const size_t memlen_orig = chunk->memlen; const size_t orig_alloc = CHUNK_ALLOC_SIZE(memlen_orig); const size_t new_alloc = CHUNK_ALLOC_SIZE(sz); tor_assert(sz > chunk->memlen); offset = chunk->data - chunk->mem; chunk = tor_realloc(chunk, new_alloc); chunk->memlen = sz; chunk->data = chunk->mem + offset; #ifdef DEBUG_CHUNK_ALLOC tor_assert(chunk->DBG_alloc == orig_alloc); chunk->DBG_alloc = new_alloc; #endif total_bytes_allocated_in_chunks += new_alloc - orig_alloc; CHUNK_SET_SENTINEL(chunk, new_alloc); return chunk; } /** Every chunk should take up at least this many bytes. */ #define MIN_CHUNK_ALLOC 256 /** No chunk should take up more than this many bytes. */ #define MAX_CHUNK_ALLOC 65536 /** Return the allocation size we'd like to use to hold target * bytes. */ size_t buf_preferred_chunk_size(size_t target) { tor_assert(target <= SIZE_T_CEILING - CHUNK_OVERHEAD); if (CHUNK_ALLOC_SIZE(target) >= MAX_CHUNK_ALLOC) return CHUNK_ALLOC_SIZE(target); size_t sz = MIN_CHUNK_ALLOC; while (CHUNK_SIZE_WITH_ALLOC(sz) < target) { sz <<= 1; } return sz; } /** Collapse data from the first N chunks from buf into buf->head, * growing it as necessary, until buf->head has the first bytes bytes * of data from the buffer, or until buf->head has all the data in buf. * * Set *head_out to point to the first byte of available data, and * *len_out to the number of bytes of data available at * *head_out. Note that *len_out may be more or less than * bytes, depending on the number of bytes available. */ void buf_pullup(buf_t *buf, size_t bytes, const char **head_out, size_t *len_out) { chunk_t *dest, *src; size_t capacity; if (!buf->head) { *head_out = NULL; *len_out = 0; return; } check(); if (buf->datalen < bytes) bytes = buf->datalen; capacity = bytes; if (buf->head->datalen >= bytes) { *head_out = buf->head->data; *len_out = buf->head->datalen; return; } if (buf->head->memlen >= capacity) { /* We don't need to grow the first chunk, but we might need to repack it.*/ size_t needed = capacity - buf->head->datalen; if (CHUNK_REMAINING_CAPACITY(buf->head) < needed) chunk_repack(buf->head); tor_assert(CHUNK_REMAINING_CAPACITY(buf->head) >= needed); } else { chunk_t *newhead; size_t newsize; /* We need to grow the chunk. */ chunk_repack(buf->head); newsize = CHUNK_SIZE_WITH_ALLOC(buf_preferred_chunk_size(capacity)); newhead = chunk_grow(buf->head, newsize); tor_assert(newhead->memlen >= capacity); if (newhead != buf->head) { if (buf->tail == buf->head) buf->tail = newhead; buf->head = newhead; } } dest = buf->head; while (dest->datalen < bytes) { size_t n = bytes - dest->datalen; src = dest->next; tor_assert(src); if (n >= src->datalen) { memcpy(CHUNK_WRITE_PTR(dest), src->data, src->datalen); dest->datalen += src->datalen; dest->next = src->next; if (buf->tail == src) buf->tail = dest; buf_chunk_free_unchecked(src); } else { memcpy(CHUNK_WRITE_PTR(dest), src->data, n); dest->datalen += n; src->data += n; src->datalen -= n; tor_assert(dest->datalen == bytes); } } check(); *head_out = buf->head->data; *len_out = buf->head->datalen; } #ifdef TOR_UNIT_TESTS /* Write sz bytes from cp into a newly allocated buffer buf. * Returns NULL when passed a NULL cp or zero sz. * Asserts on failure: only for use in unit tests. * buf must be freed using buf_free(). */ buf_t * buf_new_with_data(const char *cp, size_t sz) { /* Validate arguments */ if (!cp || sz <= 0 || sz > BUF_MAX_LEN) { return NULL; } tor_assert(sz < SSIZE_T_CEILING); /* Allocate a buffer */ buf_t *buf = buf_new_with_capacity(sz); tor_assert(buf); buf_assert_ok(buf); tor_assert(!buf->head); /* Allocate a chunk that is sz bytes long */ buf->head = chunk_new_with_alloc_size(CHUNK_ALLOC_SIZE(sz)); buf->tail = buf->head; tor_assert(buf->head); buf_assert_ok(buf); tor_assert(buf_allocation(buf) >= sz); /* Copy the data and size the buffers */ tor_assert(sz <= buf_slack(buf)); tor_assert(sz <= CHUNK_REMAINING_CAPACITY(buf->head)); memcpy(&buf->head->mem[0], cp, sz); buf->datalen = sz; buf->head->datalen = sz; buf->head->data = &buf->head->mem[0]; buf_assert_ok(buf); /* Make sure everything is large enough */ tor_assert(buf_allocation(buf) >= sz); tor_assert(buf_allocation(buf) >= buf_datalen(buf) + buf_slack(buf)); /* Does the buffer implementation allocate more than the requested size? * (for example, by rounding up). If so, these checks will fail. */ tor_assert(buf_datalen(buf) == sz); tor_assert(buf_slack(buf) == 0); return buf; } #endif /* defined(TOR_UNIT_TESTS) */ /** Remove the first n bytes from buf. */ void buf_drain(buf_t *buf, size_t n) { tor_assert(buf->datalen >= n); while (n) { tor_assert(buf->head); if (buf->head->datalen > n) { buf->head->datalen -= n; buf->head->data += n; buf->datalen -= n; return; } else { chunk_t *victim = buf->head; n -= victim->datalen; buf->datalen -= victim->datalen; buf->head = victim->next; if (buf->tail == victim) buf->tail = NULL; buf_chunk_free_unchecked(victim); } } check(); } /** Create and return a new buf with default chunk capacity size. */ buf_t * buf_new_with_capacity(size_t size) { buf_t *b = buf_new(); b->default_chunk_size = buf_preferred_chunk_size(size); return b; } /** Allocate and return a new buffer with default capacity. */ buf_t * buf_new(void) { buf_t *buf = tor_malloc_zero(sizeof(buf_t)); buf->magic = BUFFER_MAGIC; buf->default_chunk_size = 4096; return buf; } size_t buf_get_default_chunk_size(const buf_t *buf) { return buf->default_chunk_size; } /** Remove all data from buf. */ void buf_clear(buf_t *buf) { chunk_t *chunk, *next; buf->datalen = 0; for (chunk = buf->head; chunk; chunk = next) { next = chunk->next; buf_chunk_free_unchecked(chunk); } buf->head = buf->tail = NULL; } /** Return the number of bytes stored in buf */ MOCK_IMPL(size_t, buf_datalen, (const buf_t *buf)) { return buf->datalen; } /** Return the total length of all chunks used in buf. */ size_t buf_allocation(const buf_t *buf) { size_t total = 0; const chunk_t *chunk; for (chunk = buf->head; chunk; chunk = chunk->next) { total += CHUNK_ALLOC_SIZE(chunk->memlen); } return total; } /** Return the number of bytes that can be added to buf without * performing any additional allocation. */ size_t buf_slack(const buf_t *buf) { if (!buf->tail) return 0; else return CHUNK_REMAINING_CAPACITY(buf->tail); } /** Release storage held by buf. */ void buf_free_(buf_t *buf) { if (!buf) return; buf_clear(buf); buf->magic = 0xdeadbeef; tor_free(buf); } /** Return a new copy of in_chunk */ static chunk_t * chunk_copy(const chunk_t *in_chunk) { chunk_t *newch = tor_memdup(in_chunk, CHUNK_ALLOC_SIZE(in_chunk->memlen)); total_bytes_allocated_in_chunks += CHUNK_ALLOC_SIZE(in_chunk->memlen); #ifdef DEBUG_CHUNK_ALLOC newch->DBG_alloc = CHUNK_ALLOC_SIZE(in_chunk->memlen); #endif newch->next = NULL; if (in_chunk->data) { ptrdiff_t offset = in_chunk->data - in_chunk->mem; newch->data = newch->mem + offset; } return newch; } /** Return a new copy of buf */ buf_t * buf_copy(const buf_t *buf) { chunk_t *ch; buf_t *out = buf_new(); out->default_chunk_size = buf->default_chunk_size; for (ch = buf->head; ch; ch = ch->next) { chunk_t *newch = chunk_copy(ch); if (out->tail) { out->tail->next = newch; out->tail = newch; } else { out->head = out->tail = newch; } } out->datalen = buf->datalen; return out; } /** Append a new chunk with enough capacity to hold capacity bytes to * the tail of buf. If capped, don't allocate