/* Copyright (c) 2016-2020, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/**
* \file hs_cache.c
* \brief Handle hidden service descriptor caches.
**/
/* For unit tests.*/
#define HS_CACHE_PRIVATE
#include "core/or/or.h"
#include "app/config/config.h"
#include "lib/crypt_ops/crypto_format.h"
#include "lib/crypt_ops/crypto_util.h"
#include "feature/hs/hs_ident.h"
#include "feature/hs/hs_common.h"
#include "feature/hs/hs_client.h"
#include "feature/hs/hs_descriptor.h"
#include "feature/nodelist/microdesc.h"
#include "feature/nodelist/networkstatus.h"
#include "feature/rend/rendcache.h"
#include "feature/hs/hs_cache.h"
#include "feature/nodelist/networkstatus_st.h"
static int cached_client_descriptor_has_expired(time_t now,
const hs_cache_client_descriptor_t *cached_desc);
/** Helper function: Return true iff the cache entry has a decrypted
* descriptor.
*
* A NULL desc object in the entry means that we were not able to decrypt the
* descriptor because we are likely lacking client authorization. It is still
* a valid entry but some operations can't be done without the decrypted
* descriptor thus this function MUST be used to safe guard access to the
* decrypted desc object. */
static inline bool
entry_has_decrypted_descriptor(const hs_cache_client_descriptor_t *entry)
{
tor_assert(entry);
return (entry->desc != NULL);
}
/********************** Directory HS cache ******************/
/** Directory descriptor cache. Map indexed by blinded key. */
static digest256map_t *hs_cache_v3_dir;
/** Remove a given descriptor from our cache. */
static void
remove_v3_desc_as_dir(const hs_cache_dir_descriptor_t *desc)
{
tor_assert(desc);
digest256map_remove(hs_cache_v3_dir, desc->key);
}
/** Store a given descriptor in our cache. */
static void
store_v3_desc_as_dir(hs_cache_dir_descriptor_t *desc)
{
tor_assert(desc);
digest256map_set(hs_cache_v3_dir, desc->key, desc);
}
/** Query our cache and return the entry or NULL if not found. */
static hs_cache_dir_descriptor_t *
lookup_v3_desc_as_dir(const uint8_t *key)
{
tor_assert(key);
return digest256map_get(hs_cache_v3_dir, key);
}
#define cache_dir_desc_free(val) \
FREE_AND_NULL(hs_cache_dir_descriptor_t, cache_dir_desc_free_, (val))
/** Free a directory descriptor object. */
static void
cache_dir_desc_free_(hs_cache_dir_descriptor_t *desc)
{
if (desc == NULL) {
return;
}
hs_desc_plaintext_data_free(desc->plaintext_data);
tor_free(desc->encoded_desc);
tor_free(desc);
}
/** Helper function: Use by the free all function using the digest256map
* interface to cache entries. */
static void
cache_dir_desc_free_void(void *ptr)
{
cache_dir_desc_free_(ptr);
}
/** Create a new directory cache descriptor object from a encoded descriptor.
