/* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. * Copyright (c) 2007-2021, The Tor Project, Inc. */ /* See LICENSE for licensing information */ /** * \file rephist.c * \brief Basic history and performance-tracking functionality. * * Basic history and performance-tracking functionality to remember * which servers have worked in the past, how much bandwidth we've * been using, which ports we tend to want, and so on; further, * exit port statistics, cell statistics, and connection statistics. * * The history and information tracked in this module could sensibly be * divided into several categories: * * * * The entry points for this module are scattered throughout the * codebase. Sending data, receiving data, connecting to a relay, * losing a connection to a relay, and so on can all trigger a change in * our current stats. Relays also invoke this module in order to * extract their statistics when building routerinfo and extrainfo * objects in router.c. * * TODO: This module should be broken up. * * (The "rephist" name originally stood for "reputation and history". ) **/ #define REPHIST_PRIVATE #include "core/or/or.h" #include "app/config/config.h" #include "core/mainloop/connection.h" #include "core/or/circuitlist.h" #include "core/or/connection_or.h" #include "feature/dirauth/authmode.h" #include "feature/nodelist/networkstatus.h" #include "feature/nodelist/nodelist.h" #include "feature/stats/predict_ports.h" #include "feature/stats/connstats.h" #include "feature/stats/rephist.h" #include "lib/container/order.h" #include "lib/crypt_ops/crypto_rand.h" #include "lib/math/laplace.h" #include "feature/nodelist/networkstatus_st.h" #include "core/or/or_circuit_st.h" #include #ifdef HAVE_FCNTL_H #include #endif /** Total number of bytes currently allocated in fields used by rephist.c. */ uint64_t rephist_total_alloc=0; /** Number of or_history_t objects currently allocated. */ uint32_t rephist_total_num=0; /** If the total weighted run count of all runs for a router ever falls * below this amount, the router can be treated as having 0 MTBF. */ #define STABILITY_EPSILON 0.0001 /** Value by which to discount all old intervals for MTBF purposes. This * is compounded every STABILITY_INTERVAL. */ #define STABILITY_ALPHA 0.95 /** Interval at which to discount all old intervals for MTBF purposes. */ #define STABILITY_INTERVAL (12*60*60) /* (This combination of ALPHA, INTERVAL, and EPSILON makes it so that an * interval that just ended counts twice as much as one that ended a week ago, * 20X as much as one that ended a month ago, and routers that have had no * uptime data for about half a year will get forgotten.) */ /** History of an OR. */ typedef struct or_history_t { /** When did we start tracking this OR? */ time_t since; /** When did we most recently note a change to this OR? */ time_t changed; /** The address at which we most recently connected to this OR * successfully. */ tor_addr_t last_reached_addr; /** The port at which we most recently connected to this OR successfully */ uint16_t last_reached_port; /* === For MTBF tracking: */ /** Weighted sum total of all times that this router has been online. */ unsigned long weighted_run_length; /** If the router is now online (according to stability-checking rules), * when did it come online? */ time_t start_of_run; /** Sum of weights for runs in weighted_run_length. */ double total_run_weights; /* === For fractional uptime tracking: */ time_t start_of_downtime; unsigned long weighted_uptime; unsigned long total_weighted_time; } or_history_t; /** * This structure holds accounting needed to calculate the padding overhead. */ typedef struct padding_counts_t { /** Total number of cells we have received, including padding */ uint64_t read_cell_count; /** Total number of cells we have sent, including padding */ uint64_t write_cell_count; /** Total number of CELL_PADDING cells we have received */ uint64_t read_pad_cell_count; /** Total number of CELL_PADDING cells we have sent */ uint64_t write_pad_cell_count; /** Total number of read cells on padding-enabled conns */ uint64_t enabled_read_cell_count; /** Total number of sent cells on padding-enabled conns */ uint64_t enabled_write_cell_count; /** Total number of read CELL_PADDING cells on padding-enabled cons */ uint64_t enabled_read_pad_cell_count; /** Total number of sent CELL_PADDING cells on padding-enabled cons */ uint64_t enabled_write_pad_cell_count; /** Total number of RELAY_DROP cells we have received */ uint64_t read_drop_cell_count; /** Total number of RELAY_DROP cells we have sent */ uint64_t write_drop_cell_count; /** The maximum number of padding timers we've seen in 24 hours */ uint64_t maximum_chanpad_timers; /** When did we first copy padding_current into padding_published? */ char first_published_at[ISO_TIME_LEN+1]; } padding_counts_t; /** Holds the current values of our padding statistics. * It is not published until it is transferred to padding_published. */ static padding_counts_t padding_current; /** Remains fixed for a 24 hour period, and then is replaced * by a redacted copy of padding_current */ static padding_counts_t padding_published; /** When did we last multiply all routers' weighted_run_length and * total_run_weights by STABILITY_ALPHA? */ static time_t stability_last_downrated = 0; /** */ static time_t started_tracking_stability = 0; /** Map from hex OR identity digest to or_history_t. */ static digestmap_t *history_map = NULL; /** Represents a state of overload stats. * * All the timestamps in this structure have already been rounded down to the * nearest hour. */ typedef struct { /* When did we last experience a general overload? */ time_t overload_general_time; /* When did we last experience a bandwidth-related overload? */ time_t overload_ratelimits_time; /* How many times have we gone off the our read limits? */ uint64_t overload_read_count; /* How many times have we gone off the our write limits? */ uint64_t overload_write_count; /* When did we last experience a file descriptor exhaustion? */ time_t overload_fd_exhausted_time; /* How many times have we experienced a file descriptor exhaustion? */ uint64_t overload_fd_exhausted; } overload_stats_t; /** Current state of overload stats */ static overload_stats_t overload_stats; /** Counters to count the number of times we've reached an overload for the * global connection read/write limit. Reported on the MetricsPort. */ static uint64_t stats_n_read_limit_reached = 0; static uint64_t stats_n_write_limit_reached = 0; /** Total number of times we've reached TCP port exhaustion. */ static uint64_t stats_n_tcp_exhaustion = 0; /***** DNS statistics *****/ /** Overload DNS statistics. The information in this object is used to assess * if, due to DNS errors, we should emit a general overload signal or not. * * NOTE: This structure is _not_ per DNS query type like the statistics below * because of a libevent bug * (https://github.com/libevent/libevent/issues/1219), on error, the type is * not propagated up back to the user and so we need to keep our own stats for * the overload signal. */ typedef struct { /** Total number of DNS request seen at an Exit. They might not all end * successfully or might even be lost by tor. This counter is incremented * right before the DNS request is initiated. */ uint64_t stats_n_request; /** When is the next assessment time of the general overload for DNS errors. * Once this time is reached, all stats are reset and this time is set to the * next assessment time. */ time_t next_assessment_time; } overload_dns_stats_t; /** Keep track of the DNS requests for the general overload state. */ static overload_dns_stats_t overload_dns_stats; /** Represents the statistics of DNS queries seen if it is an Exit. */ typedef struct { /* Total number of DNS errors found in RFC 1035 (from 0 to 5 code). */ uint64_t stats_n_error_none; /* 0 */ uint64_t stats_n_error_format; /* 1 */ uint64_t stats_n_error_serverfailed; /* 2 */ uint64_t stats_n_error_notexist; /* 3 */ uint64_t stats_n_error_notimpl; /* 4 */ uint64_t stats_n_error_refused; /* 5 */ /* Total number of DNS errors specific to libevent. */ uint64_t stats_n_error_truncated; /* 65 */ uint64_t stats_n_error_unknown; /* 66 */ uint64_t stats_n_error_tor_timeout; /* 67 */ uint64_t stats_n_error_shutdown; /* 68 */ uint64_t stats_n_error_cancel; /* 69 */ uint64_t stats_n_error_nodata; /* 70 */ /* Total number of DNS request seen at an Exit. They might not all end * successfully or might even be lost by tor. This counter is incremented * right before the DNS request is initiated. */ uint64_t stats_n_request; } dns_stats_t; /* This is disabled because of the libevent bug where on error we don't get the * DNS query type back. Once it is fixed, we can re-enable this. */ #if 0 /** DNS statistics store for each DNS record type for which tor supports only * three at the moment: A, PTR and AAAA. */ static dns_stats_t dns_A_stats; static dns_stats_t dns_PTR_stats; static dns_stats_t dns_AAAA_stats; #endif /** DNS query statistics store. It covers all type of queries. */ static dns_stats_t dns_all_stats; /** Return the point to the DNS statistics store. Ignore the type for now * because of a libevent problem. */ static inline dns_stats_t * get_dns_stats_by_type(const int type) { (void) type; return &dns_all_stats; } #if 0 /** From a libevent record type, return a pointer to the corresponding DNS * statistics store. NULL is returned if the type is unhandled. */ static inline dns_stats_t * get_dns_stats_by_type(const int type) { switch (type) { case DNS_IPv4_A: return &dns_A_stats; case DNS_PTR: return &dns_PTR_stats; case DNS_IPv6_AAAA: return &dns_AAAA_stats; default: return NULL; } } #endif /** Return the DNS error count for the given libevent DNS type and error code. * The possible types are: DNS_IPv4_A, DNS_PTR, DNS_IPv6_AAAA. */ uint64_t rep_hist_get_n_dns_error(int type, uint8_t error) { dns_stats_t *dns_stats = get_dns_stats_by_type(type); if (BUG(!dns_stats)) { return 0; } switch (error) { case DNS_ERR_NONE: return dns_stats->stats_n_error_none; case DNS_ERR_FORMAT: return dns_stats->stats_n_error_format; case DNS_ERR_SERVERFAILED: return dns_stats->stats_n_error_serverfailed; case DNS_ERR_NOTEXIST: return dns_stats->stats_n_error_notexist; case DNS_ERR_NOTIMPL: return dns_stats->stats_n_error_notimpl; case DNS_ERR_REFUSED: return dns_stats->stats_n_error_refused; case DNS_ERR_TRUNCATED: return dns_stats->stats_n_error_truncated; case DNS_ERR_UNKNOWN: return dns_stats->stats_n_error_unknown; case DNS_ERR_TIMEOUT: return dns_stats->stats_n_error_tor_timeout; case DNS_ERR_SHUTDOWN: return dns_stats->stats_n_error_shutdown; case DNS_ERR_CANCEL: return dns_stats->stats_n_error_cancel; case DNS_ERR_NODATA: return dns_stats->stats_n_error_nodata; default: /* Unhandled code sent back by libevent. */ return 0; } } /** Return the total number of DNS request seen for the given libevent DNS * record type. Possible types are: DNS_IPv4_A, DNS_PTR, DNS_IPv6_AAAA. */ uint64_t rep_hist_get_n_dns_request(int type) { dns_stats_t *dns_stats = get_dns_stats_by_type(type); if (BUG(!dns_stats)) { return 0; } return dns_stats->stats_n_request; } /** Note a DNS error for the given given libevent DNS record type and error * code. Possible types are: DNS_IPv4_A, DNS_PTR, DNS_IPv6_AAAA. * * NOTE: Libevent is _not_ returning the type in case of an error and so if * error is anything but DNS_ERR_NONE, the type is not usable and set to 0. * * See: https://gitlab.torproject.org/tpo/core/tor/-/issues/40490 */ void rep_hist_note_dns_error(int type, uint8_t error) { overload_dns_stats.stats_n_request++; /* Again, the libevent bug (see function comment), for an error that is * anything but DNS_ERR_NONE, the type is always 0 which means that we don't * have a DNS stat object for it so this code will do nothing until libevent * is fixed. */ dns_stats_t *dns_stats = get_dns_stats_by_type(type); /* Unsupported DNS query type. */ if (!dns_stats) { return; } switch (error) { case DNS_ERR_NONE: dns_stats->stats_n_error_none++; break; case DNS_ERR_FORMAT: dns_stats->stats_n_error_format++; break; case DNS_ERR_SERVERFAILED: dns_stats->stats_n_error_serverfailed++; break; case DNS_ERR_NOTEXIST: dns_stats->stats_n_error_notexist++; break; case DNS_ERR_NOTIMPL: dns_stats->stats_n_error_notimpl++; break; case DNS_ERR_REFUSED: dns_stats->stats_n_error_refused++; break; case DNS_ERR_TRUNCATED: dns_stats->stats_n_error_truncated++; break; case DNS_ERR_UNKNOWN: dns_stats->stats_n_error_unknown++; break; case DNS_ERR_TIMEOUT: dns_stats->stats_n_error_tor_timeout++; break; case DNS_ERR_SHUTDOWN: dns_stats->stats_n_error_shutdown++; break; case DNS_ERR_CANCEL: dns_stats->stats_n_error_cancel++; break; case DNS_ERR_NODATA: dns_stats->stats_n_error_nodata++; break; default: /* Unhandled code sent back by libevent. */ break; } } /** Note a DNS request for the given given libevent DNS record type. */ void rep_hist_note_dns_request(int type) { dns_stats_t *dns_stats = get_dns_stats_by_type(type); if (BUG(!dns_stats)) { return; } dns_stats->stats_n_request++; } /***** END of DNS statistics *****/ /** Return true if this overload happened within the last `n_hours`. */ static bool overload_happened_recently(time_t overload_time, int n_hours) { /* An overload is relevant if it happened in the last 72 hours */ if (overload_time > approx_time() - 3600 * n_hours) { return true; } return false; } /* The current version of the overload stats version */ #define OVERLOAD_STATS_VERSION 1 /** Return the stats_n_read_limit_reached counter. */ uint64_t rep_hist_get_n_read_limit_reached(void) { return stats_n_read_limit_reached; } /** Return the stats_n_write_limit_reached counter. */ uint64_t rep_hist_get_n_write_limit_reached(void) { return stats_n_write_limit_reached; } /** Returns an allocated string for server descriptor for publising information * on whether we are overloaded or not. */ char * rep_hist_get_overload_general_line(void) { char *result = NULL; char tbuf[ISO_TIME_LEN+1]; /* Encode the general overload */ if (overload_happened_recently(overload_stats.overload_general_time, 72)) { format_iso_time(tbuf, overload_stats.overload_general_time); tor_asprintf(&result, "overload-general %d %s\n", OVERLOAD_STATS_VERSION, tbuf); } return result; } /** Returns an allocated string for extra-info documents for publishing * overload statistics. */ char * rep_hist_get_overload_stats_lines(void) { char *result = NULL; smartlist_t *chunks = smartlist_new(); char tbuf[ISO_TIME_LEN+1]; /* Add bandwidth-related overloads */ if (overload_happened_recently(overload_stats.overload_ratelimits_time,24)) { const or_options_t *options = get_options(); format_iso_time(tbuf, overload_stats.overload_ratelimits_time); smartlist_add_asprintf(chunks, "overload-ratelimits %d %s %" PRIu64 " %" PRIu64 " %" PRIu64 " %" PRIu64 "\n", OVERLOAD_STATS_VERSION, tbuf, options->BandwidthRate, options->BandwidthBurst, overload_stats.overload_read_count, overload_stats.overload_write_count); } /* Finally file descriptor overloads */ if (overload_happened_recently( overload_stats.overload_fd_exhausted_time, 72)) { format_iso_time(tbuf, overload_stats.overload_fd_exhausted_time); smartlist_add_asprintf(chunks, "overload-fd-exhausted %d %s\n", OVERLOAD_STATS_VERSION, tbuf); } /* Bail early if we had nothing to write */ if (smartlist_len(chunks) == 0) { goto done; } result = smartlist_join_strings(chunks, "", 0, NULL); done: SMARTLIST_FOREACH(chunks, char *, cp, tor_free(cp)); smartlist_free(chunks); return result; } /** Round down the time in `a` to the beginning of the current hour */ #define SET_TO_START_OF_HOUR(a) STMT_BEGIN \ (a) = approx_time() - (approx_time() % 3600); \ STMT_END /** Note down an overload event of type `overload`. */ void rep_hist_note_overload(overload_type_t overload) { static time_t last_read_counted = 0; static time_t last_write_counted = 0; switch (overload) { case OVERLOAD_GENERAL: SET_TO_START_OF_HOUR(overload_stats.overload_general_time); break; case OVERLOAD_READ: { stats_n_read_limit_reached++; SET_TO_START_OF_HOUR(overload_stats.overload_ratelimits_time); if (approx_time() >= last_read_counted + 60) { /* Count once a minute */ overload_stats.overload_read_count++; last_read_counted = approx_time(); } break; } case OVERLOAD_WRITE: { stats_n_write_limit_reached++; SET_TO_START_OF_HOUR(overload_stats.overload_ratelimits_time); if (approx_time() >= last_write_counted + 60) { /* Count once a minute */ overload_stats.overload_write_count++; last_write_counted = approx_time(); } break; } case OVERLOAD_FD_EXHAUSTED: SET_TO_START_OF_HOUR(overload_stats.overload_fd_exhausted_time); overload_stats.overload_fd_exhausted++; break; } } /** Note down that we've reached a TCP port exhaustion. This triggers an * overload general event. */ void rep_hist_note_tcp_exhaustion(void) { stats_n_tcp_exhaustion++; rep_hist_note_overload(OVERLOAD_GENERAL); } /** Return the total number of TCP exhaustion times we've reached. */ uint64_t rep_hist_get_n_tcp_exhaustion(void) { return stats_n_tcp_exhaustion; } /** Return the or_history_t for the OR with identity digest id, * creating it if necessary. */ static or_history_t * get_or_history(const char* id) { or_history_t *hist; if (tor_digest_is_zero(id)) return NULL; hist = digestmap_get(history_map, id); if (!hist) { hist = tor_malloc_zero(sizeof(or_history_t)); rephist_total_alloc += sizeof(or_history_t); rephist_total_num++; hist->since = hist->changed = time(NULL); tor_addr_make_unspec(&hist->last_reached_addr); digestmap_set(history_map, id, hist); } return hist; } /** Helper: free storage held by a single OR history entry. */ static void free_or_history(void *_hist) { or_history_t *hist = _hist; rephist_total_alloc -= sizeof(or_history_t); rephist_total_num--; tor_free(hist); } /** Initialize the static data structures for tracking history. */ void rep_hist_init(void) { history_map = digestmap_new(); } /** We have just decided that this router with identity digest id is * reachable, meaning we will give it a "Running" flag for the next while. */ void rep_hist_note_router_reachable(const char *id, const tor_addr_t *at_addr, const uint16_t at_port, time_t when) { or_history_t *hist = get_or_history(id); int was_in_run = 1; char tbuf[ISO_TIME_LEN+1]; int addr_changed, port_changed; tor_assert(hist); tor_assert((!at_addr && !at_port) || (at_addr && at_port)); addr_changed = at_addr && !tor_addr_is_null(&hist->last_reached_addr) && tor_addr_compare(at_addr, &hist->last_reached_addr, CMP_EXACT) != 0; port_changed = at_port && hist->last_reached_port && at_port != hist->last_reached_port; if (!started_tracking_stability) started_tracking_stability = time(NULL); if (!hist->start_of_run) { hist->start_of_run = when; was_in_run = 0; } if (hist->start_of_downtime) { long down_length; format_local_iso_time(tbuf, hist->start_of_downtime); log_info(LD_HIST, "Router %s is now Running; it had been down since %s.", hex_str(id, DIGEST_LEN), tbuf); if (was_in_run) log_info(LD_HIST, " (Paradoxically, it was already Running too.)"); down_length = when - hist->start_of_downtime; hist->total_weighted_time += down_length; hist->start_of_downtime = 0; } else if (addr_changed || port_changed) { /* If we're reachable, but the address changed, treat this as some * downtime. */ int penalty = get_options()->TestingTorNetwork ? 240 : 3600; networkstatus_t *ns; if ((ns = networkstatus_get_latest_consensus())) { int fresh_interval = (int)(ns->fresh_until - ns->valid_after); int live_interval = (int)(ns->valid_until - ns->valid_after); /* on average, a descriptor addr change takes .5 intervals to make it * into a consensus, and half a liveness period to make it to * clients. */ penalty = (int)(fresh_interval + live_interval) / 2; } format_local_iso_time(tbuf, hist->start_of_run); log_info(LD_HIST,"Router %s still seems Running, but its address appears " "to have changed since the last time it was reachable. I'm " "going to treat it as having been down for %d seconds", hex_str(id, DIGEST_LEN), penalty); rep_hist_note_router_unreachable(id, when-penalty); rep_hist_note_router_reachable(id, NULL, 0, when); } else { format_local_iso_time(tbuf, hist->start_of_run); if (was_in_run) log_debug(LD_HIST, "Router %s is still Running; it has been Running " "since %s", hex_str(id, DIGEST_LEN), tbuf); else log_info(LD_HIST,"Router %s is now Running; it was previously untracked", hex_str(id, DIGEST_LEN)); } if (at_addr) tor_addr_copy(&hist->last_reached_addr, at_addr); if (at_port) hist->last_reached_port = at_port; } /** We have just decided that this router is unreachable, meaning * we are taking away its "Running" flag. */ void rep_hist_note_router_unreachable(const char *id, time_t when) { or_history_t *hist = get_or_history(id); char tbuf[ISO_TIME_LEN+1]; int was_running = 0; if (!started_tracking_stability) started_tracking_stability = time(NULL); tor_assert(hist); if (hist->start_of_run) { /*XXXX We could treat failed connections differently from failed * connect attempts. */ long run_length = when - hist->start_of_run; format_local_iso_time(tbuf, hist->start_of_run); hist->total_run_weights += 1.0; hist->start_of_run = 0; if (run_length < 0) { unsigned long penalty = -run_length; #define SUBTRACT_CLAMPED(var, penalty) \ do { (var) = (var) < (penalty) ? 