a chunk bigger * than MAX_CHUNK_ALLOC. */ chunk_t * buf_add_chunk_with_capacity(buf_t *buf, size_t capacity, int capped) { chunk_t *chunk; if (CHUNK_ALLOC_SIZE(capacity) < buf->default_chunk_size) { chunk = chunk_new_with_alloc_size(buf->default_chunk_size); } else if (capped && CHUNK_ALLOC_SIZE(capacity) > MAX_CHUNK_ALLOC) { chunk = chunk_new_with_alloc_size(MAX_CHUNK_ALLOC); } else { chunk = chunk_new_with_alloc_size(buf_preferred_chunk_size(capacity)); } chunk->inserted_time = monotime_coarse_get_stamp(); if (buf->tail) { tor_assert(buf->head); buf->tail->next = chunk; buf->tail = chunk; } else { tor_assert(!buf->head); buf->head = buf->tail = chunk; } check(); return chunk; } /** Return the age of the oldest chunk in the buffer buf, in * timestamp units. Requires the current monotonic timestamp as its * input now. */ uint32_t buf_get_oldest_chunk_timestamp(const buf_t *buf, uint32_t now) { if (buf->head) { return now - buf->head->inserted_time; } else { return 0; } } size_t buf_get_total_allocation(void) { return total_bytes_allocated_in_chunks; } /** Append string_len bytes from string to the end of * buf. * * Return the new length of the buffer on success, -1 on failure. */ int buf_add(buf_t *buf, const char *string, size_t string_len) { if (!string_len) return (int)buf->datalen; check(); if (BUG(buf->datalen > BUF_MAX_LEN)) return -1; if (BUG(buf->datalen > BUF_MAX_LEN - string_len)) return -1; while (string_len) { size_t copy; if (!buf->tail || !CHUNK_REMAINING_CAPACITY(buf->tail)) buf_add_chunk_with_capacity(buf, string_len, 1); copy = CHUNK_REMAINING_CAPACITY(buf->tail); if (copy > string_len) copy = string_len; memcpy(CHUNK_WRITE_PTR(buf->tail), string, copy); string_len -= copy; string += copy; buf->datalen += copy; buf->tail->datalen += copy; } check(); tor_assert(buf->datalen <= BUF_MAX_LEN); return (int)buf->datalen; } /** Add a nul-terminated string to buf, not including the * terminating NUL. */ void buf_add_string(buf_t *buf, const char *string) { buf_add(buf, string, strlen(string)); } /** As tor_snprintf, but write the results into a buf_t */ void buf_add_printf(buf_t *buf, const char *format, ...) { va_list ap; va_start(ap,format); buf_add_vprintf(buf, format, ap); va_end(ap); } /** As tor_vsnprintf, but write the results into a buf_t. */ void buf_add_vprintf(buf_t *buf, const char *format, va_list args) { /* XXXX Faster implementations are easy enough, but let's optimize later */ char *tmp; tor_vasprintf(&tmp, format, args); tor_assert(tmp != NULL); buf_add(buf, tmp, strlen(tmp)); tor_free(tmp); } /** Return a heap-allocated string containing the contents of buf, plus * a NUL byte. If sz_out is provided, set *sz_out to the length * of the returned string, not including the terminating NUL. */ char * buf_extract(buf_t *buf, size_t *sz_out) { tor_assert(buf); size_t sz = buf_datalen(buf); char *result; result = tor_malloc(sz+1); buf_peek(buf, result, sz); result[sz] = 0; if (sz_out) *sz_out = sz; return result; } /** Helper: copy the first string_len bytes from buf * onto string. */ void buf_peek(const buf_t *buf, char *string, size_t string_len) { chunk_t *chunk; tor_assert(string); /* make sure we don't ask for too much */ tor_assert(string_len <= buf->datalen); /* buf_assert_ok(buf); */ chunk = buf->head; while (string_len) { size_t copy = string_len; tor_assert(chunk); if (chunk->datalen < copy) copy = chunk->datalen; memcpy(string, chunk->data, copy); string_len -= copy; string += copy; chunk = chunk->next; } } /** Remove string_len bytes from the front of buf, and store * them into string. Return the new buffer size. string_len * must be \<= the number of bytes on the buffer. */ int