/* Copyright (c) 2016-2021, The Tor Project, Inc. */ /* See LICENSE for licensing information */ /** * \file hs_descriptor.c * \brief Handle hidden service descriptor encoding/decoding. * * \details * Here is a graphical depiction of an HS descriptor and its layers: * * +------------------------------------------------------+ * |DESCRIPTOR HEADER: | * | hs-descriptor 3 | * | descriptor-lifetime 180 | * | ... | * | superencrypted | * |+---------------------------------------------------+ | * ||SUPERENCRYPTED LAYER (aka OUTER ENCRYPTED LAYER): | | * || desc-auth-type x25519 | | * || desc-auth-ephemeral-key | | * || auth-client | | * || auth-client | | * || ... | | * || encrypted | | * ||+-------------------------------------------------+| | * |||ENCRYPTED LAYER (aka INNER ENCRYPTED LAYER): || | * ||| create2-formats || | * ||| intro-auth-required || | * ||| introduction-point || | * ||| introduction-point || | * ||| ... || | * ||+-------------------------------------------------+| | * |+---------------------------------------------------+ | * +------------------------------------------------------+ * * The DESCRIPTOR HEADER section is completely unencrypted and contains generic * descriptor metadata. * * The SUPERENCRYPTED LAYER section is the first layer of encryption, and it's * encrypted using the blinded public key of the hidden service to protect * against entities who don't know its onion address. The clients of the hidden * service know its onion address and blinded public key, whereas third-parties * (like HSDirs) don't know it (except if it's a public hidden service). * * The ENCRYPTED LAYER section is the second layer of encryption, and it's * encrypted using the client authorization key material (if those exist). When * client authorization is enabled, this second layer of encryption protects * the descriptor content from unauthorized entities. If client authorization * is disabled, this second layer of encryption does not provide any extra * security but is still present. The plaintext of this layer contains all the * information required to connect to the hidden service like its list of * introduction points. **/ /* For unit tests.*/ #define HS_DESCRIPTOR_PRIVATE #include #include "core/or/or.h" #include "app/config/config.h" #include "trunnel/ed25519_cert.h" /* Trunnel interface. */ #include "feature/hs/hs_descriptor.h" #include "core/or/circuitbuild.h" #include "core/or/congestion_control_common.h" #include "core/or/protover.h" #include "lib/crypt_ops/crypto_rand.h" #include "lib/crypt_ops/crypto_util.h" #include "feature/dirparse/parsecommon.h" #include "feature/hs/hs_cache.h" #include "feature/hs/hs_config.h" #include "feature/nodelist/torcert.h" /* tor_cert_encode_ed22519() */ #include "lib/memarea/memarea.h" #include "lib/crypt_ops/crypto_format.h" #include "core/or/versions.h" #include "core/or/extend_info_st.h" /* Constant string value used for the descriptor format. */ #define str_hs_desc "hs-descriptor" #define str_desc_cert "descriptor-signing-key-cert" #define str_rev_counter "revision-counter" #define str_superencrypted "superencrypted" #define str_encrypted "encrypted" #define str_signature "signature" #define str_lifetime "descriptor-lifetime" /* Constant string value for the encrypted part of the descriptor. */ #define str_create2_formats "create2-formats" #define str_intro_auth_required "intro-auth-required" #define str_single_onion "single-onion-service" #define str_intro_point "introduction-point" #define str_ip_onion_key "onion-key" #define str_ip_auth_key "auth-key" #define str_ip_enc_key "enc-key" #define str_ip_enc_key_cert "enc-key-cert" #define str_ip_legacy_key "legacy-key" #define str_ip_legacy_key_cert "legacy-key-cert" #define str_intro_point_start "\n" str_intro_point " " #define str_flow_control "flow-control" /* Constant string value for the construction to encrypt the encrypted data * section. */ #define str_enc_const_superencryption "hsdir-superencrypted-data" #define str_enc_const_encryption "hsdir-encrypted-data" /* Prefix required to compute/verify HS desc signatures */ #define str_desc_sig_prefix "Tor onion service descriptor sig v3" #define str_desc_auth_type "desc-auth-type" #define str_desc_auth_key "desc-auth-ephemeral-key" #define str_desc_auth_client "auth-client" #define str_encrypted "encrypted" /** Authentication supported types. */ static const struct { hs_desc_auth_type_t type; const char *identifier; } intro_auth_types[] = { { HS_DESC_AUTH_ED25519, "ed25519" }, /* Indicate end of array. */ { 0, NULL } }; /** Descriptor ruleset. */ static token_rule_t hs_desc_v3_token_table[] = { T1_START(str_hs_desc, R_HS_DESCRIPTOR, EQ(1), NO_OBJ), T1(str_lifetime, R3_DESC_LIFETIME, EQ(1), NO_OBJ), T1(str_desc_cert, R3_DESC_SIGNING_CERT, NO_ARGS, NEED_OBJ), T1(str_rev_counter, R3_REVISION_COUNTER, EQ(1), NO_OBJ), T1(str_superencrypted, R3_SUPERENCRYPTED, NO_ARGS, NEED_OBJ), T1_END(str_signature, R3_SIGNATURE, EQ(1), NO_OBJ), END_OF_TABLE }; /** Descriptor ruleset for the superencrypted section. */ static token_rule_t hs_desc_superencrypted_v3_token_table[] = { T1_START(str_desc_auth_type, R3_DESC_AUTH_TYPE, GE(1), NO_OBJ), T1(str_desc_auth_key, R3_DESC_AUTH_KEY, GE(1), NO_OBJ), T1N(str_desc_auth_client, R3_DESC_AUTH_CLIENT, GE(3), NO_OBJ), T1(str_encrypted, R3_ENCRYPTED, NO_ARGS, NEED_OBJ), END_OF_TABLE }; /** Descriptor ruleset for the encrypted section. */ static token_rule_t hs_desc_encrypted_v3_token_table[] = { T1_START(str_create2_formats, R3_CREATE2_FORMATS, CONCAT_ARGS, NO_OBJ), T01(str_intro_auth_required, R3_INTRO_AUTH_REQUIRED, GE(1), NO_OBJ), T01(str_single_onion, R3_SINGLE_ONION_SERVICE, ARGS, NO_OBJ), T01(str_flow_control, R3_FLOW_CONTROL, GE(2), NO_OBJ), END_OF_TABLE }; /** Descriptor ruleset for the introduction points section. */ static token_rule_t hs_desc_intro_point_v3_token_table[] = { T1_START(str_intro_point, R3_INTRODUCTION_POINT, EQ(1), NO_OBJ), T1N(str_ip_onion_key, R3_INTRO_ONION_KEY, GE(2), OBJ_OK), T1(str_ip_auth_key, R3_INTRO_AUTH_KEY, NO_ARGS, NEED_OBJ), T1(str_ip_enc_key, R3_INTRO_ENC_KEY, GE(2), OBJ_OK), T1(str_ip_enc_key_cert, R3_INTRO_ENC_KEY_CERT, ARGS, OBJ_OK), T01(str_ip_legacy_key, R3_INTRO_LEGACY_KEY, ARGS, NEED_KEY_1024), T01(str_ip_legacy_key_cert, R3_INTRO_LEGACY_KEY_CERT, ARGS, OBJ_OK), END_OF_TABLE }; /** Using a key, salt and encrypted payload, build a MAC and put it in mac_out. * We use SHA3-256 for the MAC computation. * This function can't fail. */ static void build_mac(const uint8_t *mac_key, size_t mac_key_len, const uint8_t *salt, size_t salt_len, const uint8_t *encrypted, size_t encrypted_len, uint8_t *mac_out, size_t mac_len) { crypto_digest_t *digest; const uint64_t mac_len_netorder = tor_htonll(mac_key_len); const uint64_t salt_len_netorder = tor_htonll(salt_len); tor_assert(mac_key); tor_assert(salt); tor_assert(encrypted); tor_assert(mac_out); digest = crypto_digest256_new(DIGEST_SHA3_256); /* As specified in section 2.5 of proposal 224, first add the mac key * then add the salt first and then the encrypted section. */ crypto_digest_add_bytes(digest, (const char *) &mac_len_netorder, 8); crypto_digest_add_bytes(digest, (const char *) mac_key, mac_key_len); crypto_digest_add_bytes(digest, (const char *) &salt_len_netorder, 8); crypto_digest_add_bytes(digest, (const char *) salt, salt_len); crypto_digest_add_bytes(digest, (const char *) encrypted, encrypted_len); crypto_digest_get_digest(digest, (char *) mac_out, mac_len); crypto_digest_free(digest); } /** Using a secret data and a given descriptor object, build the secret * input needed for the KDF. * * secret_input = SECRET_DATA | subcredential | INT_8(revision_counter) * * Then, set the newly allocated buffer in secret_input_out and return the * length of the buffer. */ static size_t build_secret_input(const hs_descriptor_t *desc, const uint8_t *secret_data, size_t secret_data_len, uint8_t **secret_input_out) { size_t offset = 0; size_t secret_input_len = secret_data_len + DIGEST256_LEN + sizeof(uint64_t); uint8_t *secret_input = NULL; tor_assert(desc); tor_assert(secret_data); tor_assert(secret_input_out); secret_input = tor_malloc_zero(secret_input_len); /* Copy the secret data. */ memcpy(secret_input, secret_data, secret_data_len); offset += secret_data_len; /* Copy subcredential. */ memcpy(secret_input + offset, desc->subcredential.subcred, DIGEST256_LEN); offset += DIGEST256_LEN; /* Copy revision counter value. */ set_uint64(secret_input + offset, tor_htonll(desc->plaintext_data.revision_counter)); offset += sizeof(uint64_t); tor_assert(secret_input_len == offset); *secret_input_out = secret_input; return secret_input_len; } /** Do the KDF construction and put the resulting data in key_out which is of * key_out_len length. It uses SHAKE-256 as specified in the spec. */ static void build_kdf_key(const hs_descriptor_t *desc, const uint8_t *secret_data, size_t secret_data_len, const uint8_t *salt, size_t salt_len, uint8_t *key_out, size_t key_out_len, int is_superencrypted_layer) { uint8_t *secret_input = NULL; size_t secret_input_len; crypto_xof_t *xof; tor_assert(desc); tor_assert(secret_data); tor_assert(salt); tor_assert(key_out); /* Build the secret input for the KDF computation. */ secret_input_len = build_secret_input(desc, secret_data, secret_data_len, &secret_input); xof = crypto_xof_new(); /* Feed our KDF. [SHAKE it like a polaroid picture --Yawning]. */ crypto_xof_add_bytes(xof, secret_input, secret_input_len); crypto_xof_add_bytes(xof, salt, salt_len); /* Feed in the right string constant based on the desc layer */ if (is_superencrypted_layer) { crypto_xof_add_bytes(xof, (const uint8_t *) str_enc_const_superencryption, strlen(str_enc_const_superencryption)); } else { crypto_xof_add_bytes(xof, (const uint8_t *) str_enc_const_encryption, strlen(str_enc_const_encryption)); } /* Eat from our KDF. */ crypto_xof_squeeze_bytes(xof, key_out, key_out_len); crypto_xof_free(xof); memwipe(secret_input, 0, secret_input_len); tor_free(secret_input); } /** Using the given descriptor, secret data, and salt, run it through our * KDF function and then extract a secret key in key_out, the IV in iv_out * and MAC in mac_out. This function can't fail. */ static void build_secret_key_iv_mac(const hs_descriptor_t *desc, const uint8_t *secret_data, size_t secret_data_len, const uint8_t *salt, size_t salt_len, uint8_t *key_out, size_t key_len, uint8_t *iv_out, size_t iv_len, uint8_t *mac_out, size_t mac_len, int is_superencrypted_layer) { size_t offset = 0; uint8_t kdf_key[HS_DESC_ENCRYPTED_KDF_OUTPUT_LEN]; tor_assert(desc); tor_assert(secret_data); tor_assert(salt); tor_assert(key_out); tor_assert(iv_out); tor_assert(mac_out); build_kdf_key(desc, secret_data, secret_data_len, salt, salt_len, kdf_key, sizeof(kdf_key), is_superencrypted_layer); /* Copy the bytes we need for both the secret key and IV. */ memcpy(key_out, kdf_key, key_len); offset += key_len; memcpy(iv_out, kdf_key + offset, iv_len); offset += iv_len; memcpy(mac_out, kdf_key + offset, mac_len); /* Extra precaution to make sure we are not out of bound. */ tor_assert((offset + mac_len) == sizeof(kdf_key)); memwipe(kdf_key, 0, sizeof(kdf_key)); } /* === ENCODING === */ /** Encode the given link specifier objects into a newly allocated string. * This can't fail so caller can always assume a valid string being * returned. */ STATIC char * encode_link_specifiers(const smartlist_t *specs) { char *encoded_b64 = NULL; link_specifier_list_t *lslist = link_specifier_list_new(); tor_assert(specs); /* No link specifiers is a code flow error, can't happen. */ tor_assert(smartlist_len(specs) > 0); tor_assert(smartlist_len(specs) <= UINT8_MAX); link_specifier_list_set_n_spec(lslist, smartlist_len(specs)); SMARTLIST_FOREACH_BEGIN(specs, const link_specifier_t *, spec) { link_specifier_t *ls = link_specifier_dup(spec); tor_assert(ls); link_specifier_list_add_spec(lslist, ls); } SMARTLIST_FOREACH_END(spec); { uint8_t *encoded; ssize_t encoded_len, encoded_b64_len, ret; encoded_len = link_specifier_list_encoded_len(lslist); tor_assert(encoded_len > 0); encoded = tor_malloc_zero(encoded_len); ret = link_specifier_list_encode(encoded, encoded_len, lslist); tor_assert(ret == encoded_len); /* Base64 encode our binary format. Add extra NUL byte for the base64 * encoded value. */ encoded_b64_len = base64_encode_size(encoded_len, 0) + 1; encoded_b64 = tor_malloc_zero(encoded_b64_len); ret = base64_encode(encoded_b64, encoded_b64_len, (const char *) encoded, encoded_len, 0); tor_assert(ret == (encoded_b64_len - 1)); tor_free(encoded); } link_specifier_list_free(lslist); return encoded_b64; } /** Encode an introduction point legacy key and certificate. Return a newly * allocated string with it. On failure, return NULL. */ static char * encode_legacy_key(const hs_desc_intro_point_t *ip) { char *key_str, b64_cert[256], *encoded = NULL; size_t key_str_len; tor_assert(ip); /* Encode cross cert. */ if (base64_encode(b64_cert, sizeof(b64_cert), (const char *) ip->legacy.cert.encoded, ip->legacy.cert.len, BASE64_ENCODE_MULTILINE) < 0) { log_warn(LD_REND, "Unable to encode legacy crosscert."); goto done; } /* Convert the encryption key to PEM format NUL terminated. */ if (crypto_pk_write_public_key_to_string(ip->legacy.key, &key_str, &key_str_len) < 0) { log_warn(LD_REND, "Unable to encode legacy encryption key."); goto done; } tor_asprintf(&encoded, "%s \n%s" /* Newline is added by the call above. */ "%s\n" "-----BEGIN CROSSCERT-----\n" "%s" "-----END CROSSCERT-----", str_ip_legacy_key, key_str, str_ip_legacy_key_cert, b64_cert); tor_free(key_str); done: return encoded; } /** Encode an introduction point encryption key and certificate. Return a newly * allocated string with it. On failure, return NULL. */ static char * encode_enc_key(const hs_desc_intro_point_t *ip) { char *encoded = NULL, *encoded_cert; char key_b64[CURVE25519_BASE64_PADDED_LEN + 1]; tor_assert(ip); /* Base64 encode the encryption key for the "enc-key" field. */ curve25519_public_to_base64(key_b64, &ip->enc_key, true); if (tor_cert_encode_ed22519(ip->enc_key_cert, &encoded_cert) < 0) { goto done; } tor_asprintf(&encoded, "%s ntor %s\n" "%s\n%s", str_ip_enc_key, key_b64, str_ip_enc_key_cert, encoded_cert); tor_free(encoded_cert); done: return encoded; } /** Encode an introduction point onion key. Return a newly allocated string * with it. Can not fail. */ static char * encode_onion_key(const hs_desc_intro_point_t *ip) { char *encoded = NULL; char key_b64[CURVE25519_BASE64_PADDED_LEN + 1]; tor_assert(ip); /* Base64 encode the encryption key for the "onion-key" field. */ curve25519_public_to_base64(key_b64, &ip->onion_key, true); tor_asprintf(&encoded, "%s ntor %s", str_ip_onion_key, key_b64); return encoded; } /** Encode an introduction point object and return a newly allocated string * with it. On failure, return NULL. */ static char * encode_intro_point(const ed25519_public_key_t *sig_key, const hs_desc_intro_point_t *ip) { char *encoded_ip = NULL; smartlist_t *lines = smartlist_new(); tor_assert(ip); tor_assert(sig_key); /* Encode link specifier. */ { char *ls_str = encode_link_specifiers(ip->link_specifiers); smartlist_add_asprintf(lines, "%s %s", str_intro_point, ls_str); tor_free(ls_str); } /* Onion key encoding. */ { char *encoded_onion_key = encode_onion_key(ip); if (encoded_onion_key == NULL) { goto err; } smartlist_add_asprintf(lines, "%s", encoded_onion_key); tor_free(encoded_onion_key); } /* Authentication key encoding. */ { char *encoded_cert; if (tor_cert_encode_ed22519(ip->auth_key_cert, &encoded_cert) < 0) { goto err; } smartlist_add_asprintf(lines, "%s\n%s", str_ip_auth_key, encoded_cert); tor_free(encoded_cert); } /* Encryption key encoding. */ { char *encoded_enc_key = encode_enc_key(ip); if (encoded_enc_key == NULL) { goto err; } smartlist_add_asprintf(lines, "%s", encoded_enc_key); tor_free(encoded_enc_key); } /* Legacy key if any. */ if (ip->legacy.key != NULL) { /* Strong requirement else the IP creation was badly done. */ tor_assert(ip->legacy.cert.encoded); char *encoded_legacy_key = encode_legacy_key(ip); if (encoded_legacy_key == NULL) { goto err; } smartlist_add_asprintf(lines, "%s", encoded_legacy_key); tor_free(encoded_legacy_key); } /* Join them all in one blob of text. */ encoded_ip = smartlist_join_strings(lines, "\n", 1, NULL); err: SMARTLIST_FOREACH(lines, char *, l, tor_free(l)); smartlist_free(lines); return encoded_ip; } /** Given a source length, return the new size including padding for the * plaintext encryption. */ static size_t compute_padded_plaintext_length(size_t plaintext_len) { size_t plaintext_padded_len; const int padding_block_length = HS_DESC_SUPERENC_PLAINTEXT_PAD_MULTIPLE; /* Make sure we won't overflow. */ tor_assert(plaintext_len <= (SIZE_T_CEILING - padding_block_length)); /* Get the extra length we need to add. For example, if srclen is 10200 * bytes, this will expand to (2 * 10k) == 20k thus an extra 9800 bytes. */ plaintext_padded_len = CEIL_DIV(plaintext_len, padding_block_length) * padding_block_length; /* Can never be extra careful. Make sure we are _really_ padded. */ tor_assert(!(plaintext_padded_len % padding_block_length)); return plaintext_padded_len; } /** Given a buffer, pad it up to the encrypted section padding requirement. Set * the newly allocated string in padded_out and return the length of the * padded buffer. */ STATIC size_t build_plaintext_padding(const char *plaintext, size_t plaintext_len, uint8_t **padded_out) { size_t padded_len; uint8_t *padded; tor_assert(plaintext); tor_assert(padded_out); /* Allocate the final length including padding. */ padded_len = compute_padded_plaintext_length(plaintext_len); tor_assert(padded_len >= plaintext_len); padded = tor_malloc_zero(padded_len); memcpy(padded, plaintext, plaintext_len); *padded_out = padded; return padded_len; } /** Using a key, IV and plaintext data of length plaintext_len, create the * encrypted section by encrypting it and setting encrypted_out with the * data. Return size of the encrypted data buffer. */ static size_t build_encrypted(const uint8_t *key, const uint8_t *iv, const char *plaintext, size_t plaintext_len, uint8_t **encrypted_out, int is_superencrypted_layer) { size_t encrypted_len; uint8_t *padded_plaintext, *encrypted; crypto_cipher_t *cipher; tor_assert(key); tor_assert(iv); tor_assert(plaintext); tor_assert(encrypted_out); /* If we are encrypting the middle layer of the descriptor, we need to first pad the plaintext */ if (is_superencrypted_layer) { encrypted_len = build_plaintext_padding(plaintext, plaintext_len, &padded_plaintext); /* Extra precautions that we have a valid padding length. */ tor_assert(!(encrypted_len % HS_DESC_SUPERENC_PLAINTEXT_PAD_MULTIPLE)); } else { /* No padding required for inner layers */ padded_plaintext = tor_memdup(plaintext, plaintext_len); encrypted_len = plaintext_len; } /* This creates a cipher for AES. It can't fail. */ cipher = crypto_cipher_new_with_iv_and_bits(key, iv, HS_DESC_ENCRYPTED_BIT_SIZE); /* We use a stream cipher so the encrypted length will be the same as the * plaintext padded length. */ encrypted = tor_malloc_zero(encrypted_len); /* This can't fail. */ crypto_cipher_encrypt(cipher, (char *) encrypted, (const char *) padded_plaintext, encrypted_len); *encrypted_out = encrypted; /* Cleanup. */ crypto_cipher_free(cipher); tor_free(padded_plaintext); return encrypted_len; } /** Encrypt the given plaintext buffer using desc and * secret_data to get the keys. Set encrypted_out with the encrypted * data and return the length of it. is_superencrypted_layer is set * if this is the outer encrypted layer of the descriptor. */ static size_t encrypt_descriptor_data(const hs_descriptor_t *desc, const uint8_t *secret_data, size_t secret_data_len, const char *plaintext, char **encrypted_out, int is_superencrypted_layer) { char *final_blob; size_t encrypted_len, final_blob_len, offset = 0; uint8_t *encrypted; uint8_t salt[HS_DESC_ENCRYPTED_SALT_LEN]; uint8_t secret_key[HS_DESC_ENCRYPTED_KEY_LEN], secret_iv[CIPHER_IV_LEN]; uint8_t mac_key[DIGEST256_LEN], mac[DIGEST256_LEN]; tor_assert(desc); tor_assert(secret_data); tor_assert(plaintext); tor_assert(encrypted_out); /* Get our salt. The returned bytes are already hashed. */ crypto_strongest_rand(salt, sizeof(salt)); /* KDF construction resulting in a key from which the secret key, IV and MAC * key are extracted which is what we need for the encryption. */ build_secret_key_iv_mac(desc, secret_data, secret_data_len, salt, sizeof(salt), secret_key, sizeof(secret_key), secret_iv, sizeof(secret_iv), mac_key, sizeof(mac_key), is_superencrypted_layer); /* Build the encrypted part that is do the actual encryption. */ encrypted_len = build_encrypted(secret_key, secret_iv, plaintext, strlen(plaintext), &encrypted, is_superencrypted_layer); memwipe(secret_key, 0, sizeof(secret_key)); memwipe(secret_iv, 0, sizeof(secret_iv)); /* This construction is specified in section 2.5 of proposal 224. */ final_blob_len = sizeof(salt) + encrypted_len + DIGEST256_LEN; final_blob = tor_malloc_zero(final_blob_len); /* Build the MAC. */ build_mac(mac_key, sizeof(mac_key), salt, sizeof(salt), encrypted, encrypted_len, mac, sizeof(mac)); memwipe(mac_key, 0, sizeof(mac_key)); /* The salt is the first value. */ memcpy(final_blob, salt, sizeof(salt)); offset = sizeof(salt); /* Second value is the encrypted data. */ memcpy(final_blob + offset, encrypted, encrypted_len); offset += encrypted_len; /* Third value is the MAC. */ memcpy(final_blob + offset, mac, sizeof(mac)); offset += sizeof(mac); /* Cleanup the buffers. */ memwipe(salt, 0, sizeof(salt)); memwipe(encrypted, 0, encrypted_len); tor_free(encrypted); /* Extra precaution. */ tor_assert(offset == final_blob_len); *encrypted_out = final_blob; return final_blob_len; } /** Create and return a string containing a client-auth entry. It's the * responsibility of the caller to free the returned string. This function * will never fail. */ static char * get_auth_client_str(const hs_desc_authorized_client_t *client) { int ret; char *auth_client_str = NULL; /* We are gonna fill these arrays with base64 data. They are all double * the size of their binary representation to fit the base64 overhead. */ char client_id_b64[HS_DESC_CLIENT_ID_LEN * 2]; char iv_b64[CIPHER_IV_LEN * 2]; char encrypted_cookie_b64[HS_DESC_ENCRYPED_COOKIE_LEN * 2]; #define ASSERT_AND_BASE64(field) STMT_BEGIN \ tor_assert(!fast_mem_is_zero((char *) client->field, \ sizeof(client->field))); \ ret = base64_encode_nopad(field##_b64, sizeof(field##_b64), \ client->field, sizeof(client->field)); \ tor_assert(ret > 0); \ STMT_END ASSERT_AND_BASE64(client_id); ASSERT_AND_BASE64(iv); ASSERT_AND_BASE64(encrypted_cookie); /* Build the final string */ tor_asprintf(&auth_client_str, "%s %s %s %s", str_desc_auth_client, client_id_b64, iv_b64, encrypted_cookie_b64); #undef