* On success, return the heap-allocated cache object, otherwise return NULL if
* we can't decode the descriptor. */
static hs_cache_dir_descriptor_t *
cache_dir_desc_new(const char *desc)
{
hs_cache_dir_descriptor_t *dir_desc;
tor_assert(desc);
dir_desc = tor_malloc_zero(sizeof(hs_cache_dir_descriptor_t));
dir_desc->plaintext_data =
tor_malloc_zero(sizeof(hs_desc_plaintext_data_t));
dir_desc->encoded_desc = tor_strdup(desc);
if (hs_desc_decode_plaintext(desc, dir_desc->plaintext_data) < 0) {
log_debug(LD_DIR, "Unable to decode descriptor. Rejecting.");
goto err;
}
/* The blinded pubkey is the indexed key. */
dir_desc->key = dir_desc->plaintext_data->blinded_pubkey.pubkey;
dir_desc->created_ts = time(NULL);
return dir_desc;
err:
cache_dir_desc_free(dir_desc);
return NULL;
}
/** Return the size of a cache entry in bytes. */
static size_t
cache_get_dir_entry_size(const hs_cache_dir_descriptor_t *entry)
{
return (sizeof(*entry) + hs_desc_plaintext_obj_size(entry->plaintext_data)
+ strlen(entry->encoded_desc));
}
/** Try to store a valid version 3 descriptor in the directory cache. Return 0
* on success else a negative value is returned indicating that we have a
* newer version in our cache. On error, caller is responsible to free the
* given descriptor desc. */
static int
cache_store_v3_as_dir(hs_cache_dir_descriptor_t *desc)
{
hs_cache_dir_descriptor_t *cache_entry;
tor_assert(desc);
/* Verify if we have an entry in the cache for that key and if yes, check
* if we should replace it? */
cache_entry = lookup_v3_desc_as_dir(desc->key);
if (cache_entry != NULL) {
/* Only replace descriptor if revision-counter is greater than the one
* in our cache */
if (cache_entry->plaintext_data->revision_counter >=
desc->plaintext_data->revision_counter) {
log_info(LD_REND, "Descriptor revision counter in our cache is "
"greater or equal than the one we received (%d/%d). "
"Rejecting!",
(int)cache_entry->plaintext_data->revision_counter,
(int)desc->plaintext_data->revision_counter);
goto err;
}
/* We now know that the descriptor we just received is a new one so
* remove the entry we currently have from our cache so we can then
* store the new one. */
remove_v3_desc_as_dir(cache_entry);
rend_cache_decrement_allocation(cache_get_dir_entry_size(cache_entry));
cache_dir_desc_free(cache_entry);
}
/* Store the descriptor we just got. We are sure here that either we
* don't have the entry or we have a newer descriptor and the old one
* has been removed from the cache. */
store_v3_desc_as_dir(desc);
/* Update our total cache size with this entry for the OOM. This uses the
* old HS protocol cache subsystem for which we are tied with. */
rend_cache_increment_allocation(cache_get_dir_entry_size(desc));
/* XXX: Update HS statistics. We should have specific stats for v3. */
return 0;
err:
return -1;
}
/** Using the query which is the base64 encoded blinded key of a version 3
* descriptor, lookup in our directory cache the entry. If found, 1 is
* returned and desc_out is populated with a newly allocated string being the
* encoded descriptor. If not found, 0 is returned and desc_out is untouched.
* On error, a negative value is returned and desc_out is untouched. */
static int
cache_lookup_v3_as_dir(const char *query, const char **desc_out)
{
int found = 0;
ed25519_public_key_t blinded_key;
const hs_cache_dir_descriptor_t *entry;
tor_assert(query);
/* Decode blinded key using the given query value. */
if (ed25519_public_from_base64(&blinded_key, query) < 0) {
log_info(LD_REND, "Unable to decode the v3 HSDir query %s.",
safe_str_client(query));
goto err;
}
entry = lookup_v3_desc_as_dir(blinded_key.pubkey);
if (entry != NULL) {
found = 1;
if (desc_out) {
*desc_out = entry->encoded_desc;
}
}
return found;
err:
return -1;
}
/** Clean the v3 cache by removing any entry that has expired using the
* global_cutoff value. If global_cutoff is 0, the cleaning
* process will use the lifetime found in the plaintext data section. Return
* the number of bytes cleaned. */