0 : (var) - (penalty); } while (0) SUBTRACT_CLAMPED(hist->weighted_run_length, penalty); SUBTRACT_CLAMPED(hist->weighted_uptime, penalty); } else { hist->weighted_run_length += run_length; hist->weighted_uptime += run_length; hist->total_weighted_time += run_length; } was_running = 1; log_info(LD_HIST, "Router %s is now non-Running: it had previously been " "Running since %s. Its total weighted uptime is %lu/%lu.", hex_str(id, DIGEST_LEN), tbuf, hist->weighted_uptime, hist->total_weighted_time); } if (!hist->start_of_downtime) { hist->start_of_downtime = when; if (!was_running) log_info(LD_HIST, "Router %s is now non-Running; it was previously " "untracked.", hex_str(id, DIGEST_LEN)); } else { if (!was_running) { format_local_iso_time(tbuf, hist->start_of_downtime); log_info(LD_HIST, "Router %s is still non-Running; it has been " "non-Running since %s.", hex_str(id, DIGEST_LEN), tbuf); } } } /** Mark a router with ID id as non-Running, and retroactively declare * that it has never been running: give it no stability and no WFU. */ void rep_hist_make_router_pessimal(const char *id, time_t when) { or_history_t *hist = get_or_history(id); tor_assert(hist); rep_hist_note_router_unreachable(id, when); hist->weighted_run_length = 0; hist->weighted_uptime = 0; } /** Helper: Discount all old MTBF data, if it is time to do so. Return * the time at which we should next discount MTBF data. */ time_t rep_hist_downrate_old_runs(time_t now) { digestmap_iter_t *orhist_it; const char *digest1; or_history_t *hist; void *hist_p; double alpha = 1.0; if (!history_map) history_map = digestmap_new(); if (!stability_last_downrated) stability_last_downrated = now; if (stability_last_downrated + STABILITY_INTERVAL > now) return stability_last_downrated + STABILITY_INTERVAL; /* Okay, we should downrate the data. By how much? */ while (stability_last_downrated + STABILITY_INTERVAL <= now) { stability_last_downrated += STABILITY_INTERVAL; alpha *= STABILITY_ALPHA; } log_info(LD_HIST, "Discounting all old stability info by a factor of %f", alpha); /* Multiply every w_r_l, t_r_w pair by alpha. */ for (orhist_it = digestmap_iter_init(history_map); !digestmap_iter_done(orhist_it); orhist_it = digestmap_iter_next(history_map,orhist_it)) { digestmap_iter_get(orhist_it, &digest1, &hist_p); hist = hist_p; hist->weighted_run_length = (unsigned long)(hist->weighted_run_length * alpha); hist->total_run_weights *= alpha; hist->weighted_uptime = (unsigned long)(hist->weighted_uptime * alpha); hist->total_weighted_time = (unsigned long) (hist->total_weighted_time * alpha); } return stability_last_downrated + STABILITY_INTERVAL; } /** Helper: Return the weighted MTBF of the router with history hist. */ static double get_stability(or_history_t *hist, time_t when) { long total = hist->weighted_run_length; double total_weights = hist->total_run_weights; if (hist->start_of_run) { /* We're currently in a run. Let total and total_weights hold the values * they would hold if the current run were to end now. */ total += (when-hist->start_of_run); total_weights += 1.0; } if (total_weights < STABILITY_EPSILON) { /* Round down to zero, and avoid divide-by-zero. */ return 0.0; } return total / total_weights; } /** Return the total amount of time we've been observing, with each run of * time downrated by the appropriate factor. */ static long get_total_weighted_time(or_history_t *hist, time_t when) { long total = hist->total_weighted_time; if (hist->start_of_run) { total += (when - hist->start_of_run); } else if (hist->start_of_downtime) { total += (when - hist->start_of_downtime); } return total; } /** Helper: Return the weighted percent-of-time-online of the router with * history hist. */ static double get_weighted_fractional_uptime(or_history_t *hist, time_t when) { long total = hist->total_weighted_time; long up = hist->weighted_uptime; if (hist->start_of_run) { long run_length = (when - hist->start_of_run); up += run_length; total += run_length; } else if (hist->start_of_downtime) { total += (when - hist->start_of_downtime); } if (!total) { /* Avoid calling anybody's uptime infinity (which should be impossible if * the code is working), or NaN (which can happen for any router we haven't * observed up or down yet). */ return 0.0; } return ((double) up) / total; } /** Return how long the router whose identity digest is id has * been reachable. Return 0 if the router is unknown or currently deemed * unreachable. */ long rep_hist_get_uptime(const char *id, time_t when) { or_history_t *hist = get_or_history(id); if (!hist) return 0; if (!hist->start_of_run || when < hist->start_of_run) return 0; return when - hist->start_of_run; } /** Return an estimated MTBF for the router whose identity digest is * id. Return 0 if the router is unknown. */ double rep_hist_get_stability(const char *id, time_t when) { or_history_t *hist = get_or_history(id); if (!hist) return 0.0; return get_stability(hist, when); } /** Return an estimated percent-of-time-online for the router whose identity * digest is id. Return 0 if the router is unknown. */ double rep_hist_get_weighted_fractional_uptime(const char *id, time_t when) { or_history_t *hist = get_or_history(id); if (!hist) return 0.0; return get_weighted_fractional_uptime(hist, when); } /** Return a number representing how long we've known about the router whose * digest is id. Return 0 if the router is unknown. * * Be careful: this measure increases monotonically as we know the router for * longer and longer, but it doesn't increase linearly. */ long rep_hist_get_weighted_time_known(const char *id, time_t when) { or_history_t *hist = get_or_history(id); if (!hist) return 0; return get_total_weighted_time(hist, when); } /** Return true if we've been measuring MTBFs for long enough to * pronounce on Stability. */ int rep_hist_have_measured_enough_stability(void) { /* XXXX++ This doesn't do so well when we change our opinion * as to whether we're tracking router stability. */ return started_tracking_stability < time(NULL) - 4*60*60; } /** Log all the reliability data we have remembered, with the chosen * severity. */ void rep_hist_dump_stats(time_t now, int severity) { digestmap_iter_t *orhist_it; const char *name1, *digest1; char hexdigest1[HEX_DIGEST_LEN+1]; or_history_t *or_history; void *or_history_p; const node_t *node; rep_history_clean(now - get_options()->RephistTrackTime); tor_log(severity, LD_HIST, "--------------- Dumping history information:"); for (orhist_it = digestmap_iter_init(history_map); !digestmap_iter_done(orhist_it); orhist_it = digestmap_iter_next(history_map,orhist_it)) { double s; long stability; digestmap_iter_get(orhist_it, &digest1, &or_history_p); or_history = (or_history_t*) or_history_p; if ((node = node_get_by_id(digest1)) && node_get_nickname(node)) name1 = node_get_nickname(node); else name1 = "(unknown)"; base16_encode(hexdigest1, sizeof(hexdigest1), digest1, DIGEST_LEN); s = get_stability(or_history, now); stability = (long)s; tor_log(severity, LD_HIST, "OR %s [%s]: wmtbf %lu:%02lu:%02lu", name1, hexdigest1, stability/3600, (stability/60)%60, stability%60); } } /** Remove history info for routers/links that haven't changed since * before. */ void rep_history_clean(time_t before) { int authority = authdir_mode(get_options()); or_history_t *or_history; void *or_history_p; digestmap_iter_t *orhist_it; const char *d1; orhist_it = digestmap_iter_init(history_map); while (!digestmap_iter_done(orhist_it)) { int should_remove; digestmap_iter_get(orhist_it, &d1, &or_history_p); or_history = or_history_p; should_remove = authority ? (or_history->total_run_weights < STABILITY_EPSILON && !or_history->start_of_run) : (or_history->changed < before); if (should_remove) { orhist_it = digestmap_iter_next_rmv(history_map, orhist_it); free_or_history(or_history); continue; } orhist_it = digestmap_iter_next(history_map, orhist_it); } } /** Write MTBF data to disk. Return 0 on success, negative on failure. * * If missing_means_down, then if we're about to write an entry * that is still considered up but isn't in our routerlist, consider it * to be down. */ int rep_hist_record_mtbf_data(time_t now, int missing_means_down) { char time_buf[ISO_TIME_LEN+1]; digestmap_iter_t *orhist_it; const char *digest; void *or_history_p; or_history_t *hist; open_file_t *open_file = NULL; FILE *f; { char *filename = get_datadir_fname("router-stability"); f = start_writing_to_stdio_file(filename, OPEN_FLAGS_REPLACE|O_TEXT, 0600, &open_file); tor_free(filename); if (!f) return -1; } /* File format is: * FormatLine *KeywordLine Data * * FormatLine = "format 1" NL * KeywordLine = Keyword SP Arguments NL * Data = "data" NL *RouterMTBFLine "." NL * RouterMTBFLine = Fingerprint SP WeightedRunLen SP * TotalRunWeights [SP S=StartRunTime] NL */ #define PUT(s) STMT_BEGIN if (fputs((s),f)<0) goto err; STMT_END #define PRINTF(args) STMT_BEGIN if (fprintf args <0) goto err; STMT_END PUT("format 2\n"); format_iso_time(time_buf, time(NULL)); PRINTF((f, "stored-at %s\n", time_buf)); if (started_tracking_stability) { format_iso_time(time_buf, started_tracking_stability); PRINTF((f, "tracked-since %s\n", time_buf)); } if (stability_last_downrated) { format_iso_time(time_buf, stability_last_downrated); PRINTF((f, "last-downrated %s\n", time_buf)); } PUT("data\n"); /* XXX Nick: now bridge auths record this for all routers too. * Should we make them record it only for bridge routers? -RD * Not for 0.2.0. -NM */ for (orhist_it = digestmap_iter_init(history_map); !digestmap_iter_done(orhist_it); orhist_it = digestmap_iter_next(history_map,orhist_it)) { char dbuf[HEX_DIGEST_LEN+1]; const char *t = NULL; digestmap_iter_get(orhist_it, &digest, &or_history_p); hist = (or_history_t*) or_history_p; base16_encode(dbuf, sizeof(dbuf), digest, DIGEST_LEN); if (missing_means_down && hist->start_of_run && !connection_or_digest_is_known_relay(digest)) { /* We think this relay is running, but it's not listed in our * consensus. Somehow it fell out without telling us it went * down. Complain and also correct it. */ log_info(LD_HIST, "Relay '%s' is listed as up in rephist, but it's not in " "our routerlist. Correcting.", dbuf); rep_hist_note_router_unreachable(digest, now); } PRINTF((f, "R %s\n", dbuf)); if (hist->start_of_run > 0) { format_iso_time(time_buf, hist->start_of_run); t = time_buf; } PRINTF((f, "+MTBF %lu %.5f%s%s\n", hist->weighted_run_length, hist->total_run_weights, t ? " S=" : "", t ? t : "")); t = NULL; if (hist->start_of_downtime > 0) { format_iso_time(time_buf, hist->start_of_downtime); t = time_buf; } PRINTF((f, "+WFU %lu %lu%s%s\n", hist->weighted_uptime, hist->total_weighted_time, t ? " S=" : "", t ? t : "")); } PUT(".