ASSERT_AND_BASE64 return auth_client_str; } /** Create the "client-auth" part of the descriptor and return a * newly-allocated string with it. It's the responsibility of the caller to * free the returned string. */ static char * get_all_auth_client_lines(const hs_descriptor_t *desc) { smartlist_t *auth_client_lines = smartlist_new(); char *auth_client_lines_str = NULL; tor_assert(desc); tor_assert(desc->superencrypted_data.clients); tor_assert(smartlist_len(desc->superencrypted_data.clients) != 0); tor_assert(smartlist_len(desc->superencrypted_data.clients) % HS_DESC_AUTH_CLIENT_MULTIPLE == 0); /* Make a line for each client */ SMARTLIST_FOREACH_BEGIN(desc->superencrypted_data.clients, const hs_desc_authorized_client_t *, client) { char *auth_client_str = NULL; auth_client_str = get_auth_client_str(client); smartlist_add(auth_client_lines, auth_client_str); } SMARTLIST_FOREACH_END(client); /* Join all lines together to form final string */ auth_client_lines_str = smartlist_join_strings(auth_client_lines, "\n", 1, NULL); /* Cleanup the mess */ SMARTLIST_FOREACH(auth_client_lines, char *, a, tor_free(a)); smartlist_free(auth_client_lines); return auth_client_lines_str; } /** Create the inner layer of the descriptor (which includes the intro points, * etc.). Return a newly-allocated string with the layer plaintext, or NULL if * an error occurred. It's the responsibility of the caller to free the * returned string. */ static char * get_inner_encrypted_layer_plaintext(const hs_descriptor_t *desc) { char *encoded_str = NULL; smartlist_t *lines = smartlist_new(); /* Build the start of the section prior to the introduction points. */ { if (!desc->encrypted_data.create2_ntor) { log_err(LD_BUG, "HS desc doesn't have recognized handshake type."); goto err; } smartlist_add_asprintf(lines, "%s %d\n", str_create2_formats, ONION_HANDSHAKE_TYPE_NTOR); if (desc->encrypted_data.intro_auth_types && smartlist_len(desc->encrypted_data.intro_auth_types)) { /* Put the authentication-required line. */ char *buf = smartlist_join_strings(desc->encrypted_data.intro_auth_types, " ", 0, NULL); smartlist_add_asprintf(lines, "%s %s\n", str_intro_auth_required, buf); tor_free(buf); } if (desc->encrypted_data.single_onion_service) { smartlist_add_asprintf(lines, "%s\n", str_single_onion); } if (congestion_control_enabled()) { /* Add flow control line into the descriptor. */ smartlist_add_asprintf(lines, "%s %s %u\n", str_flow_control, protover_get_supported(PRT_FLOWCTRL), congestion_control_sendme_inc()); } } /* Build the introduction point(s) section. */ SMARTLIST_FOREACH_BEGIN(desc->encrypted_data.intro_points, const hs_desc_intro_point_t *, ip) { char *encoded_ip = encode_intro_point(&desc->plaintext_data.signing_pubkey, ip); if (encoded_ip == NULL) { log_err(LD_BUG, "HS desc intro point is malformed."); goto err; } smartlist_add(lines, encoded_ip); } SMARTLIST_FOREACH_END(ip); /* Build the entire encrypted data section into one encoded plaintext and * then encrypt it. */ encoded_str = smartlist_join_strings(lines, "", 0, NULL); err: SMARTLIST_FOREACH(lines, char *, l, tor_free(l)); smartlist_free(lines); return encoded_str; } /** Create the middle layer of the descriptor, which includes the client auth * data and the encrypted inner layer (provided as a base64 string at * layer2_b64_ciphertext). Return a newly-allocated string with the * layer plaintext. It's the responsibility of the caller to free the returned * string. Can not fail. */ static char * get_outer_encrypted_layer_plaintext(const hs_descriptor_t *desc, const char *layer2_b64_ciphertext) { char *layer1_str = NULL; smartlist_t *lines = smartlist_new(); /* Specify auth type */ smartlist_add_asprintf(lines, "%s %s\n", str_desc_auth_type, "x25519"); { /* Print ephemeral x25519 key */ char ephemeral_key_base64[CURVE25519_BASE64_PADDED_LEN + 1]; const curve25519_public_key_t *ephemeral_pubkey; ephemeral_pubkey = &desc->superencrypted_data.auth_ephemeral_pubkey; tor_assert(!fast_mem_is_zero((char *) ephemeral_pubkey->public_key, CURVE25519_PUBKEY_LEN)); curve25519_public_to_base64(ephemeral_key_base64, ephemeral_pubkey, true); smartlist_add_asprintf(lines, "%s %s\n", str_desc_auth_key, ephemeral_key_base64); memwipe(ephemeral_key_base64, 0, sizeof(ephemeral_key_base64)); } { /* Create auth-client lines. */ char *auth_client_lines = get_all_auth_client_lines(desc); tor_assert(auth_client_lines); smartlist_add(lines, auth_client_lines); } /* create encrypted section */ { smartlist_add_asprintf(lines, "%s\n" "-----BEGIN MESSAGE-----\n" "%s" "-----END MESSAGE-----", str_encrypted, layer2_b64_ciphertext); } layer1_str = smartlist_join_strings(lines, "", 0, NULL); /* We need to memwipe all lines because it contains the ephemeral key */ SMARTLIST_FOREACH(lines, char *, a, memwipe(a, 0, strlen(a))); SMARTLIST_FOREACH(lines, char *, a, tor_free(a)); smartlist_free(lines); return layer1_str; } /** Encrypt encoded_str into an encrypted blob and then base64 it before * returning it. desc is provided to derive the encryption * keys. secret_data is also proved to derive the encryption keys. * is_superencrypted_layer is set if encoded_str is the * middle (superencrypted) layer of the descriptor. It's the responsibility of * the caller to free the returned string. */ static char * encrypt_desc_data_and_base64(const hs_descriptor_t *desc, const uint8_t *secret_data, size_t secret_data_len, const char *encoded_str, int is_superencrypted_layer) { char *enc_b64; ssize_t enc_b64_len, ret_len, enc_len; char *encrypted_blob = NULL; enc_len = encrypt_descriptor_data(desc, secret_data, secret_data_len, encoded_str, &encrypted_blob, is_superencrypted_layer); /* Get the encoded size plus a NUL terminating byte. */ enc_b64_len = base64_encode_size(enc_len, BASE64_ENCODE_MULTILINE) + 1; enc_b64 = tor_malloc_zero(enc_b64_len); /* Base64 the encrypted blob before returning it. */ ret_len = base64_encode(enc_b64, enc_b64_len, encrypted_blob, enc_len, BASE64_ENCODE_MULTILINE); /* Return length doesn't count the NUL byte. */ tor_assert(ret_len == (enc_b64_len - 1)); tor_free(encrypted_blob); return enc_b64; } /** Generate the secret data which is used to encrypt/decrypt the descriptor. * * SECRET_DATA = blinded-public-key * SECRET_DATA = blinded-public-key | descriptor_cookie * * The descriptor_cookie is optional but if it exists, it must be at least * HS_DESC_DESCRIPTOR_COOKIE_LEN bytes long. * * A newly allocated secret data is put in secret_data_out. Return the * length of the secret data. This function cannot fail. */ static size_t build_secret_data(const ed25519_public_key_t *blinded_pubkey, const uint8_t *descriptor_cookie, uint8_t **secret_data_out) { size_t secret_data_len; uint8_t *secret_data; tor_assert(blinded_pubkey); tor_assert(secret_data_out); if (descriptor_cookie) { /* If the descriptor cookie is present, we need both the blinded * pubkey and the descriptor cookie as a secret data. */ secret_data_len = ED25519_PUBKEY_LEN + HS_DESC_DESCRIPTOR_COOKIE_LEN; secret_data = tor_malloc(secret_data_len); memcpy(secret_data, blinded_pubkey->pubkey, ED25519_PUBKEY_LEN); memcpy(secret_data + ED25519_PUBKEY_LEN, descriptor_cookie, HS_DESC_DESCRIPTOR_COOKIE_LEN); } else { /* If the descriptor cookie is not present, we need only the blinded * pubkey as a secret data. */ secret_data_len = ED25519_PUBKEY_LEN; secret_data = tor_malloc(secret_data_len); memcpy(secret_data, blinded_pubkey->pubkey, ED25519_PUBKEY_LEN); } *secret_data_out = secret_data; return secret_data_len; } /** Generate and encode the superencrypted portion of desc. This also * involves generating the encrypted portion of the descriptor, and performing * the superencryption. A newly allocated NUL-terminated string pointer * containing the encrypted encoded blob is put in encrypted_blob_out. Return 0 * on success else a negative value. */ static int encode_superencrypted_data(const hs_descriptor_t *desc, const uint8_t *descriptor_cookie, char **encrypted_blob_out) { int ret = -1; uint8_t *secret_data = NULL; size_t secret_data_len = 0; char *layer2_str = NULL; char *layer2_b64_ciphertext = NULL; char *layer1_str = NULL; char *layer1_b64_ciphertext = NULL; tor_assert(desc); tor_assert(encrypted_blob_out); /* Func logic: We first create the inner layer of the descriptor (layer2). * We then encrypt it and use it to create the middle layer of the descriptor * (layer1). Finally we superencrypt the middle layer and return it to our * caller. */ /* Create inner descriptor layer */ layer2_str = get_inner_encrypted_layer_plaintext(desc); if (!layer2_str) { goto err; } secret_data_len = build_secret_data(&desc->plaintext_data.blinded_pubkey, descriptor_cookie, &secret_data); /* Encrypt and b64 the inner layer */ layer2_b64_ciphertext = encrypt_desc_data_and_base64(desc, secret_data, secret_data_len, layer2_str, 0); if (!layer2_b64_ciphertext) { goto err; } /* Now create middle descriptor layer given the inner layer */ layer1_str = get_outer_encrypted_layer_plaintext(desc,layer2_b64_ciphertext); if (!layer1_str) { goto err; } /* Encrypt and base64 the middle layer */ layer1_b64_ciphertext = encrypt_desc_data_and_base64(desc, desc->plaintext_data.blinded_pubkey.pubkey, ED25519_PUBKEY_LEN, layer1_str, 1); if (!layer1_b64_ciphertext) { goto err; } /* Success! */ ret = 0; err: memwipe(secret_data, 0, secret_data_len); tor_free(secret_data); tor_free(layer1_str); tor_free(layer2_str); tor_free(layer2_b64_ciphertext); *encrypted_blob_out = layer1_b64_ciphertext; return ret; } /** Encode a v3 HS descriptor. Return 0 on success and set encoded_out to the * newly allocated string of the encoded descriptor. On error, -1 is returned * and encoded_out is untouched. */ static int desc_encode_v3(const hs_descriptor_t *desc, const ed25519_keypair_t *signing_kp, const uint8_t *descriptor_cookie, char **encoded_out) { int ret = -1; char *encoded_str = NULL; size_t encoded_len; smartlist_t *lines = smartlist_new(); tor_assert(desc); tor_assert(signing_kp); tor_assert(encoded_out); tor_assert(desc->plaintext_data.version == 3); /* Build the non-encrypted values. */ { char *encoded_cert; /* Encode certificate then create the first line of the descriptor. */ if (desc->plaintext_data.signing_key_cert->cert_type != CERT_TYPE_SIGNING_HS_DESC) { log_err(LD_BUG, "HS descriptor signing key has an unexpected cert type " "(%d)", (int) desc->plaintext_data.signing_key_cert->cert_type); goto err; } if (tor_cert_encode_ed22519(desc->plaintext_data.signing_key_cert, &encoded_cert) < 0) { /* The function will print error logs. */ goto err; } /* Create the hs descriptor line. */ smartlist_add_asprintf(lines, "%s %" PRIu32, str_hs_desc, desc->plaintext_data.version); /* Add the descriptor lifetime line (in minutes). */ smartlist_add_asprintf(lines, "%s %" PRIu32, str_lifetime, desc->plaintext_data.lifetime_sec / 60); /* Create the descriptor certificate line. */ smartlist_add_asprintf(lines, "%s\n%s", str_desc_cert, encoded_cert); tor_free(encoded_cert); /* Create the revision counter line. */ smartlist_add_asprintf(lines, "%s %" PRIu64, str_rev_counter, desc->plaintext_data.revision_counter); } /* Build the superencrypted data section. */ { char *enc_b64_blob=NULL; if (encode_superencrypted_data(desc, descriptor_cookie, &enc_b64_blob) < 0) { goto err; } smartlist_add_asprintf(lines, "%s\n" "-----BEGIN MESSAGE-----\n" "%s" "-----END MESSAGE-----", str_superencrypted, enc_b64_blob); tor_free(enc_b64_blob); } /* Join