STATIC size_t
cache_clean_v3_as_dir(time_t now, time_t global_cutoff)
{
size_t bytes_removed = 0;
/* Code flow error if this ever happens. */
tor_assert(global_cutoff >= 0);
if (!hs_cache_v3_dir) { /* No cache to clean. Just return. */
return 0;
}
DIGEST256MAP_FOREACH_MODIFY(hs_cache_v3_dir, key,
hs_cache_dir_descriptor_t *, entry) {
size_t entry_size;
time_t cutoff = global_cutoff;
if (!cutoff) {
/* Cutoff is the lifetime of the entry found in the descriptor. */
cutoff = now - entry->plaintext_data->lifetime_sec;
}
/* If the entry has been created _after_ the cutoff, not expired so
* continue to the next entry in our v3 cache. */
if (entry->created_ts > cutoff) {
continue;
}
/* Here, our entry has expired, remove and free. */
MAP_DEL_CURRENT(key);
entry_size = cache_get_dir_entry_size(entry);
bytes_removed += entry_size;
/* Entry is not in the cache anymore, destroy it. */
cache_dir_desc_free(entry);
/* Update our cache entry allocation size for the OOM. */
rend_cache_decrement_allocation(entry_size);
/* Logging. */
{
char key_b64[BASE64_DIGEST256_LEN + 1];
digest256_to_base64(key_b64, (const char *) key);
log_info(LD_REND, "Removing v3 descriptor '%s' from HSDir cache",
safe_str_client(key_b64));
}
} DIGEST256MAP_FOREACH_END;
return bytes_removed;
}
/** Given an encoded descriptor, store it in the directory cache depending on
* which version it is. Return a negative value on error. On success, 0 is
* returned. */
int
hs_cache_store_as_dir(const char *desc)
{
hs_cache_dir_descriptor_t *dir_desc = NULL;
tor_assert(desc);
/* Create a new cache object. This can fail if the descriptor plaintext data
* is unparseable which in this case a log message will be triggered. */
dir_desc = cache_dir_desc_new(desc);
if (dir_desc == NULL) {
goto err;
}
/* Call the right function against the descriptor version. At this point,
* we are sure that the descriptor's version is supported else the
* decoding would have failed. */
switch (dir_desc->plaintext_data->version) {
case HS_VERSION_THREE:
default:
if (cache_store_v3_as_dir(dir_desc) < 0) {
goto err;
}
break;
}
return 0;
err:
cache_dir_desc_free(dir_desc);
return -1;
}
/** Using the query, lookup in our directory cache the entry. If found, 1 is
* returned and desc_out is populated with a newly allocated string being
* the encoded descriptor. If not found, 0 is returned and desc_out is
* untouched. On error, a negative value is returned and desc_out is
* untouched. */
int
hs_cache_lookup_as_dir(uint32_t version, const char *query,
const char **desc_out)
{
int found;
tor_assert(query);
/* This should never be called with an unsupported version. */
tor_assert(hs_desc_is_supported_version(version));
switch (version) {
case HS_VERSION_THREE:
default:
found = cache_lookup_v3_as_dir(query, desc_out);
break;
}
return found;
}
/** Clean all directory caches using the current time now. */
void
hs_cache_clean_as_dir(time_t now)
{
time_t cutoff;
/* Start with v2 cache cleaning. */
cutoff = now - rend_cache_max_entry_lifetime();
rend_cache_clean_v2_descs_as_dir(cutoff);
/* Now, clean the v3 cache. Set the cutoff to 0 telling the cleanup function
* to compute the cutoff by itself using the lifetime value. */
cache_clean_v3_as_dir(now, 0);
}
/********************** Client-side HS cache ******************/
/** Client-side HS descriptor cache. Map indexed by service identity key. */
static digest256map_t *hs_cache_v3_client;
/** Client-side introduction point state cache. Map indexed by service public
* identity key (onion address). It contains hs_cache_client_intro_state_t
* objects all related to a specific service. */
static digest256map_t *hs_cache_client_intro_state;
#define cache_client_desc_free(val) \
FREE_AND_NULL(hs_cache_client_descriptor_t, cache_client_desc_free_, (val))
/** Free memory allocated by desc. */
static void
cache_client_desc_free_(hs_cache_client_descriptor_t *desc)
{
if (desc == NULL) {
return;
}
hs_descriptor_free(desc->desc);
memwipe(&desc->key, 0, sizeof(desc->key));