\n"); #undef PUT #undef PRINTF return finish_writing_to_file(open_file); err: abort_writing_to_file(open_file); return -1; } /** Helper: return the first j >= i such that !strcmpstart(sl[j], prefix) and * such that no line sl[k] with i <= k < j starts with "R ". Return -1 if no * such line exists. */ static int find_next_with(smartlist_t *sl, int i, const char *prefix) { for ( ; i < smartlist_len(sl); ++i) { const char *line = smartlist_get(sl, i); if (!strcmpstart(line, prefix)) return i; if (!strcmpstart(line, "R ")) return -1; } return -1; } /** How many bad times has parse_possibly_bad_iso_time() parsed? */ static int n_bogus_times = 0; /** Parse the ISO-formatted time in s into *time_out, but * round any pre-1970 date to Jan 1, 1970. */ static int parse_possibly_bad_iso_time(const char *s, time_t *time_out) { int year; char b[5]; strlcpy(b, s, sizeof(b)); b[4] = '\0'; year = (int)tor_parse_long(b, 10, 0, INT_MAX, NULL, NULL); if (year < 1970) { *time_out = 0; ++n_bogus_times; return 0; } else return parse_iso_time(s, time_out); } /** We've read a time t from a file stored at stored_at, which * says we started measuring at started_measuring. Return a new number * that's about as much before now as t was before * stored_at. */ static inline time_t correct_time(time_t t, time_t now, time_t stored_at, time_t started_measuring) { if (t < started_measuring - 24*60*60*365) return 0; else if (t < started_measuring) return started_measuring; else if (t > stored_at) return 0; else { long run_length = stored_at - t; t = (time_t)(now - run_length); if (t < started_measuring) t = started_measuring; return t; } } /** Load MTBF data from disk. Returns 0 on success or recoverable error, -1 * on failure. */ int rep_hist_load_mtbf_data(time_t now) { /* XXXX won't handle being called while history is already populated. */ smartlist_t *lines; const char *line = NULL; int r=0, i; time_t last_downrated = 0, stored_at = 0, tracked_since = 0; time_t latest_possible_start = now; long format = -1; { char *filename = get_datadir_fname("router-stability"); char *d = read_file_to_str(filename, RFTS_IGNORE_MISSING, NULL); tor_free(filename); if (!d) return -1; lines = smartlist_new(); smartlist_split_string(lines, d, "\n", SPLIT_SKIP_SPACE, 0); tor_free(d); } { const char *firstline; if (smartlist_len(lines)>4) { firstline = smartlist_get(lines, 0); if (!strcmpstart(firstline, "format ")) format = tor_parse_long(firstline+strlen("format "), 10, -1, LONG_MAX, NULL, NULL); } } if (format != 1 && format != 2) { log_warn(LD_HIST, "Unrecognized format in mtbf history file. Skipping."); goto err; } for (i = 1; i < smartlist_len(lines); ++i) { line = smartlist_get(lines, i); if (!strcmp(line, "data")) break; if (!strcmpstart(line, "last-downrated ")) { if (parse_iso_time(line+strlen("last-downrated "), &last_downrated)<0) log_warn(LD_HIST,"Couldn't parse downrate time in mtbf " "history file."); } if (!strcmpstart(line, "stored-at ")) { if (parse_iso_time(line+strlen("stored-at "), &stored_at)<0) log_warn(LD_HIST,"Couldn't parse stored time in mtbf " "history file."); } if (!strcmpstart(line, "tracked-since ")) { if (parse_iso_time(line+strlen("tracked-since "), &tracked_since)<0) log_warn(LD_HIST,"Couldn't parse started-tracking time in mtbf " "history file."); } } if (last_downrated > now) last_downrated = now; if (tracked_since > now) tracked_since = now; if (!stored_at) { log_warn(LD_HIST, "No stored time recorded."); goto err; } if (line && !strcmp(line, "data")) ++i; n_bogus_times = 0; for (; i < smartlist_len(lines); ++i) { char digest[DIGEST_LEN]; char hexbuf[HEX_DIGEST_LEN+1]; char mtbf_timebuf[ISO_TIME_LEN+1]; char wfu_timebuf[ISO_TIME_LEN+1]; time_t start_of_run = 0; time_t start_of_downtime = 0; int have_mtbf = 0, have_wfu = 0; long wrl = 0; double trw = 0; long wt_uptime = 0, total_wt_time = 0; int n; or_history_t *hist; line = smartlist_get(lines, i); if (!strcmp(line, ".")) break; mtbf_timebuf[0] = '\0'; wfu_timebuf[0] = '\0'; if (format == 1) { n = tor_sscanf(line, "%40s %ld %lf S=%10s %8s", hexbuf, &wrl, &trw, mtbf_timebuf, mtbf_timebuf+11); if (n != 3 && n != 5) { log_warn(LD_HIST, "Couldn't scan line %s", escaped(line)); continue; } have_mtbf = 1; } else { // format == 2. int mtbf_idx, wfu_idx; if (strcmpstart(line, "R ") || strlen(line) < 2+HEX_DIGEST_LEN) continue; strlcpy(hexbuf, line+2, sizeof(hexbuf)); mtbf_idx = find_next_with(lines, i+1, "+MTBF "); wfu_idx = find_next_with(lines, i+1, "+WFU "); if (mtbf_idx >= 0) { const char *mtbfline = smartlist_get(lines, mtbf_idx); n = tor_sscanf(mtbfline, "+MTBF %lu %lf S=%10s %8s", &wrl, &trw, mtbf_timebuf, mtbf_timebuf+11); if (n == 2 || n == 4) { have_mtbf = 1; } else { log_warn(LD_HIST, "Couldn't scan +MTBF line %s", escaped(mtbfline)); } } if (wfu_idx >= 0) { const char *wfuline = smartlist_get(lines, wfu_idx); n = tor_sscanf(wfuline, "+WFU %lu %lu S=%10s %8s", &wt_uptime, &total_wt_time, wfu_timebuf, wfu_timebuf+11); if (n == 2 || n == 4) { have_wfu = 1; } else { log_warn(LD_HIST, "Couldn't scan +WFU line %s", escaped(wfuline)); } } if (wfu_idx > i) i = wfu_idx; if (mtbf_idx > i) i = mtbf_idx; } if (base16_decode(digest, DIGEST_LEN, hexbuf, HEX_DIGEST_LEN) != DIGEST_LEN) { log_warn(LD_HIST, "Couldn't hex string %s", escaped(hexbuf)); continue; } hist = get_or_history(digest); if (!hist) continue; if (have_mtbf) { if (mtbf_timebuf[0]) { mtbf_timebuf[10] = ' '; if (parse_possibly_bad_iso_time(mtbf_timebuf, &start_of_run)<0) log_warn(LD_HIST, "Couldn't parse time %s", escaped(mtbf_timebuf)); } hist->start_of_run = correct_time(start_of_run, now, stored_at, tracked_since); if (hist->start_of_run < latest_possible_start + wrl) latest_possible_start = (time_t)(hist->start_of_run - wrl); hist->weighted_run_length = wrl; hist->total_run_weights = trw; } if (have_wfu) { if (wfu_timebuf[0]) { wfu_timebuf[10] = ' '; if (parse_possibly_bad_iso_time(wfu_timebuf, &start_of_downtime)<0) log_warn(LD_HIST, "Couldn't parse time %s", escaped(wfu_timebuf)); } } hist->start_of_downtime = correct_time(start_of_downtime, now, stored_at, tracked_since); hist->weighted_uptime = wt_uptime; hist->total_weighted_time = total_wt_time; } if (strcmp(line, ".")) log_warn(LD_HIST, "Truncated MTBF file."); if (tracked_since < 86400*365) /* Recover from insanely early value. */ tracked_since = latest_possible_start; stability_last_downrated = last_downrated; started_tracking_stability = tracked_since; goto done; err: r = -1; done: SMARTLIST_FOREACH(lines, char *, cp, tor_free(cp)); smartlist_free(lines); return r; } /*** Exit port statistics ***/ /* Some constants */ /** To what multiple should byte numbers be rounded up? */ #define EXIT_STATS_ROUND_UP_BYTES 1024 /** To what multiple should stream counts be rounded up? */ #define EXIT_STATS_ROUND_UP_STREAMS 4 /** Number of TCP ports */ #define EXIT_STATS_NUM_PORTS 65536 /** Top n ports that will be included in exit stats. */ #define EXIT_STATS_TOP_N_PORTS 10 /* The following data structures are arrays and no fancy smartlists or maps, * so that all write operations can be done in constant time. This comes at * the price of some memory (1.25 MB) and linear complexity when writing * stats for measuring relays. */ /** Number of bytes read in current period by exit port */ static uint64_t *exit_bytes_read = NULL; /** Number of bytes written in current period by exit port */ static uint64_t *exit_bytes_written = NULL; /** Number of streams opened in current period by exit port */ static uint32_t *exit_streams = NULL; /** Start time of exit stats or 0 if we're not collecting exit stats. */ static time_t start_of_exit_stats_interval; /** Initialize exit port stats. */ void rep_hist_exit_stats_init(time_t now) { start_of_exit_stats_interval = now; exit_bytes_read = tor_calloc(EXIT_STATS_NUM_PORTS, sizeof(uint64_t)); exit_bytes_written = tor_calloc(EXIT_STATS_NUM_PORTS, sizeof(uint64_t)); exit_streams = tor_calloc(EXIT_STATS_NUM_PORTS, sizeof(uint32_t)); } /** Reset counters for exit port statistics. */ void rep_hist_reset_exit_stats(time_t now) { start_of_exit_stats_interval = now; memset(exit_bytes_read, 0, EXIT_STATS_NUM_PORTS * sizeof(uint64_t)); memset(exit_bytes_written, 0, EXIT_STATS_NUM_PORTS * sizeof(uint64_t)); memset(exit_streams, 0, EXIT_STATS_NUM_PORTS * sizeof(uint32_t)); } /** Stop collecting exit port stats in a way that we can re-start doing * so in rep_hist_exit_stats_init(). */ void rep_hist_exit_stats_term(void) { start_of_exit_stats_interval = 0; tor_free(exit_bytes_read); tor_free(exit_bytes_written); tor_free(exit_streams); } /** Helper for qsort: compare two ints. Does not handle overflow properly, * but works fine for sorting an array of port numbers, which is what we use * it for. */ static int compare_int_(const void *x, const void *y) { return (*(int*)x - *(int*)y); } /** Return a newly allocated string containing the exit port statistics * until now, or NULL if we're not collecting exit stats. Caller * must ensure start_of_exit_stats_interval is in the past. */ char * rep_hist_format_exit_stats(time_t now) { int i, j, top_elements = 0, cur_min_idx = 0, cur_port; uint64_t top_bytes[EXIT_STATS_TOP_N_PORTS]; int top_ports[EXIT_STATS_TOP_N_PORTS]; uint64_t cur_bytes = 0, other_read = 0, other_written = 0, total_read = 0, total_written = 0; uint32_t total_streams = 0, other_streams = 0; smartlist_t *written_strings, *read_strings, *streams_strings; char *written_string, *read_string, *streams_string; char t[ISO_TIME_LEN+1]; char *result; if (!start_of_exit_stats_interval) return NULL; /* Not initialized. */ tor_assert(now >= start_of_exit_stats_interval); /* Go through all ports to find the n ports that saw most written and * read bytes. * * Invariant: at the end of the loop for iteration i, * total_read is the sum of all exit_bytes_read[0..i] * total_written is the sum of all exit_bytes_written[0..i] * total_stream is the sum of all exit_streams[0..i] * * top_elements = MAX(EXIT_STATS_TOP_N_PORTS, * #{j | 0 <= j <= i && volume(i) > 0}) * * For all 0 <= j < top_elements, * top_bytes[j] > 0 * 0 <= top_ports[j] <= 65535 * top_bytes[j] = volume(top_ports[j]) * * There is no j in 0..i and k in 0..top_elements such that: * volume(j) > top_bytes[k] AND j is not in top_ports[0..top_elements] * * There is no j!=cur_min_idx in 0..top_elements such that: * top_bytes[j] < top_bytes[cur_min_idx] * * where volume(x) == exit_bytes_read[x]+exit_bytes_written[x] * * Worst case: O(EXIT_STATS_NUM_PORTS * EXIT_STATS_TOP_N_PORTS) */ for (i = 1; i < EXIT_STATS_NUM_PORTS; i++) { total_read += exit_bytes_read[i]; total_written += exit_bytes_written[i]; total_streams += exit_streams[i]; cur_bytes = exit_bytes_read[i] + exit_bytes_written[i]; if (cur_bytes == 0) { continue; } if (top_elements < EXIT_STATS_TOP_N_PORTS) { top_bytes[top_elements] = cur_bytes; top_ports[top_elements++] = i; } else if (cur_bytes > top_bytes[cur_min_idx]) { top_bytes[cur_min_idx] = cur_bytes; top_ports[cur_min_idx] = i; } else { continue; } cur_min_idx = 0; for (j = 1; j < top_elements; j++) { if (top_bytes[j] < top_bytes[cur_min_idx]) { cur_min_idx = j; } } } /* Add observations of top ports to smartlists. */ written_strings = smartlist_new(); read_strings = smartlist_new(); streams_strings = smartlist_new(); other_read = total_read; other_written = total_written; other_streams = total_streams; /* Sort the ports; this puts them out of sync with top_bytes, but we * won't be using top_bytes again anyway */ qsort(top_ports, top_elements, sizeof(int), compare_int_); for (j = 0; j < top_elements; j++) { cur_port = top_ports[j]; if (exit_bytes_written[cur_port] > 0) { uint64_t num = round_uint64_to_next_multiple_of( exit_bytes_written[cur_port], EXIT_STATS_ROUND_UP_BYTES); num /= 1024; smartlist_add_asprintf(written_strings, "%d=%"PRIu64, cur_port, (num)); other_written -= exit_bytes_written[cur_port]; } if (exit_bytes_read[cur_port] > 0) { uint64_t num = round_uint64_to_next_multiple_of( exit_bytes_read[cur_port], EXIT_STATS_ROUND_UP_BYTES); num /= 1024; smartlist_add_asprintf(read_strings, "%d=%"PRIu64, cur_port, (num)); other_read -= exit_bytes_read[cur_port]; } if (exit_streams[cur_port] > 0) { uint32_t num = round_uint32_to_next_multiple_of( exit_streams[cur_port], EXIT_STATS_ROUND_UP_STREAMS); smartlist_add_asprintf(streams_strings, "%d=%u", cur_port, num); other_streams -= exit_streams[cur_port]; } } /* Add observations of other ports in a single element. */ other_written = round_uint64_to_next_multiple_of(other_written, EXIT_STATS_ROUND_UP_BYTES); other_written /= 1024; smartlist_add_asprintf(written_strings, "other=%"PRIu64, (other_written)); other_read = round_uint64_to_next_multiple_of(other_read, EXIT_STATS_ROUND_UP_BYTES); other_read /= 1024; smartlist_add_asprintf(read_strings, "other=%"PRIu64, (other_read)); other_streams = round_uint32_to_next_multiple_of(other_streams, EXIT_STATS_ROUND_UP_STREAMS); smartlist_add_asprintf(streams_strings, "other=%u", other_streams); /* Join all observations in single strings. */ written_string = smartlist_join_strings(written_strings, ",", 0, NULL); read_string = smartlist_join_strings(read_strings, ",", 0, NULL); streams_string = smartlist_join_strings(streams_strings, ",", 0, NULL); SMARTLIST_FOREACH(written_strings, char *, cp, tor_free(cp)); SMARTLIST_FOREACH(read_strings, char *, cp, tor_free(cp)); SMARTLIST_FOREACH(streams_strings, char *, cp, tor_free(cp)); smartlist_free(written_strings); smartlist_free(read_strings); smartlist_free(streams_strings); /* Put everything together. */ format_iso_time(t, now); tor_asprintf(&result, "exit-stats-end %s (%d s)\n" "exit-kibibytes-written %s\n" "exit-kibibytes-read %s\n" "exit-streams-opened %s\n", t, (unsigned) (now - start_of_exit_stats_interval), written_string, read_string, streams_string); tor_free(written_string); tor_free(read_string); tor_free(streams_string); return result; } /** If 24 hours have passed since the beginning of the current exit port * stats period, write exit stats to $DATADIR/stats/exit-stats (possibly * overwriting an existing file) and reset counters. Return when we would * next want to write exit stats or 0 if we never want to write. */ time_t rep_hist_exit_stats_write(time_t now) { char *str = NULL; if (!start_of_exit_stats_interval) return 0; /* Not initialized. */ if (start_of_exit_stats_interval + WRITE_STATS_INTERVAL > now) goto done; /* Not ready to write. */ log_info(LD_HIST, "Writing exit port statistics to disk."); /* Generate history string. */ str = rep_hist_format_exit_stats(now); /* Reset counters. */ rep_hist_reset_exit_stats(now); /* Try to write to disk. */ if (!check_or_create_data_subdir("stats")) { write_to_data_subdir("stats", "exit-stats", str, "exit port statistics"); } done: tor_free(str); return start_of_exit_stats_interval + WRITE_STATS_INTERVAL; } /** Note that we wrote num_written bytes and read num_read * bytes to/from an exit connection to port. */ void rep_hist_note_exit_bytes(uint16_t port, size_t num_written, size_t num_read) { if (!start_of_exit_stats_interval) return; /* Not initialized. */ exit_bytes_written[port] += num_written; exit_bytes_read[port] += num_read; log_debug(LD_HIST, "Written %lu bytes and read %lu bytes to/from an " "exit connection to port %d.", (unsigned long)num_written, (unsigned long)num_read, port); } /** Note that we opened an exit stream to port. */ void rep_hist_note_exit_stream_opened(uint16_t port) { if (!start_of_exit_stats_interval) return; /* Not initialized. */ exit_streams[port]++; log_debug(LD_HIST, "Opened exit stream to port %d", port); } /*** Exit streams statistics ***/ /** Number of BEGIN streams seen. */ static uint64_t streams_begin_seen; /** Number of BEGIN_DIR streams seen. */ static uint64_t streams_begindir_seen; /** Number of RESOLVE streams seen. */ static uint64_t streams_resolve_seen; /** Note a stream as seen for the given relay command. */ void rep_hist_note_exit_stream(unsigned int cmd) { switch (cmd) { case RELAY_COMMAND_BEGIN: streams_begin_seen++; break; case RELAY_COMMAND_BEGIN_DIR: streams_begindir_seen++; break; case RELAY_COMMAND_RESOLVE: streams_resolve_seen++; break; default: tor_assert_nonfatal_unreached_once(); break; } } /** Return number of stream seen for the given command. */ uint64_t rep_hist_get_exit_stream_seen(unsigned int cmd) { switch (cmd) { case RELAY_COMMAND_BEGIN: return streams_begin_seen; case RELAY_COMMAND_BEGIN_DIR: return streams_begindir_seen; case RELAY_COMMAND_RESOLVE: return streams_resolve_seen; default: return 0; } } /******* Connections statistics *******/ #define CONN_DIRECTION_INITIATED 0 #define CONN_DIRECTION_RECEIVED 1 #define CONN_DIRECTION(from_listener) \ (from_listener) ? CONN_DIRECTION_RECEIVED : CONN_DIRECTION_INITIATED /** Number of connections created as in seen per direction per type. */ static uint64_t conn_num_created[2][CONN_TYPE_MAX_]; /** Number of connections opened per direction per type. */ static uint64_t conn_num_opened[2][CONN_TYPE_MAX_]; /** Number of connections rejected per type. Always inbound. */ static uint64_t conn_num_rejected[CONN_TYPE_MAX_]; /** Note that a connection has opened of the given type. */ void rep_hist_note_conn_opened(bool from_listener, unsigned int type) { tor_assert(type <= CONN_TYPE_MAX_); unsigned int dir = CONN_DIRECTION(from_listener); conn_num_created[dir][type]++; conn_num_opened[dir][type]++; } /** Note that a connection has closed of the given type. */ void rep_hist_note_conn_closed(bool from_listener, unsigned int type) { tor_assert(type <= CONN_TYPE_MAX_); unsigned int dir = CONN_DIRECTION(from_listener); if (conn_num_opened[dir][type] > 0) { conn_num_opened[dir][type]--; } } /** Note that a connection has rejected of the given type. */ void rep_hist_note_conn_rejected(unsigned int type) { tor_assert(type <= CONN_TYPE_MAX_); conn_num_rejected[type]++; } /** Return number of created connections of the given type. */ uint64_t rep_hist_get_conn_created(bool from_listener, unsigned int type) { tor_assert(type <= CONN_TYPE_MAX_); unsigned int dir = CONN_DIRECTION(from_listener); return conn_num_created[dir][type]; } /** Return number of opened connections of the given type. */ uint64_t rep_hist_get_conn_opened(bool from_listener, unsigned int type) { tor_assert(type <= CONN_TYPE_MAX_); unsigned int dir = CONN_DIRECTION(from_listener); return conn_num_opened[dir][type]; } /** Return number of opened connections of the given type. */ uint64_t rep_hist_get_conn_rejected(unsigned int type) { tor_assert(type <= CONN_TYPE_MAX_); return conn_num_rejected[type]; } /*** cell statistics ***/ /** Start of the current buffer stats interval or 0 if we're not * collecting buffer statistics. */ static time_t start_of_buffer_stats_interval; /** Initialize buffer stats. */ void rep_hist_buffer_stats_init(time_t now) { start_of_buffer_stats_interval = now; } /** Statistics from a single circuit. Collected when the circuit closes, or * when we flush statistics to disk. */ typedef struct circ_buffer_stats_t { /** Average number of cells in the circuit's queue */ double mean_num_cells_in_queue; /** Average time a cell waits in the queue. */ double mean_time_cells_in_queue; /** Total number of cells sent over this circuit */ uint32_t processed_cells; } circ_buffer_stats_t; /** List of circ_buffer_stats_t. */ static smartlist_t *circuits_for_buffer_stats = NULL; /** Remember cell statistics mean_num_cells_in_queue, * mean_time_cells_in_queue, and processed_cells of a * circuit. */ void rep_hist_add_buffer_stats(double mean_num_cells_in_queue, double mean_time_cells_in_queue, uint32_t processed_cells) { circ_buffer_stats_t *stats; if (!start_of_buffer_stats_interval) return; /* Not initialized. */ stats = tor_malloc_zero(sizeof(circ_buffer_stats_t)); stats->mean_num_cells_in_queue = mean_num_cells_in_queue; stats->mean_time_cells_in_queue = mean_time_cells_in_queue; stats->processed_cells = processed_cells; if (!circuits_for_buffer_stats) circuits_for_buffer_stats = smartlist_new(); smartlist_add(circuits_for_buffer_stats, stats); } /** Remember cell statistics for circuit circ at time * end_of_interval and reset cell counters in case the circuit * remains open in the next measurement interval. */ void rep_hist_buffer_stats_add_circ(circuit_t *circ, time_t end_of_interval) { time_t start_of_interval; int interval_length; or_circuit_t *orcirc; double mean_num_cells_in_queue, mean_time_cells_in_queue; uint32_t processed_cells; if (CIRCUIT_IS_ORIGIN(circ)) return; orcirc = TO_OR_CIRCUIT(circ); if (!orcirc->processed_cells) return; start_of_interval = (circ->timestamp_created.tv_sec > start_of_buffer_stats_interval) ? (time_t)circ->timestamp_created.tv_sec : start_of_buffer_stats_interval; interval_length = (int) (end_of_interval - start_of_interval); if (interval_length <= 0) return; processed_cells = orcirc->processed_cells; /* 1000.0 for s -> ms; 2.0 because of app-ward and exit-ward queues */ mean_num_cells_in_queue = (double) orcirc->total_cell_waiting_time / (double) interval_length / 1000.0 / 2.0; mean_time_cells_in_queue = (double) orcirc->total_cell_waiting_time / (double) orcirc->processed_cells; orcirc->total_cell_waiting_time = 0; orcirc->processed_cells = 0; rep_hist_add_buffer_stats(mean_num_cells_in_queue, mean_time_cells_in_queue, processed_cells); } /** Sorting helper: return -1, 1, or 0 based on comparison of two * circ_buffer_stats_t */ static int buffer_stats_compare_entries_(const void **_a, const void **_b) { const circ_buffer_stats_t *a = *_a, *b = *_b; if (a->processed_cells < b->processed_cells) return 1; else if (a->processed_cells > b->processed_cells) return -1; else return 0; } /** Stop collecting cell stats in a way that we can re-start doing so in * rep_hist_buffer_stats_init(). */ void rep_hist_buffer_stats_term(void) { rep_hist_reset_buffer_stats(0); } /** Clear history of circuit statistics and set the measurement interval * start to now. */ void rep_hist_reset_buffer_stats(time_t now) { if (!circuits_for_buffer_stats) circuits_for_buffer_stats = smartlist_new(); SMARTLIST_FOREACH(circuits_for_buffer_stats, circ_buffer_stats_t *, stats, tor_free(stats)); smartlist_clear(circuits_for_buffer_stats); start_of_buffer_stats_interval = now; } /** Return a newly allocated string containing the buffer statistics until * now, or NULL if we're not collecting buffer stats. Caller must * ensure start_of_buffer_stats_interval is in the past. */ char * rep_hist_format_buffer_stats(time_t now) { #define SHARES 10 uint64_t processed_cells[SHARES]; uint32_t circs_in_share[SHARES]; int number_of_circuits, i; double queued_cells[SHARES], time_in_queue[SHARES]; smartlist_t *processed_cells_strings, *queued_cells_strings, *time_in_queue_strings; char *processed_cells_string, *queued_cells_string, *time_in_queue_string; char t[ISO_TIME_LEN+1]; char *result; if (!start_of_buffer_stats_interval) return NULL; /* Not initialized. */ tor_assert(now >= start_of_buffer_stats_interval); /* Calculate deciles if we saw at least one circuit. */ memset(processed_cells, 0, SHARES * sizeof(uint64_t)); memset(circs_in_share, 0, SHARES * sizeof(uint32_t)); memset(queued_cells, 0, SHARES * sizeof(double)); memset(time_in_queue, 0, SHARES * sizeof(double)); if (!circuits_for_buffer_stats) circuits_for_buffer_stats = smartlist_new(); number_of_circuits = smartlist_len(circuits_for_buffer_stats); if (number_of_circuits > 0) { smartlist_sort(circuits_for_buffer_stats, buffer_stats_compare_entries_); i = 0; SMARTLIST_FOREACH_BEGIN(circuits_for_buffer_stats, circ_buffer_stats_t *, stats) { int share = i++ * SHARES / number_of_circuits; processed_cells[share] += stats->processed_cells; queued_cells[share] += stats->mean_num_cells_in_queue; time_in_queue[share] += stats->mean_time_cells_in_queue; circs_in_share[share]++; } SMARTLIST_FOREACH_END(stats); } /* Write deciles to strings. */ processed_cells_strings = smartlist_new(); queued_cells_strings = smartlist_new(); time_in_queue_strings = smartlist_new(); for (i = 0; i < SHARES; i++) { smartlist_add_asprintf(processed_cells_strings, "%"PRIu64, !circs_in_share[i] ? 