all lines in one string so we can generate a signature and append * it to the descriptor. */ encoded_str = smartlist_join_strings(lines, "\n", 1, &encoded_len); /* Sign all fields of the descriptor with our short term signing key. */ { ed25519_signature_t sig; char ed_sig_b64[ED25519_SIG_BASE64_LEN + 1]; if (ed25519_sign_prefixed(&sig, (const uint8_t *) encoded_str, encoded_len, str_desc_sig_prefix, signing_kp) < 0) { log_warn(LD_BUG, "Can't sign encoded HS descriptor!"); tor_free(encoded_str); goto err; } ed25519_signature_to_base64(ed_sig_b64, &sig); /* Create the signature line. */ smartlist_add_asprintf(lines, "%s %s", str_signature, ed_sig_b64); } /* Free previous string that we used so compute the signature. */ tor_free(encoded_str); encoded_str = smartlist_join_strings(lines, "\n", 1, NULL); *encoded_out = encoded_str; if (strlen(encoded_str) >= hs_cache_get_max_descriptor_size()) { log_warn(LD_GENERAL, "We just made an HS descriptor that's too big (%d)." "Failing.", (int)strlen(encoded_str)); tor_free(encoded_str); goto err; } /* XXX: Trigger a control port event. */ /* Success! */ ret = 0; err: SMARTLIST_FOREACH(lines, char *, l, tor_free(l)); smartlist_free(lines); return ret; } /* === DECODING === */ /** Given the token tok for an auth client, decode it as * hs_desc_authorized_client_t. tok->args MUST contain at least 3 elements * Return 0 on success else -1 on failure. */ static int decode_auth_client(const directory_token_t *tok, hs_desc_authorized_client_t *client) { int ret = -1; tor_assert(tok); tor_assert(tok->n_args >= 3); tor_assert(client); if (base64_decode((char *) client->client_id, sizeof(client->client_id), tok->args[0], strlen(tok->args[0])) != sizeof(client->client_id)) { goto done; } if (base64_decode((char *) client->iv, sizeof(client->iv), tok->args[1], strlen(tok->args[1])) != sizeof(client->iv)) { goto done; } if (base64_decode((char *) client->encrypted_cookie, sizeof(client->encrypted_cookie), tok->args[2], strlen(tok->args[2])) != sizeof(client->encrypted_cookie)) { goto done; } /* Success. */ ret = 0; done: return ret; } /** Given an encoded string of the link specifiers, return a newly allocated * list of decoded link specifiers. Return NULL on error. */ STATIC smartlist_t * decode_link_specifiers(const char *encoded) { int decoded_len; size_t encoded_len, i; uint8_t *decoded; smartlist_t *results = NULL; link_specifier_list_t *specs = NULL; tor_assert(encoded); encoded_len = strlen(encoded); decoded = tor_malloc(encoded_len); decoded_len = base64_decode((char *) decoded, encoded_len, encoded, encoded_len); if (decoded_len < 0) { goto err; } if (link_specifier_list_parse(&specs, decoded, (size_t) decoded_len) < decoded_len) { goto err; } tor_assert(specs); results = smartlist_new(); for (i = 0; i < link_specifier_list_getlen_spec(specs); i++) { link_specifier_t *ls = link_specifier_list_get_spec(specs, i); if (BUG(!ls)) { goto err; } link_specifier_t *ls_dup = link_specifier_dup(ls); if (BUG(!ls_dup)) { goto err; } smartlist_add(results, ls_dup); } goto done; err: if (results) { SMARTLIST_FOREACH(results, link_specifier_t *, s, link_specifier_free(s)); smartlist_free(results); results = NULL; } done: link_specifier_list_free(specs); tor_free(decoded); return results; } /** Given a list of authentication types, decode it and put it in the encrypted * data section. Return 1 if we at least know one of the type or 0 if we know * none of them. */ static int decode_auth_type(hs_desc_encrypted_data_t *desc, const char *list) { int match = 0; tor_assert(desc); tor_assert(list); desc->intro_auth_types = smartlist_new(); smartlist_split_string(desc->intro_auth_types, list, " ", 0, 0); /* Validate the types that we at least know about one. */ SMARTLIST_FOREACH_BEGIN(desc->intro_auth_types, const char *, auth) { for (int idx = 0; intro_auth_types[idx].identifier; idx++) { if (!strncmp(auth, intro_auth_types[idx].identifier, strlen(intro_auth_types[idx].identifier))) { match = 1; break; } } } SMARTLIST_FOREACH_END(auth); return match; } /** Parse a space-delimited list of integers representing CREATE2 formats into * the bitfield in hs_desc_encrypted_data_t. Ignore unrecognized values. */ static void decode_create2_list(hs_desc_encrypted_data_t *desc, const char *list) { smartlist_t *tokens; tor_assert(desc); tor_assert(list); tokens = smartlist_new(); smartlist_split_string(tokens, list, " ", 0, 0); SMARTLIST_FOREACH_BEGIN(tokens, char *, s) { int ok; unsigned long type = tor_parse_ulong(s, 10, 1, UINT16_MAX, &ok, NULL); if (!ok) { log_warn(LD_REND, "Unparseable value %s in create2 list", escaped(s)); continue; } switch (type) { case ONION_HANDSHAKE_TYPE_NTOR: desc->create2_ntor = 1; break; default: /* We deliberately ignore unsupported handshake types */ continue; } } SMARTLIST_FOREACH_END(s); SMARTLIST_FOREACH(tokens, char *, s, tor_free(s)); smartlist_free(tokens); } /** Given a certificate, validate the certificate for certain conditions which * are if the given type matches the cert's one, if the signing key is * included and if the that key was actually used to sign the certificate. * * Return 1 iff if all conditions pass or 0 if one of them fails. */ STATIC int cert_is_valid(tor_cert_t *cert, uint8_t type, const char *log_obj_type) { tor_assert(log_obj_type); if (cert == NULL) { log_warn(LD_REND, "Certificate for %s couldn't be parsed.", log_obj_type); goto err; } if (cert->cert_type != type) { log_warn(LD_REND, "Invalid cert type %02x for %s.", cert->cert_type, log_obj_type); goto err; } /* All certificate must have its signing key included. */ if (!cert->signing_key_included) { log_warn(LD_REND, "Signing key is NOT included for %s.", log_obj_type); goto err; } /* The following will not only check if the signature matches but also the * expiration date and overall validity. */ if (tor_cert_checksig(cert, &cert->signing_key, approx_time()) < 0) { if (cert->cert_expired) { char expiration_str[ISO_TIME_LEN+1]; format_iso_time(expiration_str, cert->valid_until); log_fn(LOG_PROTOCOL_WARN, LD_REND, "Invalid signature for %s: %s (%s)", log_obj_type, tor_cert_describe_signature_status(cert), expiration_str); } else { log_warn(LD_REND, "Invalid signature for %s: %s", log_obj_type, tor_cert_describe_signature_status(cert)); } goto err; } return 1; err: return 0; } /** Given some binary data, try to parse it to get a certificate object. If we * have a valid cert, validate it using the given wanted type. On error, print * a log using the err_msg has the certificate identifier adding semantic to * the log and cert_out is set to NULL. On success, 0 is returned and cert_out * points to a newly allocated certificate object. */ static int cert_parse_and_validate(tor_cert_t **cert_out, const char *data, size_t data_len, unsigned int cert_type_wanted, const char *err_msg) { tor_cert_t *cert; tor_assert(cert_out); tor_assert(data); tor_assert(err_msg); /* Parse certificate. */ cert = tor_cert_parse((const uint8_t *) data, data_len); if (!cert) { log_warn(LD_REND, "Certificate for %s couldn't be parsed.", err_msg); goto err; } /* Validate certificate. */ if (!cert_is_valid(cert, cert_type_wanted, err_msg)) { goto err; } *cert_out = cert; return 0; err: tor_cert_free(cert); *cert_out = NULL; return -1; } /** Return true iff the given length of the encrypted data of a descriptor * passes validation. */ STATIC int encrypted_data_length_is_valid(size_t len) { /* Make sure there is enough data for the salt and the mac. The equality is there to ensure that there is at least one byte of encrypted data. */ if (len <= HS_DESC_ENCRYPTED_SALT_LEN + DIGEST256_LEN) { log_warn(LD_REND, "Length of descriptor's encrypted data is too small. " "Got %lu but minimum value is %d", (unsigned long)len, HS_DESC_ENCRYPTED_SALT_LEN + DIGEST256_LEN); goto err; } return 1; err: return 0; } /** Build the KEYS component for the authorized client computation. The format * of the construction is: * * SECRET_SEED = x25519(sk, pk) * KEYS = KDF(subcredential | SECRET_SEED, 40) * * Set the keys_out argument to point to the buffer containing the KEYS, * and return the buffer's length. The caller should wipe and free its content * once done with it. This function can't fail. */ static size_t build_descriptor_cookie_keys(const hs_subcredential_t *subcredential, const curve25519_secret_key_t *sk, const curve25519_public_key_t *pk, uint8_t **keys_out) { uint8_t secret_seed[CURVE25519_OUTPUT_LEN]; uint8_t *keystream; size_t keystream_len = HS_DESC_CLIENT_ID_LEN + HS_DESC_COOKIE_KEY_LEN; crypto_xof_t *xof; tor_assert(subcredential); tor_assert(sk); tor_assert(pk); tor_assert(keys_out); keystream = tor_malloc_zero(keystream_len); /* Calculate x25519(sk, pk) to get the secret seed. */ curve25519_handshake(secret_seed, sk, pk); /* Calculate KEYS = KDF(subcredential | SECRET_SEED, 40) */ xof = crypto_xof_new(); crypto_xof_add_bytes(xof, subcredential->subcred, SUBCRED_LEN); crypto_xof_add_bytes(xof, secret_seed, sizeof(secret_seed)); crypto_xof_squeeze_bytes(xof, keystream, keystream_len); crypto_xof_free(xof); memwipe(secret_seed, 0, sizeof(secret_seed)); *keys_out = keystream; return keystream_len; } /** Decrypt the descriptor cookie given the descriptor, the auth client, * and the client secret key. On success, return 0 and a newly allocated * descriptor cookie descriptor_cookie_out. On error or if the client id * is invalid, return -1 and descriptor_cookie_out is set to * NULL. */ static int decrypt_descriptor_cookie(const hs_descriptor_t *desc, const hs_desc_authorized_client_t *client, const curve25519_secret_key_t *client_auth_sk, uint8_t **descriptor_cookie_out) { int ret = -1; uint8_t *keystream = NULL; size_t keystream_length = 0; uint8_t *descriptor_cookie = NULL; const uint8_t *cookie_key = NULL; crypto_cipher_t *cipher = NULL; tor_assert(desc); tor_assert(client); tor_assert(client_auth_sk); tor_assert(!fast_mem_is_zero( (char *) &desc->superencrypted_data.auth_ephemeral_pubkey, sizeof(desc->superencrypted_data.auth_ephemeral_pubkey))); tor_assert(!fast_mem_is_zero((char *) desc->subcredential.subcred, DIGEST256_LEN)); /* Catch potential code-flow cases of an uninitialized private key sneaking * into this function. */ if (BUG(fast_mem_is_zero((char *)client_auth_sk, sizeof(*client_auth_sk)))) { goto done; } /* Get the KEYS component to derive the CLIENT-ID and COOKIE-KEY. */ keystream_length = build_descriptor_cookie_keys(&desc->subcredential, client_auth_sk, &desc->superencrypted_data.auth_ephemeral_pubkey, &keystream); tor_assert(keystream_length > 0); /* If the client id of auth client is not the same as the calculcated * client id, it means that this auth client is invalid according to the * client secret key client_auth_sk. */ if (tor_memneq(client->client_id, keystream, HS_DESC_CLIENT_ID_LEN)) { goto done; } cookie_key = keystream + HS_DESC_CLIENT_ID_LEN; /* This creates a cipher for AES. It can't fail. */ cipher = crypto_cipher_new_with_iv_and_bits(cookie_key, client->iv, HS_DESC_COOKIE_KEY_BIT_SIZE); descriptor_cookie = tor_malloc_zero(HS_DESC_DESCRIPTOR_COOKIE_LEN); /* This can't fail. */ crypto_cipher_decrypt(cipher, (char *) descriptor_cookie, (const char *) client->encrypted_cookie, sizeof(client->encrypted_cookie)); /* Success. */ ret = 0; done: *descriptor_cookie_out = descriptor_cookie; if (cipher) { crypto_cipher_free(cipher); } memwipe(keystream, 0, keystream_length); tor_free(keystream); return