memwipe(desc->encoded_desc, 0, strlen(desc->encoded_desc));
tor_free(desc->encoded_desc);
tor_free(desc);
}
/** Helper function: Use by the free all function to clear the client cache */
static void
cache_client_desc_free_void(void *ptr)
{
hs_cache_client_descriptor_t *desc = ptr;
cache_client_desc_free(desc);
}
/** Return the size of a client cache entry in bytes. */
static size_t
cache_get_client_entry_size(const hs_cache_client_descriptor_t *entry)
{
size_t size = 0;
if (entry == NULL) {
goto end;
}
size += sizeof(*entry);
if (entry->encoded_desc) {
size += strlen(entry->encoded_desc);
}
if (entry_has_decrypted_descriptor(entry)) {
size += hs_desc_obj_size(entry->desc);
}
end:
return size;
}
/** Remove a given descriptor from our cache. */
static void
remove_v3_desc_as_client(const hs_cache_client_descriptor_t *desc)
{
tor_assert(desc);
digest256map_remove(hs_cache_v3_client, desc->key.pubkey);
/* Update cache size with this entry for the OOM handler. */
rend_cache_decrement_allocation(cache_get_client_entry_size(desc));
}
/** Store a given descriptor in our cache. */
static void
store_v3_desc_as_client(hs_cache_client_descriptor_t *desc)
{
hs_cache_client_descriptor_t *cached_desc;
tor_assert(desc);
/* Because the lookup function doesn't return an expired entry, it can linger
* in the cache until we clean it up or a new descriptor is stored. So,
* before adding, we'll make sure we are not overwriting an old descriptor
* (which is OK in terms of semantic) but leads to memory leak. */
cached_desc = digest256map_get(hs_cache_v3_client, desc->key.pubkey);
if (cached_desc) {
cache_client_desc_free(cached_desc);
}
digest256map_set(hs_cache_v3_client, desc->key.pubkey, desc);
/* Update cache size with this entry for the OOM handler. */
rend_cache_increment_allocation(cache_get_client_entry_size(desc));
}
/** Query our cache and return the entry or NULL if not found or if expired. */
STATIC hs_cache_client_descriptor_t *
lookup_v3_desc_as_client(const uint8_t *key)
{
time_t now = approx_time();
hs_cache_client_descriptor_t *cached_desc;
tor_assert(key);
/* Do the lookup */
cached_desc = digest256map_get(hs_cache_v3_client, key);
if (!cached_desc) {
return NULL;
}
/* Don't return expired entries */
if (cached_client_descriptor_has_expired(now, cached_desc)) {
return NULL;
}
return cached_desc;
}
/** Parse the encoded descriptor in desc_str using
* service_identity_pk to decrypt it first.
*
* If everything goes well, allocate and return a new
* hs_cache_client_descriptor_t object. In case of error, return NULL. */
static hs_cache_client_descriptor_t *
cache_client_desc_new(const char *desc_str,
const ed25519_public_key_t *service_identity_pk,
hs_desc_decode_status_t *decode_status_out)
{
hs_desc_decode_status_t ret;
hs_descriptor_t *desc = NULL;
hs_cache_client_descriptor_t *client_desc = NULL;
tor_assert(desc_str);
tor_assert(service_identity_pk);
/* Decode the descriptor we just fetched. */
ret = hs_client_decode_descriptor(desc_str, service_identity_pk, &desc);
if (ret != HS_DESC_DECODE_OK &&
ret != HS_DESC_DECODE_NEED_CLIENT_AUTH &&
ret != HS_DESC_DECODE_BAD_CLIENT_AUTH) {
/* In the case of a missing or bad client authorization, we'll keep the
* descriptor in the cache because those credentials can arrive later. */
goto end;
}
/* Make sure we do have a descriptor if decoding was successful. */
if (ret == HS_DESC_DECODE_OK) {
tor_assert(desc);
} else {
if (BUG(desc != NULL)) {
/* We are not suppose to have a descriptor if the decoding code is not
* indicating success. Just in case, bail early to recover. */
goto end;
}
}
/* All is good: make a cache object for this descriptor */
client_desc = tor_malloc_zero(sizeof(hs_cache_client_descriptor_t));
ed25519_pubkey_copy(&client_desc->key, service_identity_pk);
/* Set expiration time for this cached descriptor to be the start of the next
* time period since that's when clients need to start using the next blinded
* pk of the service (and hence will need its next descriptor). */