0 : (processed_cells[i] / circs_in_share[i])); } for (i = 0; i < SHARES; i++) { smartlist_add_asprintf(queued_cells_strings, "%.2f", circs_in_share[i] == 0 ? 0.0 : queued_cells[i] / (double) circs_in_share[i]); } for (i = 0; i < SHARES; i++) { smartlist_add_asprintf(time_in_queue_strings, "%.0f", circs_in_share[i] == 0 ? 0.0 : time_in_queue[i] / (double) circs_in_share[i]); } /* Join all observations in single strings. */ processed_cells_string = smartlist_join_strings(processed_cells_strings, ",", 0, NULL); queued_cells_string = smartlist_join_strings(queued_cells_strings, ",", 0, NULL); time_in_queue_string = smartlist_join_strings(time_in_queue_strings, ",", 0, NULL); SMARTLIST_FOREACH(processed_cells_strings, char *, cp, tor_free(cp)); SMARTLIST_FOREACH(queued_cells_strings, char *, cp, tor_free(cp)); SMARTLIST_FOREACH(time_in_queue_strings, char *, cp, tor_free(cp)); smartlist_free(processed_cells_strings); smartlist_free(queued_cells_strings); smartlist_free(time_in_queue_strings); /* Put everything together. */ format_iso_time(t, now); tor_asprintf(&result, "cell-stats-end %s (%d s)\n" "cell-processed-cells %s\n" "cell-queued-cells %s\n" "cell-time-in-queue %s\n" "cell-circuits-per-decile %d\n", t, (unsigned) (now - start_of_buffer_stats_interval), processed_cells_string, queued_cells_string, time_in_queue_string, CEIL_DIV(number_of_circuits, SHARES)); tor_free(processed_cells_string); tor_free(queued_cells_string); tor_free(time_in_queue_string); return result; #undef SHARES } /** If 24 hours have passed since the beginning of the current buffer * stats period, write buffer stats to $DATADIR/stats/buffer-stats * (possibly overwriting an existing file) and reset counters. Return * when we would next want to write buffer stats or 0 if we never want to * write. */ time_t rep_hist_buffer_stats_write(time_t now) { char *str = NULL; if (!start_of_buffer_stats_interval) return 0; /* Not initialized. */ if (start_of_buffer_stats_interval + WRITE_STATS_INTERVAL > now) goto done; /* Not ready to write */ /* Add open circuits to the history. */ SMARTLIST_FOREACH_BEGIN(circuit_get_global_list(), circuit_t *, circ) { rep_hist_buffer_stats_add_circ(circ, now); } SMARTLIST_FOREACH_END(circ); /* Generate history string. */ str = rep_hist_format_buffer_stats(now); /* Reset both buffer history and counters of open circuits. */ rep_hist_reset_buffer_stats(now); /* Try to write to disk. */ if (!check_or_create_data_subdir("stats")) { write_to_data_subdir("stats", "buffer-stats", str, "buffer statistics"); } done: tor_free(str); return start_of_buffer_stats_interval + WRITE_STATS_INTERVAL; } /*** Descriptor serving statistics ***/ /** Digestmap to track which descriptors were downloaded this stats * collection interval. It maps descriptor digest to pointers to 1, * effectively turning this into a list. */ static digestmap_t *served_descs = NULL; /** Number of how many descriptors were downloaded in total during this * interval. */ static unsigned long total_descriptor_downloads; /** Start time of served descs stats or 0 if we're not collecting those. */ static time_t start_of_served_descs_stats_interval; /** Initialize descriptor stats. */ void rep_hist_desc_stats_init(time_t now) { if (served_descs) { log_warn(LD_BUG, "Called rep_hist_desc_stats_init() when desc stats were " "already initialized. This is probably harmless."); return; // Already initialized } served_descs = digestmap_new(); total_descriptor_downloads = 0; start_of_served_descs_stats_interval = now; } /** Reset served descs stats to empty, starting a new interval now. */ static void rep_hist_reset_desc_stats(time_t now) { rep_hist_desc_stats_term(); rep_hist_desc_stats_init(now); } /** Stop collecting served descs stats, so that rep_hist_desc_stats_init() is * safe to be called again. */ void rep_hist_desc_stats_term(void) { digestmap_free(served_descs, NULL); served_descs = NULL; start_of_served_descs_stats_interval = 0; total_descriptor_downloads = 0; } /** Helper for rep_hist_desc_stats_write(). Return a newly allocated string * containing the served desc statistics until now, or NULL if we're not * collecting served desc stats. Caller must ensure that now is not before * start_of_served_descs_stats_interval. */ static char * rep_hist_format_desc_stats(time_t now) { char t[ISO_TIME_LEN+1]; char *result; digestmap_iter_t *iter; const char *key; void *val; unsigned size; int *vals, max = 0, q3 = 0, md = 0, q1 = 0, min = 0; int n = 0; if (!start_of_served_descs_stats_interval) return NULL; size = digestmap_size(served_descs); if (size > 0) { vals = tor_calloc(size, sizeof(int)); for (iter = digestmap_iter_init(served_descs); !digestmap_iter_done(iter); iter = digestmap_iter_next(served_descs, iter)) { uintptr_t count; digestmap_iter_get(iter, &key, &val); count = (uintptr_t)val; vals[n++] = (int)count; (void)key; } max = find_nth_int(vals, size, size-1); q3 = find_nth_int(vals, size, (3*size-1)/4); md = find_nth_int(vals, size, (size-1)/2); q1 = find_nth_int(vals, size, (size-1)/4); min = find_nth_int(vals, size, 0); tor_free(vals); } format_iso_time(t, now); tor_asprintf(&result, "served-descs-stats-end %s (%d s) total=%lu unique=%u " "max=%d q3=%d md=%d q1=%d min=%d\n", t, (unsigned) (now - start_of_served_descs_stats_interval), total_descriptor_downloads, size, max, q3, md, q1, min); return result; } /** If WRITE_STATS_INTERVAL seconds have passed since the beginning of * the current served desc stats interval, write the stats to * $DATADIR/stats/served-desc-stats (possibly appending to an existing file) * and reset the state for the next interval. Return when we would next want * to write served desc stats or 0 if we won't want to write. */ time_t rep_hist_desc_stats_write(time_t now) { char *filename = NULL, *str = NULL; if (!start_of_served_descs_stats_interval) return 0; /* We're not collecting stats. */ if (start_of_served_descs_stats_interval + WRITE_STATS_INTERVAL > now) return start_of_served_descs_stats_interval + WRITE_STATS_INTERVAL; str = rep_hist_format_desc_stats(now); tor_assert(str != NULL); if (check_or_create_data_subdir("stats") < 0) { goto done; } filename = get_datadir_fname2("stats", "served-desc-stats"); if (append_bytes_to_file(filename, str, strlen(str), 0) < 0) log_warn(LD_HIST, "Unable to write served descs statistics to disk!"); rep_hist_reset_desc_stats(now); done: tor_free(filename); tor_free(str); return start_of_served_descs_stats_interval + WRITE_STATS_INTERVAL; } /** Called to note that we've served a given descriptor (by * digest). Increments the count of descriptors served, and the number * of times we've served this descriptor. */ void rep_hist_note_desc_served(const char * desc) { void *val; uintptr_t count; if (!served_descs) return; // We're not collecting stats val = digestmap_get(served_descs, desc); count = (uintptr_t)val; if (count != INT_MAX) ++count; digestmap_set(served_descs, desc, (void*)count); total_descriptor_downloads++; } /*** Connection statistics ***/ /** Internal statistics to track how many requests of each type of * handshake we've received, and how many we've assigned to cpuworkers. * Useful for seeing trends in cpu load. * * They are reset at every heartbeat. * @{ */ STATIC int onion_handshakes_requested[MAX_ONION_STAT_TYPE+1] = {0}; STATIC int onion_handshakes_assigned[MAX_ONION_STAT_TYPE+1] = {0}; /**@}*/ /** Counters keeping the same stats as above but for the entire duration of the * process (not reset). */ static uint64_t stats_n_onionskin_assigned[MAX_ONION_STAT_TYPE+1] = {0}; static uint64_t stats_n_onionskin_dropped[MAX_ONION_STAT_TYPE+1] = {0}; /* We use a scale here so we can represent percentages with decimal points by * scaling the value by this factor and so 0.5% becomes a value of 500. * Default is 1% and thus min and max range is 0 to 100%. */ #define OVERLOAD_ONIONSKIN_NTOR_PERCENT_SCALE 1000.0 #define OVERLOAD_ONIONSKIN_NTOR_PERCENT_DEFAULT 1000 #define OVERLOAD_ONIONSKIN_NTOR_PERCENT_MIN 0 #define OVERLOAD_ONIONSKIN_NTOR_PERCENT_MAX 100000 /** Consensus parameter: indicate what fraction of ntor onionskin drop over the * total number of requests must be reached before we trigger a general * overload signal.*/ static double overload_onionskin_ntor_fraction = OVERLOAD_ONIONSKIN_NTOR_PERCENT_DEFAULT / OVERLOAD_ONIONSKIN_NTOR_PERCENT_SCALE / 100.0; /* Number of seconds for the assessment period. Default is 6 hours (21600) and * the min max range is within a 32bit value. We align this period to the * Heartbeat so the logs would match this period more or less. */ #define OVERLOAD_ONIONSKIN_NTOR_PERIOD_SECS_DEFAULT (60 * 60 * 6) #define OVERLOAD_ONIONSKIN_NTOR_PERIOD_SECS_MIN 0 #define OVERLOAD_ONIONSKIN_NTOR_PERIOD_SECS_MAX INT32_MAX /** Consensus parameter: Period, in seconds, over which we count the number of * ntor onionskins requests and how many were dropped. After that period, we * assess if we trigger an overload or not. */ static int32_t overload_onionskin_ntor_period_secs = OVERLOAD_ONIONSKIN_NTOR_PERIOD_SECS_DEFAULT; /** Structure containing information for an assessment period of the onionskin * drop overload general signal. * * It is used to track, within a time period, how many requests we've gotten * and how many were dropped. The overload general signal is decided from these * depending on some consensus parameters. */ typedef struct { /** Total number of ntor onionskin requested for an assessment period. */ uint64_t n_ntor_requested; /** Total number of dropped ntor onionskins for an assessment period. */ uint64_t n_ntor_dropped; /** When is the next assessment time of the general overload for ntor * onionskin drop. Once this time is reached, all stats are reset and this * time is set to the next assessment time. */ time_t next_assessment_time; } overload_onionskin_assessment_t; /** Keep track of the onionskin requests for an assessment period. */ static overload_onionskin_assessment_t overload_onionskin_assessment; /** * We combine ntorv3 and ntor into the same stat, so we must * use this function to covert the cell type to a stat index. */ static inline uint16_t onionskin_type_to_stat(uint16_t type) { if (type == ONION_HANDSHAKE_TYPE_NTOR_V3) { return ONION_HANDSHAKE_TYPE_NTOR; } if (BUG(type > MAX_ONION_STAT_TYPE)) { return MAX_ONION_STAT_TYPE; // use ntor if out of range } return type; } /** Assess our ntor handshake statistics and decide if we need to emit a * general overload signal. * * Regardless of overloaded or not, if the assessment time period has passed, * the stats are reset back to 0 and the assessment time period updated. * * This