ret; } /** Decrypt an encrypted descriptor layer at encrypted_blob of size * encrypted_blob_size. The descriptor cookie is optional. Use * the descriptor object desc and descriptor_cookie * to generate the right decryption keys; set decrypted_out to * the plaintext. If is_superencrypted_layer is set, this is * the outer encrypted layer of the descriptor. * * On any error case, including an empty output, return 0 and set * *decrypted_out to NULL. */ MOCK_IMPL(STATIC size_t, decrypt_desc_layer,(const hs_descriptor_t *desc, const uint8_t *descriptor_cookie, bool is_superencrypted_layer, char **decrypted_out)) { uint8_t *decrypted = NULL; uint8_t secret_key[HS_DESC_ENCRYPTED_KEY_LEN], secret_iv[CIPHER_IV_LEN]; uint8_t *secret_data = NULL; size_t secret_data_len = 0; uint8_t mac_key[DIGEST256_LEN], our_mac[DIGEST256_LEN]; const uint8_t *salt, *encrypted, *desc_mac; size_t encrypted_len, result_len = 0; const uint8_t *encrypted_blob = (is_superencrypted_layer) ? desc->plaintext_data.superencrypted_blob : desc->superencrypted_data.encrypted_blob; size_t encrypted_blob_size = (is_superencrypted_layer) ? desc->plaintext_data.superencrypted_blob_size : desc->superencrypted_data.encrypted_blob_size; tor_assert(decrypted_out); tor_assert(desc); tor_assert(encrypted_blob); /* Construction is as follow: SALT | ENCRYPTED_DATA | MAC . * Make sure we have enough space for all these things. */ if (!encrypted_data_length_is_valid(encrypted_blob_size)) { goto err; } /* Start of the blob thus the salt. */ salt = encrypted_blob; /* Next is the encrypted data. */ encrypted = encrypted_blob + HS_DESC_ENCRYPTED_SALT_LEN; encrypted_len = encrypted_blob_size - (HS_DESC_ENCRYPTED_SALT_LEN + DIGEST256_LEN); tor_assert(encrypted_len > 0); /* guaranteed by the check above */ /* And last comes the MAC. */ desc_mac = encrypted_blob + encrypted_blob_size - DIGEST256_LEN; /* Build secret data to be used in the decryption. */ secret_data_len = build_secret_data(&desc->plaintext_data.blinded_pubkey, descriptor_cookie, &secret_data); /* KDF construction resulting in a key from which the secret key, IV and MAC * key are extracted which is what we need for the decryption. */ build_secret_key_iv_mac(desc, secret_data, secret_data_len, salt, HS_DESC_ENCRYPTED_SALT_LEN, secret_key, sizeof(secret_key), secret_iv, sizeof(secret_iv), mac_key, sizeof(mac_key), is_superencrypted_layer); /* Build MAC. */ build_mac(mac_key, sizeof(mac_key), salt, HS_DESC_ENCRYPTED_SALT_LEN, encrypted, encrypted_len, our_mac, sizeof(our_mac)); memwipe(mac_key, 0, sizeof(mac_key)); /* Verify MAC; MAC is H(mac_key || salt || encrypted) * * This is a critical check that is making sure the computed MAC matches the * one in the descriptor. */ if (!tor_memeq(our_mac, desc_mac, sizeof(our_mac))) { log_info(LD_REND, "Encrypted service descriptor MAC check failed"); goto err; } { /* Decrypt. Here we are assured that the encrypted length is valid for * decryption. */ crypto_cipher_t *cipher; cipher = crypto_cipher_new_with_iv_and_bits(secret_key, secret_iv, HS_DESC_ENCRYPTED_BIT_SIZE); /* Extra byte for the NUL terminated byte. */ decrypted = tor_malloc_zero(encrypted_len + 1); crypto_cipher_decrypt(cipher, (char *) decrypted, (const char *) encrypted, encrypted_len); crypto_cipher_free(cipher); } { /* Adjust length to remove NUL padding bytes */ uint8_t *end = memchr(decrypted, 0, encrypted_len); result_len = encrypted_len; if (end) { result_len = end - decrypted; } } if (result_len == 0) { /* Treat this as an error, so that somebody will free the output. */ goto err; } /* Make sure to NUL terminate the string. */ decrypted[encrypted_len] = '\0'; *decrypted_out = (char *) decrypted; goto done; err: if (decrypted) { tor_free(decrypted); } *decrypted_out = NULL; result_len = 0; done: memwipe(secret_data, 0, secret_data_len); memwipe(secret_key, 0, sizeof(secret_key)); memwipe(secret_iv, 0, sizeof(secret_iv)); tor_free(secret_data); return result_len; } /** Decrypt the superencrypted section of the descriptor using the given * descriptor object desc. A newly allocated NUL terminated string is * put in decrypted_out which contains the superencrypted layer of the * descriptor. Return the length of decrypted_out on success else 0 is * returned and decrypted_out is set to NULL. */ MOCK_IMPL(STATIC size_t, desc_decrypt_superencrypted,(const hs_descriptor_t *desc,char **decrypted_out)) { size_t superencrypted_len = 0; char *superencrypted_plaintext = NULL; tor_assert(desc); tor_assert(decrypted_out); superencrypted_len = decrypt_desc_layer(desc, NULL, true, &superencrypted_plaintext); if (!superencrypted_len) { log_warn(LD_REND, "Decrypting superencrypted desc failed."); goto done; } tor_assert(superencrypted_plaintext); done: /* In case of error, superencrypted_plaintext is already NULL, so the * following line makes sense. */ *decrypted_out = superencrypted_plaintext; /* This makes sense too, because, in case of error, this is zero. */ return superencrypted_len; } /** Decrypt the encrypted section of the descriptor using the given descriptor * object desc. A newly allocated NUL terminated string is put in * decrypted_out which contains the encrypted layer of the descriptor. * Return the length of decrypted_out on success else 0 is returned and * decrypted_out is set to NULL. */ MOCK_IMPL(STATIC size_t, desc_decrypt_encrypted,(const hs_descriptor_t *desc, const curve25519_secret_key_t *client_auth_sk, char **decrypted_out)) { size_t encrypted_len = 0; char *encrypted_plaintext = NULL; uint8_t *descriptor_cookie = NULL; tor_assert(desc); tor_assert(desc->superencrypted_data.clients); tor_assert(decrypted_out); /* If the client secret key is provided, try to find a valid descriptor * cookie. Otherwise, leave it NULL. */ if (client_auth_sk) { SMARTLIST_FOREACH_BEGIN(desc->superencrypted_data.clients, hs_desc_authorized_client_t *, client) { /* If we can decrypt the descriptor cookie successfully, we will use that * descriptor cookie and break from the loop. */ if (!decrypt_descriptor_cookie(desc, client, client_auth_sk, &descriptor_cookie)) { break; } } SMARTLIST_FOREACH_END(client); } encrypted_len = decrypt_desc_layer(desc, descriptor_cookie, false, &encrypted_plaintext); if (!encrypted_len) { goto err; } tor_assert(encrypted_plaintext); err: /* In case of error, encrypted_plaintext is already NULL, so the * following line makes sense. */ *decrypted_out = encrypted_plaintext; if (descriptor_cookie) { memwipe(descriptor_cookie, 0, HS_DESC_DESCRIPTOR_COOKIE_LEN); } tor_free(descriptor_cookie); /* This makes sense too, because, in case of error, this is zero. */ return encrypted_len; } /** Given the token tok for an intro point legacy key, the list of tokens, the * introduction point ip being decoded and the descriptor desc from which it * comes from, decode the legacy key and set the intro point object. Return 0 * on success else -1 on failure. */ static int decode_intro_legacy_key(const directory_token_t *tok, smartlist_t *tokens, hs_desc_intro_point_t *ip, const hs_descriptor_t *desc) { tor_assert(tok); tor_assert(tokens); tor_assert(ip); tor_assert(desc); if (!crypto_pk_public_exponent_ok(tok->key)) { log_warn(LD_REND, "Introduction point legacy key is invalid"); goto err; } ip->legacy.key = crypto_pk_dup_key(tok->key); /* Extract the legacy cross certification cert which MUST be present if we * have a legacy key. */ tok = find_opt_by_keyword(tokens, R3_INTRO_LEGACY_KEY_CERT); if (!tok) { log_warn(LD_REND, "Introduction point legacy key cert is missing"); goto err; } tor_assert(tok->object_body); if (strcmp(tok->object_type, "CROSSCERT")) { /* Info level because this might be an unknown field that we should * ignore. */ log_info(LD_REND, "Introduction point legacy encryption key " "cross-certification has an unknown format."); goto err; } /* Keep a copy of the certificate. */ ip->legacy.cert.encoded = tor_memdup(tok->object_body, tok->object_size); ip->legacy.cert.len = tok->object_size; /* The check on the expiration date is for the entire lifetime of a * certificate which is 24 hours. However, a descriptor has a maximum * lifetime of 12 hours meaning we have a 12h difference between the two * which ultimately accommodate the clock skewed client. */ if (rsa_ed25519_crosscert_check(ip->legacy.cert.encoded, ip->legacy.cert.len, ip->legacy.key, &desc->plaintext_data.signing_pubkey, approx_time() - HS_DESC_CERT_LIFETIME)) { log_warn(LD_REND, "Unable to check cross-certification on the " "introduction point legacy encryption key."); ip->cross_certified = 0; goto err; } /* Success. */ return 0; err: return -1; } /** Dig into the descriptor tokens to find the onion key we should use * for this intro point, and set it into onion_key_out. Return 0 if it * was found and well-formed, otherwise return -1 in case of errors. */ static int set_intro_point_onion_key(curve25519_public_key_t *onion_key_out, const smartlist_t *tokens) { int retval = -1; smartlist_t *onion_keys = NULL; tor_assert(onion_key_out); onion_keys = find_all_by_keyword(tokens, R3_INTRO_ONION_KEY); if (!onion_keys) { log_warn(LD_REND, "Descriptor did not contain intro onion keys"); goto err; } SMARTLIST_FOREACH_BEGIN(onion_keys, directory_token_t *, tok) { /* This field is using GE(2) so for possible forward compatibility, we * accept more fields but must be at least 2. */ tor_assert(tok->n_args >= 2); /* Try to find an ntor key, it's the only recognized type right now */ if (!strcmp(tok->args[0], "ntor")) { if (curve25519_public_from_base64(onion_key_out, tok->args[1]) < 0) { log_warn(LD_REND, "Introduction point ntor onion-key is invalid"); goto err; } /* Got the onion key! Set the appropriate retval */ retval = 0; } } SMARTLIST_FOREACH_END(tok); /* Log an error if we didn't find it :( */ if (retval < 0) { log_warn(LD_REND, "Descriptor did not contain ntor onion keys"); } err: smartlist_free(onion_keys); return retval; } /** Given the start of a section and the end of it, decode a single * introduction point from that section. Return a newly allocated introduction * point object containing the decoded data. Return NULL if the section can't * be decoded. */ STATIC hs_desc_intro_point_t * decode_introduction_point(const hs_descriptor_t *desc, const char *start) { hs_desc_intro_point_t *ip = NULL; memarea_t *area = NULL; smartlist_t *tokens = NULL; const directory_token_t *tok; tor_assert(desc); tor_assert(start); area = memarea_new(); tokens = smartlist_new(); if (tokenize_string(area, start, start + strlen(start), tokens, hs_desc_intro_point_v3_token_table, 0) < 0) { log_warn(LD_REND, "Introduction point is not parseable"); goto err; } /* Ok we seem to have a well formed section containing enough tokens to * parse. Allocate our IP object and try to populate it. */ ip = hs_desc_intro_point_new(); /* "introduction-point" SP link-specifiers NL */ tok = find_by_keyword(tokens, R3_INTRODUCTION_POINT); tor_assert(tok->n_args == 1); /* Our constructor creates this list by default so free it. */ smartlist_free(ip->link_specifiers); ip->link_specifiers = decode_link_specifiers(tok->args[0]); if (!ip->link_specifiers) { log_warn(LD_REND, "Introduction point has invalid link specifiers"); goto err; } /* "onion-key" SP ntor SP key NL */ if (set_intro_point_onion_key(&ip->onion_key, tokens) < 0) { goto err; } /* "auth-key" NL certificate NL */ tok = find_by_keyword(tokens, R3_INTRO_AUTH_KEY); tor_assert(tok->object_body); if (strcmp(tok->object_type, "ED25519 CERT")) { log_warn(LD_REND, "Unexpected object type for introduction auth key"); goto err; } /* Parse cert and do some validation. */ if (cert_parse_and_validate(&ip->auth_key_cert, tok->object_body, tok->object_size, CERT_TYPE_AUTH_HS_IP_KEY, "introduction point auth-key") < 0) { goto err; } /* Validate authentication certificate with descriptor signing key. */ if (tor_cert_checksig(ip->auth_key_cert, &desc->plaintext_data.signing_pubkey, 0) < 0) { log_warn(LD_REND, "Invalid authentication key signature: %s", tor_cert_describe_signature_status(ip->auth_key_cert)); goto err; } /* Exactly one "enc-key" SP "ntor" SP key NL */ tok = find_by_keyword(tokens, R3_INTRO_ENC_KEY); if (!strcmp(tok->args[0], "ntor")) { /* This field is using GE(2) so for possible forward compatibility, we * accept more fields but must be at least 2. */ tor_assert(tok->n_args >= 2); if (curve25519_public_from_base64(&ip->enc_key, tok->args[1]) < 0) { log_warn(LD_REND, "Introduction point ntor enc-key is invalid"); goto err; } } else { /* Unknown key type so we can't use that introduction point. */ log_warn(LD_REND, "Introduction point encryption key is unrecognized."); goto err; } /* Exactly once "enc-key-cert" NL certificate NL */ tok = find_by_keyword(tokens, R3_INTRO_ENC_KEY_CERT); tor_assert(tok->object_body); /* Do the cross certification. */ if (strcmp(tok->object_type, "ED25519 CERT")) { log_warn(LD_REND, "Introduction point ntor encryption key " "cross-certification has an unknown format."); goto err; } if (cert_parse_and_validate(&ip->enc_key_cert, tok->object_body, tok->object_size, CERT_TYPE_CROSS_HS_IP_KEYS, "introduction point enc-key-cert") < 0) { goto err; } if (tor_cert_checksig(ip->enc_key_cert, &desc->plaintext_data.signing_pubkey, 0) < 0) { log_warn(LD_REND, "Invalid encryption key signature: %s", tor_cert_describe_signature_status(ip->enc_key_cert)); goto err; } /* It is successfully cross certified. Flag the object. */ ip->cross_certified = 1; /* Do we have a "legacy-key" SP key NL ?*/ tok = find_opt_by_keyword(tokens, R3_INTRO_LEGACY_KEY); if (tok) { if (decode_intro_legacy_key(tok, tokens, ip, desc) < 0) { goto err; } } /* Introduction point has been parsed successfully. */ goto done; err: hs_desc_intro_point_free(ip); ip = NULL; done: SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t)); smartlist_free(tokens); if (area) { memarea_drop_all(area); } return ip; } /** Given a descriptor string at data, decode all possible introduction * points that we can find. Add the introduction point object to desc_enc as we * find them. This function can't fail and it is possible that zero * introduction points can be decoded. */ static void decode_intro_points(const hs_descriptor_t *desc, hs_desc_encrypted_data_t *desc_enc, const char *data) { smartlist_t *chunked_desc = smartlist_new(); smartlist_t *intro_points = smartlist_new(); tor_assert(desc); tor_assert(desc_enc); tor_assert(data); tor_assert(desc_enc->intro_points); /* Take the desc string, and extract the intro point substrings out of it */ { /* Split the descriptor string using the intro point header as delimiter */ smartlist_split_string(chunked_desc, data, str_intro_point_start, 0, 0); /* Check if there are actually any intro points included. The first chunk * should be other descriptor fields (e.g. create2-formats), so it's not an * intro point. */ if (smartlist_len(chunked_desc) < 2) { goto done; } } /* Take the intro point substrings, and prepare them for parsing */ { int i = 0; /* Prepend the introduction-point header to all the chunks, since smartlist_split_string() devoured it. */ SMARTLIST_FOREACH_BEGIN(chunked_desc, char *, chunk) { /* Ignore first chunk. It's other descriptor fields. */ if (i++ == 0) { continue; } smartlist_add_asprintf(intro_points, "%s %s", str_intro_point, chunk); } SMARTLIST_FOREACH_END(chunk); } /* Parse the intro points! */ SMARTLIST_FOREACH_BEGIN(intro_points, const char *, intro_point) { hs_desc_intro_point_t *ip = decode_introduction_point(desc, intro_point); if (!ip) { /* Malformed introduction point section. We'll ignore this introduction * point and continue parsing. New or unknown fields are possible for * forward compatibility. */ continue; } smartlist_add(desc_enc->intro_points, ip); } SMARTLIST_FOREACH_END(intro_point); done: SMARTLIST_FOREACH(chunked_desc, char *, a, tor_free(a)); smartlist_free(chunked_desc); SMARTLIST_FOREACH(intro_points, char *, a, tor_free(a)); smartlist_free(intro_points); } /** Return 1 iff the given base64 encoded signature in b64_sig from the encoded * descriptor in encoded_desc validates the descriptor content. */ STATIC int desc_sig_is_valid(const char *b64_sig, const ed25519_public_key_t *signing_pubkey, const char *encoded_desc, size_t encoded_len) { int ret = 0; ed25519_signature_t sig; const char *sig_start; tor_assert(b64_sig); tor_assert(signing_pubkey); tor_assert(encoded_desc); /* Verifying nothing won't end well :). */ tor_assert(encoded_len > 0); /* Signature length check. */ if (strlen(b64_sig) != ED25519_SIG_BASE64_LEN) { log_warn(LD_REND, "Service descriptor has an invalid signature length." "Expected %d but got %lu", ED25519_SIG_BASE64_LEN, (unsigned long) strlen(b64_sig)); goto err; } /* First, convert base64 blob to an ed25519 signature. */ if (ed25519_signature_from_base64(&sig, b64_sig) != 0) { log_warn(LD_REND, "Service descriptor does not contain a valid " "signature"); goto err; } /* Find the start of signature. */ sig_start = tor_memstr(encoded_desc, encoded_len, "\n" str_signature " "); /* Getting here means the token parsing worked for the signature so if we * can't find the start of the signature, we have a code flow issue. */ if (!sig_start) { log_warn(LD_GENERAL, "Malformed signature line. Rejecting."); goto err; } /* Skip newline, it has to go in the signature check. */ sig_start++; /* Validate signature with the full body of the descriptor. */ if (ed25519_checksig_prefixed(&sig, (const uint8_t *) encoded_desc, sig_start - encoded_desc, str_desc_sig_prefix, signing_pubkey) != 0) { log_warn(LD_REND, "Invalid signature on service descriptor"); goto err; } /* Valid signature! All is good. */ ret = 1; err: return ret; } /** Decode descriptor plaintext data for version 3. Given a list of tokens, an * allocated plaintext object that will be populated and the encoded * descriptor with its length. The last one is needed for signature * verification. Unknown tokens are simply ignored so this won't error on * unknowns but requires that all v3 token be present and valid. * * Return 0 on success else a negative value. */ static hs_desc_decode_status_t desc_decode_plaintext_v3(smartlist_t *tokens, hs_desc_plaintext_data_t *desc, const char *encoded_desc, size_t encoded_len) { int ok; directory_token_t *tok; tor_assert(tokens); tor_assert(desc); /* Version higher could still use this function to decode most of the * descriptor and then they decode the extra part. */ tor_assert(desc->version >= 3); /* Descriptor lifetime parsing. */ tok = find_by_keyword(tokens, R3_DESC_LIFETIME); tor_assert(tok->n_args == 1); desc->lifetime_sec = (uint32_t) tor_parse_ulong(tok->args[0], 10, 0, UINT32_MAX, &ok, NULL); if (!ok) { log_warn(LD_REND, "Service descriptor lifetime value is invalid"); goto err; } /* Put it from minute to second. */ desc->lifetime_sec *= 60; if (desc->lifetime_sec > HS_DESC_MAX_LIFETIME) { log_warn(LD_REND, "Service descriptor lifetime is too big. " "Got %" PRIu32 " but max is %d", desc->lifetime_sec, HS_DESC_MAX_LIFETIME); goto err; } /* Descriptor signing certificate. */ tok = find_by_keyword(tokens, R3_DESC_SIGNING_CERT); tor_assert(tok->object_body); /* Expecting a prop220 cert with the signing key extension, which contains * the blinded public key. */ if (strcmp(tok->object_type, "ED25519 CERT") != 0) { log_warn(LD_REND, "Service descriptor signing cert wrong type (%s)", escaped(tok->object_type)); goto err; } if (cert_parse_and_validate(&desc->signing_key_cert, tok->object_body, tok->object_size, CERT_TYPE_SIGNING_HS_DESC, "service descriptor signing key") < 0) { goto err; } /* Copy the public keys into signing_pubkey and blinded_pubkey */ memcpy(&desc->signing_pubkey, &desc->signing_key_cert->signed_key, sizeof(ed25519_public_key_t)); memcpy(&desc->blinded_pubkey, &desc->signing_key_cert->signing_key, sizeof(ed25519_public_key_t)); /* Extract revision counter value. */ tok = find_by_keyword(tokens, R3_REVISION_COUNTER); tor_assert(tok->n_args == 1); desc->revision_counter = tor_parse_uint64(tok->args[0], 10, 0, UINT64_MAX, &ok, NULL); if (!ok) { log_warn(LD_REND, "Service descriptor revision-counter is invalid"); goto err; } /* Extract the superencrypted data section. */ tok = find_by_keyword(tokens, R3_SUPERENCRYPTED); tor_assert(tok->object_body); if (strcmp(tok->object_type, "MESSAGE") != 0) { log_warn(LD_REND, "Desc superencrypted data section is invalid"); goto err; } /* Make sure the length of the superencrypted blob is valid. */ if (!encrypted_data_length_is_valid(tok->object_size)) { goto err; } /* Copy the superencrypted blob to the descriptor object so we can handle it * latter if needed. */ desc->superencrypted_blob = tor_memdup(tok->object_body, tok->object_size); desc->superencrypted_blob_size = tok->object_size; /* Extract signature and verify it. */ tok = find_by_keyword(tokens, R3_SIGNATURE); tor_assert(tok->n_args == 1); /* First arg here is the actual encoded signature. */ if (!desc_sig_is_valid(tok->args[0], &desc->signing_pubkey, encoded_desc, encoded_len)) { goto err; } return HS_DESC_DECODE_OK; err: return HS_DESC_DECODE_PLAINTEXT_ERROR; } /** Decode the version 3 superencrypted section of the given descriptor desc. * The desc_superencrypted_out will be populated with the decoded data. */ STATIC hs_desc_decode_status_t desc_decode_superencrypted_v3(const hs_descriptor_t *desc, hs_desc_superencrypted_data_t * desc_superencrypted_out) { hs_desc_decode_status_t ret = HS_DESC_DECODE_SUPERENC_ERROR; char *message = NULL; size_t message_len; memarea_t *area = NULL; directory_token_t *tok; smartlist_t *tokens = NULL; /* Rename the parameter because it is too long. */ hs_desc_superencrypted_data_t *superencrypted = desc_superencrypted_out; tor_assert(desc); tor_assert(desc_superencrypted_out); /* Decrypt the superencrypted data that is located in the plaintext section * in the descriptor as a blob of bytes. */ message_len = desc_decrypt_superencrypted(desc, &message); if (!message_len) { log_warn(LD_REND, "Service descriptor decryption failed."); goto err; } tor_assert(message); area = memarea_new(); tokens = smartlist_new(); if (tokenize_string(area, message, message + message_len, tokens, hs_desc_superencrypted_v3_token_table, 0) < 0) { log_warn(LD_REND, "Superencrypted service descriptor is not parseable."); goto err; } /* Verify desc auth type */ tok = find_by_keyword(tokens, R3_DESC_AUTH_TYPE); tor_assert(tok->n_args >= 1); if (strcmp(tok->args[0], "x25519")) { log_warn(LD_DIR, "Unrecognized desc auth type"); goto err; } /* Extract desc auth ephemeral key */ tok = find_by_keyword(tokens, R3_DESC_AUTH_KEY); tor_assert(tok->n_args >= 1); if (curve25519_public_from_base64(&superencrypted->auth_ephemeral_pubkey, tok->args[0]) < 0) { log_warn(LD_DIR, "Bogus desc auth ephemeral key in HS desc"); goto err; } /* Extract desc auth client items */ if (!superencrypted->clients) { superencrypted->clients = smartlist_new(); } SMARTLIST_FOREACH_BEGIN(tokens, const directory_token_t *, token) { if (token->tp == R3_DESC_AUTH_CLIENT) { tor_assert(token->n_args >= 3); hs_desc_authorized_client_t *client = tor_malloc_zero(sizeof(hs_desc_authorized_client_t)); if (decode_auth_client(token, client) < 0) { log_warn(LD_REND, "Descriptor client authorization section can't " "be decoded."); tor_free(client); goto err; } smartlist_add(superencrypted->clients, client); } } SMARTLIST_FOREACH_END(token); /* Extract the encrypted data section. */ tok = find_by_keyword(tokens, R3_ENCRYPTED); tor_assert(tok->object_body); if (strcmp(tok->object_type, "MESSAGE") != 0) { log_warn(LD_REND, "Desc encrypted data section is invalid"); goto err; } /* Make sure the length of the encrypted blob is valid. */ if (!encrypted_data_length_is_valid(tok->object_size)) { goto err; } /* Copy the encrypted blob to the descriptor object so we can handle it * latter if needed. */ tor_assert(tok->object_size <= INT_MAX); superencrypted->encrypted_blob = tor_memdup(tok->object_body, tok->object_size); superencrypted->encrypted_blob_size = tok->object_size; ret = HS_DESC_DECODE_OK; goto done; err: tor_assert(ret < HS_DESC_DECODE_OK); hs_desc_superencrypted_data_free_contents(desc_superencrypted_out); done: if (tokens) { SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t)); smartlist_free(tokens); } if (area) { memarea_drop_all(area); } if (message) { tor_free(message); } return ret; } /** Decode the version 3 encrypted section of the given descriptor desc. The * desc_encrypted_out will be populated with the decoded data. */ STATIC hs_desc_decode_status_t desc_decode_encrypted_v3(const hs_descriptor_t *desc, const curve25519_secret_key_t *client_auth_sk, hs_desc_encrypted_data_t *desc_encrypted_out) { hs_desc_decode_status_t ret = HS_DESC_DECODE_ENCRYPTED_ERROR; char *message = NULL; size_t message_len; memarea_t *area = NULL; directory_token_t *tok; smartlist_t *tokens = NULL; tor_assert(desc); tor_assert(desc_encrypted_out); /* Decrypt the encrypted data that is located in the superencrypted section * in the descriptor as a blob of bytes. */ message_len = desc_decrypt_encrypted(desc, client_auth_sk, &message); if (!message_len) { /* Two possible situation here. Either we have a client authorization * configured that didn't work or we do not have any configured for this * onion address so likely the descriptor is for authorized client only, * we are not. */ if (client_auth_sk) { /* At warning level so the client can notice that its client * authorization is failing. */ log_warn(LD_REND, "Client authorization for requested onion address " "is invalid. Can't decrypt the descriptor."); ret = HS_DESC_DECODE_BAD_CLIENT_AUTH; } else { /* Inform at notice level that the onion address requested can't be * reached without client authorization most likely. */ log_notice(LD_REND, "Fail to decrypt descriptor for requested onion " "address. It is likely requiring client " "authorization."); ret = HS_DESC_DECODE_NEED_CLIENT_AUTH; } goto err; } tor_assert(message); area = memarea_new(); tokens = smartlist_new(); if (tokenize_string(area, message, message + message_len, tokens, hs_desc_encrypted_v3_token_table, 0) < 0) { log_warn(LD_REND, "Encrypted service descriptor is not parseable."); goto err; } /* CREATE2 supported cell format. It's mandatory. */ tok = find_by_keyword(tokens, R3_CREATE2_FORMATS); tor_assert(tok); decode_create2_list(desc_encrypted_out, tok->args[0]); /* Must support ntor according to the specification */ if (!desc_encrypted_out->create2_ntor) { log_warn(LD_REND, "Service create2-formats does not include ntor."); goto err; } /* Authentication type. It's optional but only once. */ tok = find_opt_by_keyword(tokens, R3_INTRO_AUTH_REQUIRED); if (tok) { tor_assert(tok->n_args >= 1); if (!decode_auth_type(desc_encrypted_out, tok->args[0])) { log_warn(LD_REND, "Service descriptor authentication type has " "invalid entry(ies)."); goto err; } } /* Is this service a single onion service? */ tok = find_opt_by_keyword(tokens, R3_SINGLE_ONION_SERVICE); if (tok) { desc_encrypted_out->single_onion_service = 1; } /* Get flow control if any. */ tok = find_opt_by_keyword(tokens, R3_FLOW_CONTROL); if (tok) { int ok; tor_asprintf(&desc_encrypted_out->flow_control_pv, "FlowCtrl=%s", tok->args[0]); uint8_t sendme_inc = (uint8_t) tor_parse_uint64(tok->args[1], 10, 0, UINT8_MAX, &ok, NULL); if (!ok || !congestion_control_validate_sendme_increment(sendme_inc)) { log_warn(LD_REND, "Service descriptor flow control sendme " "value is invalid"); goto err; } desc_encrypted_out->sendme_inc = sendme_inc; } /* Initialize the descriptor's introduction point list before we start * decoding. Having 0 intro point is valid. Then decode them all. */ desc_encrypted_out->intro_points = smartlist_new(); decode_intro_points(desc, desc_encrypted_out, message); /* Validation of maximum introduction points allowed. */ if (smartlist_len(desc_encrypted_out->intro_points) > HS_CONFIG_V3_MAX_INTRO_POINTS) { log_warn(LD_REND, "Service descriptor contains too many introduction " "points. Maximum allowed is %d but we have %d", HS_CONFIG_V3_MAX_INTRO_POINTS, smartlist_len(desc_encrypted_out->intro_points)); goto err; } /* NOTE: Unknown fields are allowed because this function could be used to * decode other descriptor version. */ ret = HS_DESC_DECODE_OK; goto done; err: tor_assert(ret < HS_DESC_DECODE_OK); hs_desc_encrypted_data_free_contents(desc_encrypted_out); done: if (tokens) { SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t)); smartlist_free(tokens); } if (area) { memarea_drop_all(area); } if (message) { tor_free(message); } return ret; } /** Table of encrypted decode function version specific. The function are * indexed by the version number so v3 callback is at index 3 in the array. */ static hs_desc_decode_status_t (*decode_encrypted_handlers[])( const hs_descriptor_t *desc, const curve25519_secret_key_t *client_auth_sk, hs_desc_encrypted_data_t *desc_encrypted) = { /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL, desc_decode_encrypted_v3, }; /** Decode the encrypted data section of the given descriptor and store the * data in the given encrypted data object. Return 0 on success else a * negative value on error. */ hs_desc_decode_status_t hs_desc_decode_encrypted(const hs_descriptor_t *desc, const curve25519_secret_key_t *client_auth_sk, hs_desc_encrypted_data_t *desc_encrypted) { hs_desc_decode_status_t ret = HS_DESC_DECODE_ENCRYPTED_ERROR; uint32_t version; tor_assert(desc); /* Ease our life a bit. */ version = desc->plaintext_data.version; tor_assert(desc_encrypted); /* Calling this function without an encrypted blob to parse is a code flow * error. The superencrypted parsing should never succeed in the first place * without an encrypted section. */ tor_assert(desc->superencrypted_data.encrypted_blob); /* Let's make sure we have a supported version as well. By correctly parsing * the plaintext, this should not fail. */ if (BUG(!hs_desc_is_supported_version(version))) { goto err; } /* Extra precaution. Having no handler for the supported version should * never happened else we forgot to add it but we bumped the version. */ tor_assert(ARRAY_LENGTH(decode_encrypted_handlers) >= version); tor_assert(decode_encrypted_handlers[version]); /* Run the version specific plaintext decoder. */ ret = decode_encrypted_handlers[version](desc, client_auth_sk, desc_encrypted); if (ret < 0) { goto err; } err: return ret; } /** Table of superencrypted decode function version specific. The function are * indexed by the version number so v3 callback is at index 3 in the array. */ static hs_desc_decode_status_t (*decode_superencrypted_handlers[])( const hs_descriptor_t *desc, hs_desc_superencrypted_data_t *desc_superencrypted) = { /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL, desc_decode_superencrypted_v3, }; /** Decode the superencrypted data section of the given descriptor and store * the data in the given superencrypted data object. */ hs_desc_decode_status_t hs_desc_decode_superencrypted(const hs_descriptor_t *desc, hs_desc_superencrypted_data_t * desc_superencrypted) { hs_desc_decode_status_t ret = HS_DESC_DECODE_SUPERENC_ERROR; uint32_t version; tor_assert(desc); /* Ease our life a bit. */ version = desc->plaintext_data.version; tor_assert(desc_superencrypted); /* Calling this function without an superencrypted blob to parse is * a code flow error. The plaintext parsing should never succeed in * the first place without an superencrypted section. */ tor_assert(desc->plaintext_data.superencrypted_blob); /* Let's make sure we have a supported version as well. By correctly parsing * the plaintext, this should not fail. */ if (BUG(!hs_desc_is_supported_version(version))) { goto err; } /* Extra precaution. Having no handler for the supported version should * never happened else we forgot to add it but we bumped the version. */ tor_assert(ARRAY_LENGTH(decode_superencrypted_handlers) >= version); tor_assert(decode_superencrypted_handlers[version]); /* Run the version specific plaintext decoder. */ ret = decode_superencrypted_handlers[version](desc, desc_superencrypted); if (ret < 0) { goto err; } err: return ret; } /** Table of plaintext decode function version specific. The function are * indexed by the version number so v3 callback is at index 3 in the array. */ static hs_desc_decode_status_t (*decode_plaintext_handlers[])( smartlist_t *tokens, hs_desc_plaintext_data_t *desc, const char *encoded_desc, size_t encoded_len) = { /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL, desc_decode_plaintext_v3, }; /** Fully decode the given descriptor plaintext and store the data in the * plaintext data object. */ hs_desc_decode_status_t hs_desc_decode_plaintext(const char *encoded, hs_desc_plaintext_data_t *plaintext) { int ok = 0; hs_desc_decode_status_t ret = HS_DESC_DECODE_PLAINTEXT_ERROR; memarea_t *area = NULL; smartlist_t *tokens = NULL; size_t encoded_len; directory_token_t *tok; tor_assert(encoded); tor_assert(plaintext); /* Check that descriptor is within size limits. */ encoded_len = strlen(encoded); if (encoded_len >= hs_cache_get_max_descriptor_size()) { log_warn(LD_REND, "Service descriptor is too big (%lu bytes)", (unsigned long) encoded_len); goto err; } area = memarea_new(); tokens = smartlist_new(); /* Tokenize the descriptor so we can start to parse it. */ if (tokenize_string(area, encoded, encoded + encoded_len, tokens, hs_desc_v3_token_table, 0) < 0) { log_warn(LD_REND, "Service descriptor is not parseable"); goto err; } /* Get the version of the descriptor which is the first mandatory field of * the descriptor. From there, we'll decode the right descriptor version. */ tok = find_by_keyword(tokens, R_HS_DESCRIPTOR); tor_assert(tok->n_args == 1); plaintext->version = (uint32_t) tor_parse_ulong(tok->args[0], 10, 0, UINT32_MAX, &ok, NULL); if (!ok) { log_warn(LD_REND, "Service descriptor has unparseable version %s", escaped(tok->args[0])); goto err; } if (!hs_desc_is_supported_version(plaintext->version)) { log_warn(LD_REND, "Service descriptor has unsupported version %" PRIu32, plaintext->version); goto err; } /* Extra precaution. Having no handler for the supported version should * never happened else we forgot to add it but we bumped the version. */ tor_assert(ARRAY_LENGTH(decode_plaintext_handlers) >= plaintext->version); tor_assert(decode_plaintext_handlers[plaintext->version]); /* Run