client_desc->expiration_ts = hs_get_start_time_of_next_time_period(0);
client_desc->desc = desc;
client_desc->encoded_desc = tor_strdup(desc_str);
end:
if (decode_status_out) {
*decode_status_out = ret;
}
return client_desc;
}
/** Return a newly allocated and initialized hs_cache_intro_state_t object. */
static hs_cache_intro_state_t *
cache_intro_state_new(void)
{
hs_cache_intro_state_t *state = tor_malloc_zero(sizeof(*state));
state->created_ts = approx_time();
return state;
}
#define cache_intro_state_free(val) \
FREE_AND_NULL(hs_cache_intro_state_t, cache_intro_state_free_, (val))
/** Free an hs_cache_intro_state_t object. */
static void
cache_intro_state_free_(hs_cache_intro_state_t *state)
{
tor_free(state);
}
/** Helper function: used by the free all function. */
static void
cache_intro_state_free_void(void *state)
{
cache_intro_state_free_(state);
}
/** Return a newly allocated and initialized hs_cache_client_intro_state_t
* object. */
static hs_cache_client_intro_state_t *
cache_client_intro_state_new(void)
{
hs_cache_client_intro_state_t *cache = tor_malloc_zero(sizeof(*cache));
cache->intro_points = digest256map_new();
return cache;
}
#define cache_client_intro_state_free(val) \
FREE_AND_NULL(hs_cache_client_intro_state_t, \
cache_client_intro_state_free_, (val))
/** Free a cache_client_intro_state object. */
static void
cache_client_intro_state_free_(hs_cache_client_intro_state_t *cache)
{
if (cache == NULL) {
return;
}
digest256map_free(cache->intro_points, cache_intro_state_free_void);
tor_free(cache);
}
/** Helper function: used by the free all function. */
static void
cache_client_intro_state_free_void(void *entry)
{
cache_client_intro_state_free_(entry);
}
/** For the given service identity key service_pk and an introduction
* authentication key auth_key, lookup the intro state object. Return 1 if
* found and put it in entry if not NULL. Return 0 if not found and entry is
* untouched. */
static int
cache_client_intro_state_lookup(const ed25519_public_key_t *service_pk,
const ed25519_public_key_t *auth_key,
hs_cache_intro_state_t **entry)
{
hs_cache_intro_state_t *state;
hs_cache_client_intro_state_t *cache;
tor_assert(service_pk);
tor_assert(auth_key);
/* Lookup the intro state cache for this service key. */
cache = digest256map_get(hs_cache_client_intro_state, service_pk->pubkey);
if (cache == NULL) {
goto not_found;
}
/* From the cache we just found for the service, lookup in the introduction
* points map for the given authentication key. */
state = digest256map_get(cache->intro_points, auth_key->pubkey);
if (state == NULL) {
goto not_found;
}
if (entry) {
*entry = state;
}
return 1;
not_found:
return 0;
}
/** Note the given failure in state. */
static void
cache_client_intro_state_note(hs_cache_intro_state_t *state,
rend_intro_point_failure_t failure)
{
tor_assert(state);
switch (failure) {
case INTRO_POINT_FAILURE_GENERIC:
state->error = 1;
break;
case INTRO_POINT_FAILURE_TIMEOUT:
state->timed_out = 1;
break;
case INTRO_POINT_FAILURE_UNREACHABLE:
state->unreachable_count++;
break;
default:
tor_assert_nonfatal_unreached();
return;
}
}
/** For the given service identity key service_pk and an introduction
* authentication key auth_key, add an entry in the client intro state cache
* If no entry exists for the service, it will create one. If state is non
* NULL, it will point to the new intro state entry. */
static void
cache_client_intro_state_add(const ed25519_public_key_t *service_pk,
const ed25519_public_key_t *auth_key,
hs_cache_intro_state_t **state)
{
hs_cache_intro_state_t *entry, *old_entry;
hs_cache_client_intro_state_t *cache;
tor_assert(service_pk);
tor_assert(auth_key);
/* Lookup the state cache for this service key. */
cache = digest256map_get(hs_cache_client_intro_state, service_pk->pubkey);
if (cache == NULL) {
cache = cache_client_intro_state_new();
digest256map_set(hs_cache_client_intro_state, service_pk->pubkey, cache);
}
entry = cache_intro_state_new();
old_entry = digest256map_set(cache->intro_points, auth_key->pubkey, entry);