buf_get_bytes(buf_t *buf, char *string, size_t string_len) { /* There must be string_len bytes in buf; write them onto string, * then memmove buf back (that is, remove them from buf). * * Return the number of bytes still on the buffer. */ check(); buf_peek(buf, string, string_len); buf_drain(buf, string_len); check(); tor_assert(buf->datalen <= BUF_MAX_LEN); return (int)buf->datalen; } /** Move up to *buf_flushlen bytes from buf_in to * buf_out, and modify *buf_flushlen appropriately. * Return the number of bytes actually copied. */ int buf_move_to_buf(buf_t *buf_out, buf_t *buf_in, size_t *buf_flushlen) { /* We can do way better here, but this doesn't turn up in any profiles. */ char b[4096]; size_t cp, len; if (BUG(buf_out->datalen > BUF_MAX_LEN || *buf_flushlen > BUF_MAX_LEN)) return -1; if (BUG(buf_out->datalen > BUF_MAX_LEN - *buf_flushlen)) return -1; len = *buf_flushlen; if (len > buf_in->datalen) len = buf_in->datalen; cp = len; /* Remember the number of bytes we intend to copy. */ tor_assert(cp <= BUF_MAX_LEN); while (len) { /* This isn't the most efficient implementation one could imagine, since * it does two copies instead of 1, but I kinda doubt that this will be * critical path. */ size_t n = len > sizeof(b) ? sizeof(b) : len; buf_get_bytes(buf_in, b, n); buf_add(buf_out, b, n); len -= n; } *buf_flushlen -= cp; return (int)cp; } /** Moves all data from buf_in to buf_out, without copying. * Return the number of bytes that were moved. */ size_t buf_move_all(buf_t *buf_out, buf_t *buf_in) { tor_assert(buf_out); if (!buf_in) return 0; if (buf_datalen(buf_in) == 0) return 0; if (BUG(buf_out->datalen > BUF_MAX_LEN || buf_in->datalen > BUF_MAX_LEN)) return 0; if (BUG(buf_out->datalen > BUF_MAX_LEN - buf_in->datalen)) return 0; size_t n_bytes_moved = buf_in->datalen; if (buf_out->head == NULL) { buf_out->head = buf_in->head; buf_out->tail = buf_in->tail; } else { buf_out->tail->next = buf_in->head; buf_out->tail = buf_in->tail; } buf_out->datalen += buf_in->datalen; buf_in->head = buf_in->tail = NULL; buf_in->datalen = 0; return n_bytes_moved; } /** Internal structure: represents a position in a buffer. */ typedef struct buf_pos_t { const chunk_t *chunk; /**< Which chunk are we pointing to? */ ptrdiff_t pos;/**< Which character inside the chunk's data are we pointing * to? */ size_t chunk_pos; /**< Total length of all previous chunks. */ } buf_pos_t; /** Initialize out to point to the first character of buf.*/ static void buf_pos_init(const buf_t *buf, buf_pos_t *out) { out->chunk = buf->head; out->pos = 0; out->chunk_pos = 0; } /** Advance out to the first appearance of ch at the current * position of out, or later. Return -1 if no instances are found; * otherwise returns the absolute position of the character. */ static ptrdiff_t buf_find_pos_of_char(char ch, buf_pos_t *out) { const chunk_t *chunk; ptrdiff_t pos; tor_assert(out); if (out->chunk) { if (out->chunk->datalen) { tor_assert(out->pos < (ptrdiff_t)out->chunk->datalen); } else { tor_assert(out->pos == 0); } } pos = out->pos; for (chunk = out->chunk; chunk; chunk = chunk->next) { char *cp = memchr(chunk->data+pos, ch, chunk->datalen - pos); if (cp) { out->chunk = chunk; tor_assert(cp - chunk->data <= BUF_MAX_LEN); out->pos = (int)(cp - chunk->data); return out->chunk_pos + out->pos; } else { out->chunk_pos += chunk->datalen; pos = 0; } } return -1; } /** Advance pos by a single character, if there are any more characters * in the buffer. Returns 0 on success, -1 on failure. */ static inline int buf_pos_inc(buf_pos_t *pos) { tor_assert(pos->pos < BUF_MAX_LEN); ++pos->pos; if (pos->pos == (ptrdiff_t)pos->chunk->datalen) { if (!pos->chunk->next) return -1; pos->chunk_pos += pos->chunk->datalen; pos->chunk = pos->chunk->next; pos->pos = 0; } return 0; } /** Return true iff the n-character string in s appears * (verbatim) at pos. */ static int buf_matches_at_pos(const buf_pos_t *pos, const char *s, size_t n) { buf_pos_t p; if (!n) return 1; memcpy(&p, pos, sizeof(p)); while (1) { char ch = p.chunk->data[p.pos]; if (ch != *s) return 0; ++s; /* If we're out of characters that don't match, we match. Check this * _before_ we test incrementing pos, in case we're at the end of the * string. */ if (--n == 0) return 1; if (buf_pos_inc(&p)<0) return 0; } } /** Return the first position in buf at which the n-character * string s occurs, or -1 if it does not occur. */ int buf_find_string_offset(const buf_t *buf, const char *s, size_t n) { buf_pos_t pos; buf_pos_init(buf, &pos); while (buf_find_pos_of_char(*s, &pos) >= 0) { if (buf_matches_at_pos(&pos, s, n)) { tor_assert(pos.chunk_pos + pos.pos <= BUF_MAX_LEN); return (int)(pos.chunk_pos + pos.pos); } else { if (buf_pos_inc(&pos)<0) return -1; } } return -1; } /** Return 1 iff buf starts with cmd. cmd must be a null * terminated string, of no more than PEEK_BUF_STARTSWITH_MAX bytes. */ int buf_peek_startswith(const buf_t *buf, const char *cmd) { char tmp[PEEK_BUF_STARTSWITH_MAX]; size_t clen = strlen(cmd); if (clen == 0) return 1; if (BUG(clen > sizeof(tmp))) return 0; if (buf->datalen < clen) return 0; buf_peek(buf, tmp, clen); return fast_memeq(tmp, cmd, clen); } /** Return the index within buf at which ch first appears, * or -1 if ch does not appear on buf. */ static ptrdiff_t buf_find_offset_of_char(buf_t *buf, char ch) { chunk_t *chunk; ptrdiff_t offset = 0; tor_assert(buf->datalen <= BUF_MAX_LEN); for (chunk = buf->head; chunk; chunk = chunk->next) { char *cp = memchr(chunk->data, ch, chunk->datalen); if (cp) return offset + (cp - chunk->data); else offset += chunk->datalen; } return -1; } /** Try to read a single LF-terminated line from buf, and write it * (including the LF), NUL-terminated, into the *data_len byte buffer * at data_out. Set *data_len to the number of bytes in the * line, not counting the terminating NUL. Return 1 if we read a whole line, * return 0 if we don't have a whole line yet, and return -1 if the line * length exceeds *data_len. */ int buf_get_line(buf_t *buf, char *data_out, size_t *data_len) { size_t sz; ptrdiff_t offset; if (!buf->head) return 0; offset = buf_find_offset_of_char(buf, '\n'); if (offset < 0) return 0; sz = (size_t) offset; if (sz+2 > *data_len) { *data_len = sz + 2; return -1; } buf_get_bytes(buf, data_out, sz+1); data_out[sz+1] = '\0'; *data_len = sz+1; return 1; } /** Set *output to contain a copy of the data in *input */ int buf_set_to_copy(buf_t **output, const buf_t *input) { if (*output) buf_free(*output); *output = buf_copy(input); return 0; } /** Log an error and exit if buf is corrupted. */ void buf_assert_ok(buf_t *buf) { tor_assert(buf); tor_assert(buf->magic == BUFFER_MAGIC); if (! buf->head) { tor_assert(!buf->tail); tor_assert(buf->datalen == 0); } else { chunk_t *ch; size_t total = 0; tor_assert(buf->tail); for (ch = buf->head; ch; ch = ch->next) { total += ch->datalen; tor_assert(ch->datalen <= ch->memlen); tor_assert(ch->datalen <= BUF_MAX_LEN); tor_assert(ch->data >= &ch->mem[0]); tor_assert(ch->data <= &ch->mem[0]+ch->memlen); if (ch->data == &ch->mem[0]+ch->memlen) { /* LCOV_EXCL_START */ static int warned = 0; if (! warned) { log_warn(LD_BUG, "Invariant violation in buf.c related to #15083"); warned = 1; } /* LCOV_EXCL_STOP */ } tor_assert(ch->data+ch->datalen <= &ch->mem[0] + ch->memlen); if (!ch->next) tor_assert(ch == buf->tail); } tor_assert(buf->datalen == total); } }