the version specific plaintext decoder. */ ret = decode_plaintext_handlers[plaintext->version](tokens, plaintext, encoded, encoded_len); if (ret != HS_DESC_DECODE_OK) { goto err; } /* Success. Descriptor has been populated with the data. */ ret = HS_DESC_DECODE_OK; err: if (tokens) { SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t)); smartlist_free(tokens); } if (area) { memarea_drop_all(area); } return ret; } /** Fully decode an encoded descriptor and set a newly allocated descriptor * object in desc_out. Client secret key is used to decrypt the "encrypted" * section if not NULL else it's ignored. * * Return 0 on success. A negative value is returned on error and desc_out is * set to NULL. */ hs_desc_decode_status_t hs_desc_decode_descriptor(const char *encoded, const hs_subcredential_t *subcredential, const curve25519_secret_key_t *client_auth_sk, hs_descriptor_t **desc_out) { hs_desc_decode_status_t ret = HS_DESC_DECODE_GENERIC_ERROR; hs_descriptor_t *desc; tor_assert(encoded); desc = tor_malloc_zero(sizeof(hs_descriptor_t)); /* Subcredentials are not optional. */ if (BUG(!subcredential || fast_mem_is_zero((char*)subcredential, DIGEST256_LEN))) { log_warn(LD_GENERAL, "Tried to decrypt without subcred. Impossible!"); goto err; } memcpy(&desc->subcredential, subcredential, sizeof(desc->subcredential)); ret = hs_desc_decode_plaintext(encoded, &desc->plaintext_data); if (ret != HS_DESC_DECODE_OK) { goto err; } ret = hs_desc_decode_superencrypted(desc, &desc->superencrypted_data); if (ret != HS_DESC_DECODE_OK) { goto err; } ret = hs_desc_decode_encrypted(desc, client_auth_sk, &desc->encrypted_data); if (ret != HS_DESC_DECODE_OK) { goto err; } if (desc_out) { *desc_out = desc; } else { hs_descriptor_free(desc); } return ret; err: hs_descriptor_free(desc); if (desc_out) { *desc_out = NULL; } tor_assert(ret < 0); return ret; } /** Table of encode function version specific. The functions are indexed by the * version number so v3 callback is at index 3 in the array. */ static int (*encode_handlers[])( const hs_descriptor_t *desc, const ed25519_keypair_t *signing_kp, const uint8_t *descriptor_cookie, char **encoded_out) = { /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL, desc_encode_v3, }; /** Encode the given descriptor desc including signing with the given key pair * signing_kp and encrypting with the given descriptor cookie. * * If the client authorization is enabled, descriptor_cookie must be the same * as the one used to build hs_desc_authorized_client_t in the descriptor. * Otherwise, it must be NULL. On success, encoded_out points to a newly * allocated NUL terminated string that contains the encoded descriptor as * a string. * * Return 0 on success and encoded_out is a valid pointer. On error, -1 is * returned and encoded_out is set to NULL. */ MOCK_IMPL(int, hs_desc_encode_descriptor,(const hs_descriptor_t *desc, const ed25519_keypair_t *signing_kp, const uint8_t *descriptor_cookie, char **encoded_out)) { int ret = -1; uint32_t version; tor_assert(desc); tor_assert(encoded_out); /* Make sure we support the version of the descriptor format. */ version = desc->plaintext_data.version; if (!hs_desc_is_supported_version(version)) { goto err; } /* Extra precaution. Having no handler for the supported version should * never happened else we forgot to add it but we bumped the version. */ tor_assert(ARRAY_LENGTH(encode_handlers) >= version); tor_assert(encode_handlers[version]); ret = encode_handlers[version](desc, signing_kp, descriptor_cookie, encoded_out); if (ret < 0) { goto err; } /* Try to decode what we just encoded. Symmetry is nice!, but it is * symmetric only if the client auth is disabled. That is, the descriptor * cookie will be NULL. */ if (!descriptor_cookie) { ret = hs_desc_decode_descriptor(*encoded_out, &desc->subcredential, NULL, NULL); if (BUG(ret != HS_DESC_DECODE_OK)) { ret = -1; goto err; } } return 0; err: *encoded_out = NULL; return ret; } /** Free the content of the plaintext section of a descriptor. */ void hs_desc_plaintext_data_free_contents(hs_desc_plaintext_data_t *desc) { if (!desc) { return; } if (desc->superencrypted_blob) { tor_free(desc->superencrypted_blob); } tor_cert_free(desc->signing_key_cert); memwipe(desc, 0, sizeof(*desc)); } /** Free the content of the superencrypted section of a descriptor. */ void hs_desc_superencrypted_data_free_contents(hs_desc_superencrypted_data_t *desc) { if (!desc) { return; } if (desc->encrypted_blob) { tor_free(desc->encrypted_blob); } if (desc->clients) { SMARTLIST_FOREACH(desc->clients, hs_desc_authorized_client_t *, client, hs_desc_authorized_client_free(client)); smartlist_free(desc->clients); } memwipe(desc, 0, sizeof(*desc)); } /** Free the content of the encrypted section of a descriptor. */ void hs_desc_encrypted_data_free_contents(hs_desc_encrypted_data_t *desc) { if (!desc) { return; } if (desc->intro_auth_types) { SMARTLIST_FOREACH(desc->intro_auth_types, char *, a, tor_free(a)); smartlist_free(desc->intro_auth_types); } if (desc->intro_points) { SMARTLIST_FOREACH(desc->intro_points, hs_desc_intro_point_t *, ip, hs_desc_intro_point_free(ip)); smartlist_free(desc->intro_points); } tor_free(desc->flow_control_pv); memwipe(desc, 0, sizeof(*desc)); } /** Free the descriptor plaintext data object. */ void hs_desc_plaintext_data_free_(hs_desc_plaintext_data_t *desc) { hs_desc_plaintext_data_free_contents(desc); tor_free(desc); } /** Free the descriptor plaintext data object. */ void hs_desc_superencrypted_data_free_(hs_desc_superencrypted_data_t *desc) { hs_desc_superencrypted_data_free_contents(desc); tor_free(desc); } /** Free the descriptor encrypted data object. */ void hs_desc_encrypted_data_free_(hs_desc_encrypted_data_t *desc) { hs_desc_encrypted_data_free_contents(desc); tor_free(desc); } /** Free the given descriptor object. */ void hs_descriptor_free_(hs_descriptor_t *desc) { if (!desc) { return; } hs_desc_plaintext_data_free_contents(&desc->plaintext_data); hs_desc_superencrypted_data_free_contents(&desc->superencrypted_data); hs_desc_encrypted_data_free_contents(&desc->encrypted_data); tor_free(desc); } /** Return the size in bytes of the given plaintext data object. A sizeof() is * not enough because the object contains pointers and the encrypted blob. * This is particularly useful for our OOM subsystem that tracks the HSDir * cache size for instance. */ size_t hs_desc_plaintext_obj_size(const hs_desc_plaintext_data_t *data) { tor_assert(data); return (sizeof(*data) + sizeof(*data->signing_key_cert) + data->superencrypted_blob_size); } /** Return the size in bytes of the given encrypted data object. Used by OOM * subsystem. */ static size_t hs_desc_encrypted_obj_size(const hs_desc_encrypted_data_t *data) { tor_assert(data); size_t intro_size = 0; if (data->intro_auth_types) { intro_size += smartlist_len(data->intro_auth_types) * sizeof(intro_auth_types); } if (data->intro_points) { /* XXX could follow pointers here and get more accurate size */ intro_size += smartlist_len(data->intro_points) * sizeof(hs_desc_intro_point_t); } return sizeof(*data) + intro_size; } /** Return the size in bytes of the given descriptor object. Used by OOM * subsystem. */ size_t hs_desc_obj_size(const hs_descriptor_t *data) { if (data == NULL) { return 0; } return (hs_desc_plaintext_obj_size(&data->plaintext_data) + hs_desc_encrypted_obj_size(&data->encrypted_data) + sizeof(data->subcredential)); } /** Return a newly allocated descriptor intro point. */ hs_desc_intro_point_t * hs_desc_intro_point_new(void) { hs_desc_intro_point_t *ip = tor_malloc_zero(sizeof(*ip)); ip->link_specifiers = smartlist_new(); return ip; } /** Free a descriptor intro point object. */ void hs_desc_intro_point_free_(hs_desc_intro_point_t *ip) { if (ip == NULL) { return; } if (ip->link_specifiers) { SMARTLIST_FOREACH(ip->link_specifiers, link_specifier_t *, ls, link_specifier_free(ls)); smartlist_free(ip->link_specifiers); } tor_cert_free(ip->auth_key_cert); tor_cert_free(ip->enc_key_cert); crypto_pk_free(ip->legacy.key); tor_free(ip->legacy.cert.encoded); tor_free(ip); } /** Allocate and build a new fake client info for the descriptor. Return a * newly allocated object. This can't fail. */ hs_desc_authorized_client_t * hs_desc_build_fake_authorized_client(void) { hs_desc_authorized_client_t *client_auth = tor_malloc_zero(sizeof(*client_auth)); crypto_rand((char *) client_auth->client_id, sizeof(client_auth->client_id)); crypto_rand((char *) client_auth->iv, sizeof(client_auth->iv)); crypto_rand((char *) client_auth->encrypted_cookie, sizeof(client_auth->encrypted_cookie)); return client_auth; } /** Using the service's subcredential, client public key, auth ephemeral secret * key, and descriptor cookie, build the auth client so we can then encode the * descriptor for publication. client_out must be already allocated. */ void hs_desc_build_authorized_client(const hs_subcredential_t *subcredential, const curve25519_public_key_t *client_auth_pk, const curve25519_secret_key_t * auth_ephemeral_sk, const uint8_t *descriptor_cookie, hs_desc_authorized_client_t *client_out) { uint8_t *keystream = NULL; size_t keystream_length = 0; const uint8_t *cookie_key; crypto_cipher_t *cipher; tor_assert(client_auth_pk); tor_assert(auth_ephemeral_sk); tor_assert(descriptor_cookie); tor_assert(client_out); tor_assert(subcredential); tor_assert(!fast_mem_is_zero((char *) auth_ephemeral_sk, sizeof(*auth_ephemeral_sk))); tor_assert(!fast_mem_is_zero((char *) client_auth_pk, sizeof(*client_auth_pk))); tor_assert(!fast_mem_is_zero((char *) descriptor_cookie, HS_DESC_DESCRIPTOR_COOKIE_LEN)); tor_assert(!fast_mem_is_zero((char *) subcredential, DIGEST256_LEN)); /* Get the KEYS part so we can derive the CLIENT-ID and COOKIE-KEY. */ keystream_length = build_descriptor_cookie_keys(subcredential, auth_ephemeral_sk, client_auth_pk, &keystream); tor_assert(keystream_length > 0); /* Extract the CLIENT-ID and COOKIE-KEY from the KEYS. */ memcpy(client_out->client_id, keystream, HS_DESC_CLIENT_ID_LEN); cookie_key = keystream + HS_DESC_CLIENT_ID_LEN; /* Random IV */ crypto_strongest_rand(client_out->iv, sizeof(client_out->iv)); /* This creates a cipher for AES. It can't fail. */ cipher = crypto_cipher_new_with_iv_and_bits(cookie_key, client_out->iv, HS_DESC_COOKIE_KEY_BIT_SIZE); /* This can't fail. */ crypto_cipher_encrypt(cipher, (char *) client_out->encrypted_cookie, (const char *) descriptor_cookie, HS_DESC_DESCRIPTOR_COOKIE_LEN); memwipe(keystream, 0, keystream_length); tor_free(keystream); crypto_cipher_free(cipher); } /** Free an authoriezd client object. */ void hs_desc_authorized_client_free_(hs_desc_authorized_client_t *client) { tor_free(client); } /** From the given descriptor, remove and free every introduction point. */ void hs_descriptor_clear_intro_points(hs_descriptor_t *desc) { smartlist_t *ips; tor_assert(desc); ips = desc->encrypted_data.intro_points; if (ips) { SMARTLIST_FOREACH(ips, hs_desc_intro_point_t *, ip, hs_desc_intro_point_free(ip)); smartlist_clear(ips); } } /** Return true iff we support the given descriptor congestion control * parameters. */ bool hs_desc_supports_congestion_control(const hs_descriptor_t *desc) { tor_assert(desc); /* Validate that we support the protocol version in the descriptor. */ return desc->encrypted_data.flow_control_pv && protocol_list_supports_protocol(desc->encrypted_data.flow_control_pv, PRT_FLOWCTRL, PROTOVER_FLOWCTRL_CC); }