is called when a ntor handshake is _requested_ because we want to avoid * to have an assymetric situation where requested counter is reset to 0 but * then a drop happens leading to the drop counter being incremented while the * requested counter is 0. */ static void overload_general_onionskin_assessment(void) { /* Initialize the time. Should be done once. */ if (overload_onionskin_assessment.next_assessment_time == 0) { goto reset; } /* Not the time yet. */ if (overload_onionskin_assessment.next_assessment_time > approx_time()) { goto done; } /* Make sure we have enough requests to be able to make a proper assessment. * We want to avoid 1 single request/drop to trigger an overload as we want * at least the number of requests to be above the scale of our fraction. */ if (overload_onionskin_assessment.n_ntor_requested < OVERLOAD_ONIONSKIN_NTOR_PERCENT_SCALE) { goto done; } /* Lets see if we can signal a general overload. */ double fraction = (double) overload_onionskin_assessment.n_ntor_dropped / (double) overload_onionskin_assessment.n_ntor_requested; if (fraction >= overload_onionskin_ntor_fraction) { log_notice(LD_HIST, "General overload -> Ntor dropped (%" PRIu64 ") " "fraction %.4f%% is above threshold of %.4f%%", overload_onionskin_assessment.n_ntor_dropped, fraction * 100.0, overload_onionskin_ntor_fraction * 100.0); rep_hist_note_overload(OVERLOAD_GENERAL); } reset: /* Reset counters for the next period. */ overload_onionskin_assessment.n_ntor_dropped = 0; overload_onionskin_assessment.n_ntor_requested = 0; overload_onionskin_assessment.next_assessment_time = approx_time() + overload_onionskin_ntor_period_secs; done: return; } /** A new onionskin (using the type handshake) has arrived. */ void rep_hist_note_circuit_handshake_requested(uint16_t type) { uint16_t stat = onionskin_type_to_stat(type); onion_handshakes_requested[stat]++; /* Only relays get to record requested onionskins. */ if (stat == ONION_HANDSHAKE_TYPE_NTOR) { /* Assess if we've reached the overload general signal. */ overload_general_onionskin_assessment(); overload_onionskin_assessment.n_ntor_requested++; } } /** We've sent an onionskin (using the type handshake) to a * cpuworker. */ void rep_hist_note_circuit_handshake_assigned(uint16_t type) { onion_handshakes_assigned[onionskin_type_to_stat(type)]++; stats_n_onionskin_assigned[onionskin_type_to_stat(type)]++; } /** We've just drop an onionskin (using the type handshake) due to being * overloaded. */ void rep_hist_note_circuit_handshake_dropped(uint16_t type) { uint16_t stat = onionskin_type_to_stat(type); stats_n_onionskin_dropped[stat]++; /* Only relays get to record requested onionskins. */ if (stat == ONION_HANDSHAKE_TYPE_NTOR) { /* Note the dropped ntor in the overload assessment object. */ overload_onionskin_assessment.n_ntor_dropped++; } } /** Get the circuit handshake value that is requested. */ MOCK_IMPL(int, rep_hist_get_circuit_handshake_requested, (uint16_t type)) { return onion_handshakes_requested[onionskin_type_to_stat(type)]; } /** Get the circuit handshake value that is assigned. */ MOCK_IMPL(int, rep_hist_get_circuit_handshake_assigned, (uint16_t type)) { return onion_handshakes_assigned[onionskin_type_to_stat(type)]; } /** Get the total number of circuit handshake value that is assigned. */ MOCK_IMPL(uint64_t, rep_hist_get_circuit_n_handshake_assigned, (uint16_t type)) { return stats_n_onionskin_assigned[onionskin_type_to_stat(type)]; } /** Get the total number of circuit handshake value that is dropped. */ MOCK_IMPL(uint64_t, rep_hist_get_circuit_n_handshake_dropped, (uint16_t type)) { return stats_n_onionskin_dropped[onionskin_type_to_stat(type)]; } /** Log our onionskin statistics since the last time we were called. */ void rep_hist_log_circuit_handshake_stats(time_t now) { (void)now; log_notice(LD_HEARTBEAT, "Circuit handshake stats since last time: " "%d/%d TAP, %d/%d NTor.", onion_handshakes_assigned[ONION_HANDSHAKE_TYPE_TAP], onion_handshakes_requested[ONION_HANDSHAKE_TYPE_TAP], onion_handshakes_assigned[ONION_HANDSHAKE_TYPE_NTOR], onion_handshakes_requested[ONION_HANDSHAKE_TYPE_NTOR]); memset(onion_handshakes_assigned, 0, sizeof(onion_handshakes_assigned)); memset(onion_handshakes_requested, 0, sizeof(onion_handshakes_requested)); } /* Hidden service statistics section */ /** Start of the current hidden service stats interval or 0 if we're * not collecting hidden service statistics. */ static time_t start_of_hs_v2_stats_interval; /** Our v2 statistics structure singleton. */ static hs_v2_stats_t *hs_v2_stats = NULL; /** HSv2 stats */ /** Allocate, initialize and return an hs_v2_stats_t structure. */ static hs_v2_stats_t * hs_v2_stats_new(void) { hs_v2_stats_t *new_hs_v2_stats = tor_malloc_zero(sizeof(hs_v2_stats_t)); return new_hs_v2_stats; } #define hs_v2_stats_free(val) \ FREE_AND_NULL(hs_v2_stats_t, hs_v2_stats_free_, (val)) /** Free an hs_v2_stats_t structure. */ static void hs_v2_stats_free_(hs_v2_stats_t *victim_hs_v2_stats) { if (!victim_hs_v2_stats) { return; } tor_free(victim_hs_v2_stats); } /** Clear history of hidden service statistics and set the measurement * interval start to now. */ static void rep_hist_reset_hs_v2_stats(time_t now) { if (!hs_v2_stats) { hs_v2_stats = hs_v2_stats_new(); } hs_v2_stats->rp_v2_relay_cells_seen = 0; start_of_hs_v2_stats_interval = now; } /*** HSv3 stats ******/ /** Start of the current hidden service stats interval or 0 if we're not * collecting hidden service statistics. * * This is particularly important for v3 statistics since this variable * controls the start time of initial v3 stats collection. It's initialized by * rep_hist_hs_stats_init() to the next time period start (i.e. 12:00UTC), and * should_collect_v3_stats() ensures that functions that collect v3 stats do * not do so sooner than that. * * Collecting stats from 12:00UTC to 12:00UTC is extremely important for v3 * stats because rep_hist_hsdir_stored_maybe_new_v3_onion() uses the blinded * key of each onion service as its double-counting index. Onion services * rotate their descriptor at around 00:00UTC which means that their blinded * key also changes around that time. However the precise time that onion * services rotate their descriptors is actually when they fetch a new * 00:00UTC consensus and that happens at a random time (e.g. it can even * happen at 02:00UTC). This means that if we started keeping v3 stats at * around 00:00UTC we wouldn't be able to tell when onion services change * their blinded key and hence we would double count an unpredictable amount * of them (for example, if an onion service fetches the 00:00UTC consensus at * 01:00UTC it would upload to its old HSDir at 00:45UTC, and then to a * different HSDir at 01:50UTC). * * For this reason, we start collecting statistics at 12:00UTC. This way we * know that by the time we stop collecting statistics for that time period 24 * hours later, all the onion services have switched to their new blinded * key. This way we can predict much better how much double counting has been * performed. */ static time_t start_of_hs_v3_stats_interval; /** Our v3 statistics structure singleton. */ static hs_v3_stats_t *hs_v3_stats = NULL; /** Allocate, initialize and return an hs_v3_stats_t structure. */ static hs_v3_stats_t * hs_v3_stats_new(void) { hs_v3_stats_t *new_hs_v3_stats = tor_malloc_zero(sizeof(hs_v3_stats_t)); new_hs_v3_stats->v3_onions_seen_this_period = digest256map_new(); return new_hs_v3_stats; } #define hs_v3_stats_free(val) \ FREE_AND_NULL(hs_v3_stats_t, hs_v3_stats_free_, (val)) /** Free an hs_v3_stats_t structure. */ static void hs_v3_stats_free_(hs_v3_stats_t *victim_hs_v3_stats) { if (!victim_hs_v3_stats) { return; } digest256map_free(victim_hs_v3_stats->v3_onions_seen_this_period, NULL); tor_free(victim_hs_v3_stats); } /** Clear history of hidden service statistics and set the measurement * interval start to now. */ static void rep_hist_reset_hs_v3_stats(time_t now) { if (!hs_v3_stats) { hs_v3_stats = hs_v3_stats_new(); } digest256map_free(hs_v3_stats->v3_onions_seen_this_period, NULL); hs_v3_stats->v3_onions_seen_this_period = digest256map_new(); hs_v3_stats->rp_v3_relay_cells_seen = 0; start_of_hs_v3_stats_interval = now; } /** Return true if it's a good time to collect v3 stats. * * v3 stats have a strict stats collection period (from 12:00UTC to 12:00UTC * on the real network). We don't want to collect statistics if (for example) * we just booted and it's 03:00UTC; we will wait until 12:00UTC before we * start collecting statistics to make sure that the final result represents * the whole collection period. This behavior is controlled by * rep_hist_hs_stats_init(). */ MOCK_IMPL(STATIC bool, should_collect_v3_stats,(void)) { return start_of_hs_v3_stats_interval <= approx_time(); } /** We just received a new descriptor with blinded_key. See if we've * seen this blinded key before, and if not add it to the stats. */ void rep_hist_hsdir_stored_maybe_new_v3_onion(const uint8_t *blinded_key) { /* Return early if we don't collect HSv3 stats, or if it's not yet the time * to collect them. */ if (!hs_v3_stats || !should_collect_v3_stats()) { return; } bool seen_before = !!digest256map_get(hs_v3_stats->v3_onions_seen_this_period, blinded_key); log_info(LD_GENERAL, "Considering v3 descriptor with %s (%sseen before)", safe_str(hex_str((char*)blinded_key, 32)), seen_before ? "" : "not "); /* Count it if we haven't seen it before. */ if (!seen_before) { digest256map_set(hs_v3_stats->v3_onions_seen_this_period, blinded_key, (void*)(uintptr_t)1); } } /** We saw a new HS relay cell: count it! * If is_v2 is set then it's a v2 RP cell, otherwise it's a v3. */ void rep_hist_seen_new_rp_cell(bool is_v2) { log_debug(LD_GENERAL, "New RP cell (%d)", is_v2); if (is_v2 && hs_v2_stats) { hs_v2_stats->rp_v2_relay_cells_seen++; } else if (!is_v2 && hs_v3_stats && should_collect_v3_stats()) { hs_v3_stats->rp_v3_relay_cells_seen++; } } /** Generic HS stats code */ /** Initialize v2 and v3 hidden service statistics. */ void rep_hist_hs_stats_init(time_t now) { if (!hs_v2_stats) { hs_v2_stats = hs_v2_stats_new(); } /* Start collecting v2 stats straight away */ start_of_hs_v2_stats_interval = now; if (!hs_v3_stats) { hs_v3_stats = hs_v3_stats_new(); } /* Start collecting v3 stats at the next 12:00 UTC */ start_of_hs_v3_stats_interval = hs_get_start_time_of_next_time_period(now); } /** Stop collecting hidden service stats in a way that we can re-start * doing so in rep_hist_buffer_stats_init(). */ void rep_hist_hs_stats_term(void) { rep_hist_reset_hs_v2_stats(0); rep_hist_reset_hs_v3_stats(0); } /** Stats reporting code */ /* The number of cells that are supposed to be hidden from the adversary * by adding noise from the Laplace distribution. This value, divided by * EPSILON, is Laplace parameter b. It must be greater than 0. */ #define REND_CELLS_DELTA_F 2048 /* Security parameter for obfuscating number of cells with a value between * ]0.0, 1.0]. Smaller values obfuscate observations more, but at the same * time make statistics less usable. */ #define REND_CELLS_EPSILON 0.3 /* The number of