/* This should never happened because the code flow is to lookup the entry
* before adding it. But, just in case, non fatal assert and free it. */
tor_assert_nonfatal(old_entry == NULL);
tor_free(old_entry);
if (state) {
*state = entry;
}
}
/** Remove every intro point state entry from cache that has been created
* before or at the cutoff. */
static void
cache_client_intro_state_clean(time_t cutoff,
hs_cache_client_intro_state_t *cache)
{
tor_assert(cache);
DIGEST256MAP_FOREACH_MODIFY(cache->intro_points, key,
hs_cache_intro_state_t *, entry) {
if (entry->created_ts <= cutoff) {
cache_intro_state_free(entry);
MAP_DEL_CURRENT(key);
}
} DIGEST256MAP_FOREACH_END;
}
/** Return true iff no intro points are in this cache. */
static int
cache_client_intro_state_is_empty(const hs_cache_client_intro_state_t *cache)
{
return digest256map_isempty(cache->intro_points);
}
/** Check whether client_desc is useful for us, and store it in the
* client-side HS cache if so. The client_desc is freed if we already have a
* fresher (higher revision counter count) in the cache. */
static int
cache_store_as_client(hs_cache_client_descriptor_t *client_desc)
{
hs_cache_client_descriptor_t *cache_entry;
/* TODO: Heavy code duplication with cache_store_as_dir(). Consider
* refactoring and uniting! */
tor_assert(client_desc);
/* Check if we already have a descriptor from this HS in cache. If we do,
* check if this descriptor is newer than the cached one only if we have a
* decoded descriptor. We do keep non-decoded descriptor that requires
* client authorization. */
cache_entry = lookup_v3_desc_as_client(client_desc->key.pubkey);
if (cache_entry != NULL) {
/* If the current or the new cache entry don't have a decrypted descriptor
* (missing client authorization), we always replace the current one with
* the new one. Reason is that we can't inspect the revision counter
* within the plaintext data so we blindly replace. */
if (!entry_has_decrypted_descriptor(cache_entry) ||
!entry_has_decrypted_descriptor(client_desc)) {
remove_v3_desc_as_client(cache_entry);
cache_client_desc_free(cache_entry);
goto store;
}
/* From this point on, we know that the decrypted descriptor is in the
* current entry and new object thus safe to access. */
/* If we have an entry in our cache that has a revision counter greater
* than the one we just fetched, discard the one we fetched. */
if (cache_entry->desc->plaintext_data.revision_counter >
client_desc->desc->plaintext_data.revision_counter) {
cache_client_desc_free(client_desc);
goto done;
}
/* Remove old entry. Make space for the new one! */
remove_v3_desc_as_client(cache_entry);
/* We just removed an old descriptor and will replace it. We'll close all
* intro circuits related to this old one so we don't have leftovers. We
* leave the rendezvous circuits opened because they could be in use. */
hs_client_close_intro_circuits_from_desc(cache_entry->desc);
/* Free it. */
cache_client_desc_free(cache_entry);
}
store:
/* Store descriptor in cache */
store_v3_desc_as_client(client_desc);
done:
return 0;
}
/** Return true iff the cached client descriptor at cached_desc has
* expired. */
static int
cached_client_descriptor_has_expired(time_t now,
const hs_cache_client_descriptor_t *cached_desc)
{
/* We use the current consensus time to see if we should expire this
* descriptor since we use consensus time for all other parts of the protocol
* as well (e.g. to build the blinded key and compute time periods). */
const networkstatus_t *ns =
networkstatus_get_reasonably_live_consensus(now,
usable_consensus_flavor());
/* If we don't have a recent consensus, consider this entry expired since we
* will want to fetch a new HS desc when we get a live consensus. */
if (!ns) {
return 1;
}
if (cached_desc->expiration_ts <= ns->valid_after) {
return 1;
}
return 0;
}
/** clean the client cache using now as the current time. Return the total size
* of removed bytes from the cache. */
static size_t
cache_clean_v3_as_client(time_t now)