cells that are supposed to be hidden from the adversary * by rounding up to the next multiple of this number. */ #define REND_CELLS_BIN_SIZE 1024 /* The number of service identities that are supposed to be hidden from the * adversary by adding noise from the Laplace distribution. This value, * divided by EPSILON, is Laplace parameter b. It must be greater than 0. */ #define ONIONS_SEEN_DELTA_F 8 /* Security parameter for obfuscating number of service identities with a * value between ]0.0, 1.0]. Smaller values obfuscate observations more, but * at the same time make statistics less usable. */ #define ONIONS_SEEN_EPSILON 0.3 /* The number of service identities that are supposed to be hidden from * the adversary by rounding up to the next multiple of this number. */ #define ONIONS_SEEN_BIN_SIZE 8 /** Allocate and return a string containing hidden service stats that * are meant to be placed in the extra-info descriptor. * * Function works for both v2 and v3 stats depending on is_v3. */ STATIC char * rep_hist_format_hs_stats(time_t now, bool is_v3) { char t[ISO_TIME_LEN+1]; char *hs_stats_string; int64_t obfuscated_onions_seen, obfuscated_cells_seen; uint64_t rp_cells_seen = is_v3 ? hs_v3_stats->rp_v3_relay_cells_seen : hs_v2_stats->rp_v2_relay_cells_seen; size_t onions_seen = is_v3 ? digest256map_size(hs_v3_stats->v3_onions_seen_this_period) : 0; time_t start_of_hs_stats_interval = is_v3 ? start_of_hs_v3_stats_interval : start_of_hs_v2_stats_interval; uint64_t rounded_cells_seen = round_uint64_to_next_multiple_of(rp_cells_seen, REND_CELLS_BIN_SIZE); rounded_cells_seen = MIN(rounded_cells_seen, INT64_MAX); obfuscated_cells_seen = add_laplace_noise((int64_t)rounded_cells_seen, crypto_rand_double(), REND_CELLS_DELTA_F, REND_CELLS_EPSILON); uint64_t rounded_onions_seen = round_uint64_to_next_multiple_of(onions_seen, ONIONS_SEEN_BIN_SIZE); rounded_onions_seen = MIN(rounded_onions_seen, INT64_MAX); obfuscated_onions_seen = add_laplace_noise((int64_t)rounded_onions_seen, crypto_rand_double(), ONIONS_SEEN_DELTA_F, ONIONS_SEEN_EPSILON); format_iso_time(t, now); tor_asprintf(&hs_stats_string, "%s %s (%u s)\n" "%s %"PRId64" delta_f=%d epsilon=%.2f bin_size=%d\n" "%s %"PRId64" delta_f=%d epsilon=%.2f bin_size=%d\n", is_v3 ? "hidserv-v3-stats-end" : "hidserv-stats-end", t, (unsigned) (now - start_of_hs_stats_interval), is_v3 ? "hidserv-rend-v3-relayed-cells" : "hidserv-rend-relayed-cells", obfuscated_cells_seen, REND_CELLS_DELTA_F, REND_CELLS_EPSILON, REND_CELLS_BIN_SIZE, is_v3 ? "hidserv-dir-v3-onions-seen" :"hidserv-dir-onions-seen", obfuscated_onions_seen, ONIONS_SEEN_DELTA_F, ONIONS_SEEN_EPSILON, ONIONS_SEEN_BIN_SIZE); return hs_stats_string; } /** If 24 hours have passed since the beginning of the current HS * stats period, write buffer stats to $DATADIR/stats/hidserv-v3-stats * (possibly overwriting an existing file) and reset counters. Return * when we would next want to write buffer stats or 0 if we never want to * write. Function works for both v2 and v3 stats depending on is_v3. */ time_t rep_hist_hs_stats_write(time_t now, bool is_v3) { char *str = NULL; time_t start_of_hs_stats_interval = is_v3 ? start_of_hs_v3_stats_interval : start_of_hs_v2_stats_interval; if (!start_of_hs_stats_interval) { return 0; /* Not initialized. */ } if (start_of_hs_stats_interval + WRITE_STATS_INTERVAL > now) { goto done; /* Not ready to write */ } /* Generate history string. */ str = rep_hist_format_hs_stats(now, is_v3); /* Reset HS history. */ if (is_v3) { rep_hist_reset_hs_v3_stats(now); } else { rep_hist_reset_hs_v2_stats(now); } /* Try to write to disk. */ if (!check_or_create_data_subdir("stats")) { write_to_data_subdir("stats", is_v3 ? "hidserv-v3-stats" : "hidserv-stats", str, "hidden service stats"); } done: tor_free(str); return start_of_hs_stats_interval + WRITE_STATS_INTERVAL; } static uint64_t link_proto_count[MAX_LINK_PROTO+1][2]; /** Note that we negotiated link protocol version link_proto, on * a connection that started here iff started_here is true. */ void rep_hist_note_negotiated_link_proto(unsigned link_proto, int started_here) { started_here = !!started_here; /* force to 0 or 1 */ if (link_proto > MAX_LINK_PROTO) { log_warn(LD_BUG, "Can't log link protocol %u", link_proto); return; } link_proto_count[link_proto][started_here]++; } /** * Update the maximum count of total pending channel padding timers * in this period. */ void rep_hist_padding_count_timers(uint64_t num_timers) { if (num_timers > padding_current.maximum_chanpad_timers) { padding_current.maximum_chanpad_timers = num_timers; } } /** * Count a cell that we sent for padding overhead statistics. * * RELAY_COMMAND_DROP and CELL_PADDING are accounted separately. Both should be * counted for PADDING_TYPE_TOTAL. */ void rep_hist_padding_count_write(padding_type_t type) { switch (type) { case PADDING_TYPE_DROP: padding_current.write_drop_cell_count++; break; case PADDING_TYPE_CELL: padding_current.write_pad_cell_count++; break; case PADDING_TYPE_TOTAL: padding_current.write_cell_count++; break; case PADDING_TYPE_ENABLED_TOTAL: padding_current.enabled_write_cell_count++; break; case PADDING_TYPE_ENABLED_CELL: padding_current.enabled_write_pad_cell_count++; break; } } /** * Count a cell that we've received for padding overhead statistics. * * RELAY_COMMAND_DROP and CELL_PADDING are accounted separately. Both should be * counted for PADDING_TYPE_TOTAL. */ void rep_hist_padding_count_read(padding_type_t type) { switch (type) { case PADDING_TYPE_DROP: padding_current.read_drop_cell_count++; break; case PADDING_TYPE_CELL: padding_current.read_pad_cell_count++; break; case PADDING_TYPE_TOTAL: padding_current.read_cell_count++; break; case PADDING_TYPE_ENABLED_TOTAL: padding_current.enabled_read_cell_count++; break; case PADDING_TYPE_ENABLED_CELL: padding_current.enabled_read_pad_cell_count++; break; } } /** * Reset our current padding statistics. Called once every 24 hours. */ void rep_hist_reset_padding_counts(void) { memset(&padding_current, 0, sizeof(padding_current)); } /** * Copy our current cell counts into a structure for listing in our * extra-info descriptor. Also perform appropriate rounding and redaction. * * This function is called once every 24 hours. */ #define MIN_CELL_COUNTS_TO_PUBLISH 1 #define ROUND_CELL_COUNTS_TO 10000 void rep_hist_prep_published_padding_counts(time_t now) { memcpy(&padding_published, &padding_current, sizeof(padding_published)); if (padding_published.read_cell_count < MIN_CELL_COUNTS_TO_PUBLISH || padding_published.write_cell_count < MIN_CELL_COUNTS_TO_PUBLISH) { memset(&padding_published, 0, sizeof(padding_published)); return; } format_iso_time(padding_published.first_published_at, now); #define ROUND_AND_SET_COUNT(x) (x) = round_uint64_to_next_multiple_of((x), \ ROUND_CELL_COUNTS_TO) ROUND_AND_SET_COUNT(padding_published.read_pad_cell_count); ROUND_AND_SET_COUNT(padding_published.write_pad_cell_count); ROUND_AND_SET_COUNT(padding_published.read_drop_cell_count); ROUND_AND_SET_COUNT(padding_published.write_drop_cell_count); ROUND_AND_SET_COUNT(padding_published.write_cell_count); ROUND_AND_SET_COUNT(padding_published.read_cell_count); ROUND_AND_SET_COUNT(padding_published.enabled_read_cell_count); ROUND_AND_SET_COUNT(padding_published.enabled_read_pad_cell_count); ROUND_AND_SET_COUNT(padding_published.enabled_write_cell_count); ROUND_AND_SET_COUNT(padding_published.enabled_write_pad_cell_count); #undef ROUND_AND_SET_COUNT } /** * Returns an allocated string for extra-info documents for publishing * padding statistics from the last 24 hour interval. */ char * rep_hist_get_padding_count_lines(void) { char *result = NULL; if (!padding_published.read_cell_count || !padding_published.write_cell_count) { return NULL; } tor_asprintf(&result, "padding-counts %s (%d s)" " bin-size=%"PRIu64 " write-drop=%"PRIu64 " write-pad=%"PRIu64 " write-total=%"PRIu64 " read-drop=%"PRIu64 " read-pad=%"PRIu64 " read-total=%"PRIu64 " enabled-read-pad=%"PRIu64 " enabled-read-total=%"PRIu64 " enabled-write-pad=%"PRIu64 " enabled-write-total=%"PRIu64 " max-chanpad-timers=%"PRIu64 "\n", padding_published.first_published_at, REPHIST_CELL_PADDING_COUNTS_INTERVAL, (uint64_t)ROUND_CELL_COUNTS_TO, (padding_published.write_drop_cell_count), (padding_published.write_pad_cell_count), (padding_published.write_cell_count), (padding_published.read_drop_cell_count), (padding_published.read_pad_cell_count), (padding_published.read_cell_count), (padding_published.enabled_read_pad_cell_count), (padding_published.enabled_read_cell_count), (padding_published.enabled_write_pad_cell_count), (padding_published.enabled_write_cell_count), (padding_published.maximum_chanpad_timers) ); return result; } /** Log a heartbeat message explaining how many connections of each link * protocol version we have used. */ void rep_hist_log_link_protocol_counts(void) { smartlist_t *lines = smartlist_new(); for (int i = 1; i <= MAX_LINK_PROTO; i++) { char *line = NULL; tor_asprintf(&line, "initiated %"PRIu64" and received " "%"PRIu64" v%d connections", link_proto_count[i][1], link_proto_count[i][0], i); smartlist_add(lines, line); } char *log_line = smartlist_join_strings(lines, "; ", 0, NULL); log_notice(LD_HEARTBEAT, "Since startup we %s.", log_line); SMARTLIST_FOREACH(lines, char *, s, tor_free(s)); smartlist_free(lines); tor_free(log_line); } /** Free all storage held by the OR/link history caches, by the * bandwidth history arrays, by the port history, or by statistics . */ void rep_hist_free_all(void) { hs_v2_stats_free(hs_v2_stats); hs_v3_stats_free(hs_v3_stats); digestmap_free(history_map, free_or_history); tor_free(exit_bytes_read); tor_free(exit_bytes_written); tor_free(exit_streams); predicted_ports_free_all(); conn_stats_free_all(); if (circuits_for_buffer_stats) { SMARTLIST_FOREACH(circuits_for_buffer_stats, circ_buffer_stats_t *, s, tor_free(s)); smartlist_free(circuits_for_buffer_stats); circuits_for_buffer_stats = NULL; } rep_hist_desc_stats_term(); total_descriptor_downloads = 0; tor_assert_nonfatal(rephist_total_alloc == 0); tor_assert_nonfatal_once(rephist_total_num == 0); } /** Called just before the consensus will be replaced. Update the consensus * parameters in case they changed. */ void rep_hist_consensus_has_changed(const networkstatus_t *ns) { overload_onionskin_ntor_fraction = networkstatus_get_param(ns, "overload_onionskin_ntor_scale_percent", OVERLOAD_ONIONSKIN_NTOR_PERCENT_DEFAULT, OVERLOAD_ONIONSKIN_NTOR_PERCENT_MIN, OVERLOAD_ONIONSKIN_NTOR_PERCENT_MAX) / OVERLOAD_ONIONSKIN_NTOR_PERCENT_SCALE / 100.0; overload_onionskin_ntor_period_secs = networkstatus_get_param(ns, "overload_onionskin_ntor_period_secs", OVERLOAD_ONIONSKIN_NTOR_PERIOD_SECS_DEFAULT, OVERLOAD_ONIONSKIN_NTOR_PERIOD_SECS_MIN, OVERLOAD_ONIONSKIN_NTOR_PERIOD_SECS_MAX); } #ifdef TOR_UNIT_TESTS /* only exists for unit tests: get HSv2 stats object */ const hs_v2_stats_t * rep_hist_get_hs_v2_stats(void) { return hs_v2_stats; } /* only exists for unit tests: get HSv2 stats object */ const hs_v3_stats_t * rep_hist_get_hs_v3_stats(void) { return hs_v3_stats; } #endif /* defined(TOR_UNIT_TESTS) */