{
size_t bytes_removed = 0;
if (!hs_cache_v3_client) { /* No cache to clean. Just return. */
return 0;
}
DIGEST256MAP_FOREACH_MODIFY(hs_cache_v3_client, key,
hs_cache_client_descriptor_t *, entry) {
size_t entry_size;
/* If the entry has not expired, continue to the next cached entry */
if (!cached_client_descriptor_has_expired(now, entry)) {
continue;
}
/* Here, our entry has expired, remove and free. */
MAP_DEL_CURRENT(key);
entry_size = cache_get_client_entry_size(entry);
bytes_removed += entry_size;
/* We just removed an old descriptor. We need to close all intro circuits
* if the descriptor is decrypted so we don't have leftovers that can be
* selected while lacking a descriptor. Circuits are selected by intro
* authentication key thus we need the descriptor. We leave the rendezvous
* circuits opened because they could be in use. */
if (entry_has_decrypted_descriptor(entry)) {
hs_client_close_intro_circuits_from_desc(entry->desc);
}
/* Entry is not in the cache anymore, destroy it. */
cache_client_desc_free(entry);
/* Update our OOM. We didn't use the remove() function because we are in
* a loop so we have to explicitly decrement. */
rend_cache_decrement_allocation(entry_size);
/* Logging. */
{
char key_b64[BASE64_DIGEST256_LEN + 1];
digest256_to_base64(key_b64, (const char *) key);
log_info(LD_REND, "Removing hidden service v3 descriptor '%s' "
"from client cache",
safe_str_client(key_b64));
}
} DIGEST256MAP_FOREACH_END;
return bytes_removed;
}
/** Public API: Given the HS ed25519 identity public key in key, return
* its HS encoded descriptor if it's stored in our cache, or NULL if not. */
const char *
hs_cache_lookup_encoded_as_client(const ed25519_public_key_t *key)
{
hs_cache_client_descriptor_t *cached_desc = NULL;
tor_assert(key);
cached_desc = lookup_v3_desc_as_client(key->pubkey);
if (cached_desc) {
tor_assert(cached_desc->encoded_desc);
return cached_desc->encoded_desc;
}
return NULL;
}
/** Public API: Given the HS ed25519 identity public key in key, return
* its HS descriptor if it's stored in our cache, or NULL if not or if the
* descriptor was never decrypted. The later can happen if we are waiting for
* client authorization to be added. */
const hs_descriptor_t *
hs_cache_lookup_as_client(const ed25519_public_key_t *key)
{
hs_cache_client_descriptor_t *cached_desc = NULL;
tor_assert(key);
cached_desc = lookup_v3_desc_as_client(key->pubkey);
if (cached_desc && entry_has_decrypted_descriptor(cached_desc)) {
return cached_desc->desc;
}
return NULL;
}
/** Public API: Given an encoded descriptor, store it in the client HS cache.
* Return a decode status which changes how we handle the SOCKS connection
* depending on its value:
*
* HS_DESC_DECODE_OK: Returned on success. Descriptor was properly decoded
* and is now stored.
*
* HS_DESC_DECODE_NEED_CLIENT_AUTH: Client authorization is needed but the
* descriptor was still stored.
*
* HS_DESC_DECODE_BAD_CLIENT_AUTH: Client authorization for this descriptor
* was not usable but the descriptor was
* still stored.
*
* Any other codes means indicate where the error occurred and the descriptor
* was not stored. */
hs_desc_decode_status_t
hs_cache_store_as_client(const char *desc_str,
const ed25519_public_key_t *identity_pk)
{
hs_desc_decode_status_t ret;
hs_cache_client_descriptor_t *client_desc = NULL;
tor_assert(desc_str);
tor_assert(identity_pk);
/* Create client cache descriptor object */
client_desc = cache_client_desc_new(desc_str, identity_pk, &ret);
if (!client_desc) {
log_warn(LD_GENERAL, "HSDesc parsing failed!");
log_debug(LD_GENERAL, "Failed to parse HSDesc: %s.", escaped(desc_str));
goto err;
}
/* Push it to the cache */
if (cache_store_as_client(client_desc) < 0) {
ret = HS_DESC_DECODE_GENERIC_ERROR;
goto err;
}
return ret;
err:
cache_client_desc_free(client_desc);
return ret;
}
/** Remove and free a client cache descriptor entry for the given onion
* service ed25519 public key. If the descriptor is decoded, the intro
* circuits are closed if any.
*
* This does nothing if no descriptor exists for the given key. */
void
hs_cache_remove_as_client(const ed25519_public_key_t *key)
{
hs_cache_client_descriptor_t *cached_desc = NULL;
tor_assert(key);
cached_desc = lookup_v3_desc_as_client(key->pubkey);
if (!cached_desc) {
return;
}
/* If we have a decrypted/decoded descriptor, attempt to close its
* introduction circuit(s). We shouldn't have circuit(s) without a
* descriptor else it will lead to a failure. */
if (entry_has_decrypted_descriptor(cached_desc)) {
hs_client_close_intro_circuits_from_desc(cached_desc->desc);
}
/* Remove and free. */
remove_v3_desc_as_client(cached_desc);
cache_client_desc_free(cached_desc);
/* Logging. */
{
char key_b64[BASE64_DIGEST256_LEN + 1];
digest256_to_base64(key_b64, (const char *) key);
log_info(LD_REND, "Onion service v3 descriptor '%s' removed "
"from client cache",
safe_str_client(key_b64));
}
}
/** Clean all client caches using the current time now. */
void
hs_cache_clean_as_client(time_t now)
{
/* Start with v2 cache cleaning. */
rend_cache_clean(now, REND_CACHE_TYPE_CLIENT);
/* Now, clean the v3 cache. Set the cutoff to 0 telling the cleanup function
* to compute the cutoff by itself using the lifetime value. */
cache_clean_v3_as_client(now);
}
/** Purge the client descriptor cache. */
void
hs_cache_purge_as_client(void)
{
DIGEST256MAP_FOREACH_MODIFY(hs_cache_v3_client, key,
hs_cache_client_descriptor_t *, entry) {
size_t entry_size = cache_get_client_entry_size(entry);
MAP_DEL_CURRENT(key);
cache_client_desc_free(entry);
/* Update our OOM. We didn't use the remove() function because we are in
* a loop so we have to explicitly decrement. */
rend_cache_decrement_allocation(entry_size);
} DIGEST256MAP_FOREACH_END;
log_info(LD_REND, "Hidden service client descriptor cache purged.");
}
/** For a given service identity public key and an introduction authentication
* key, note the given failure in the client intro state cache. */
void
hs_cache_client_intro_state_note(const ed25519_public_key_t *service_pk,
const ed25519_public_key_t *auth_key,
rend_intro_point_failure_t failure)
{
int found;
hs_cache_intro_state_t *entry;
tor_assert(service_pk);
tor_assert(auth_key);
found = cache_client_intro_state_lookup(service_pk, auth_key, &entry);
if (!found) {
/* Create a new entry and add it to the cache. */
cache_client_intro_state_add(service_pk, auth_key, &entry);
}
/* Note down the entry. */
cache_client_intro_state_note(entry, failure);
}
/** For a given service identity public key and an introduction authentication
* key, return true iff it is present in the failure cache. */
const hs_cache_intro_state_t *
hs_cache_client_intro_state_find(const ed25519_public_key_t *service_pk,
const ed25519_public_key_t *auth_key)
{
hs_cache_intro_state_t *state = NULL;
cache_client_intro_state_lookup(service_pk, auth_key, &state);
return state;
}
/** Cleanup the client introduction state cache. */
void
hs_cache_client_intro_state_clean(time_t now)
{
time_t cutoff = now - HS_CACHE_CLIENT_INTRO_STATE_MAX_AGE;
DIGEST256MAP_FOREACH_MODIFY(hs_cache_client_intro_state, key,
hs_cache_client_intro_state_t *, cache) {
/* Cleanup intro points failure. */
cache_client_intro_state_clean(cutoff, cache);
/* Is this cache empty for this service key? If yes, remove it from the
* cache. Else keep it. */
if (cache_client_intro_state_is_empty(cache)) {
cache_client_intro_state_free(cache);
MAP_DEL_CURRENT(key);
}
} DIGEST256MAP_FOREACH_END;
}
/** Purge the client introduction state cache. */
void
hs_cache_client_intro_state_purge(void)
{
DIGEST256MAP_FOREACH_MODIFY(hs_cache_client_intro_state, key,
hs_cache_client_intro_state_t *, cache) {
MAP_DEL_CURRENT(key);
cache_client_intro_state_free(cache);
} DIGEST256MAP_FOREACH_END;
log_info(LD_REND, "Hidden service client introduction point state "
"cache purged.");
}
/* This is called when new client authorization was added to the global state.
* It attempts to decode the descriptor of the given service identity key.
*
* Return true if decoding was successful else false. */
bool
hs_cache_client_new_auth_parse(const ed25519_public_key_t *service_pk)
{
bool ret = false;
hs_cache_client_descriptor_t *cached_desc = NULL;
tor_assert(service_pk);
if (!hs_cache_v3_client) {
return false;
}
cached_desc = lookup_v3_desc_as_client(service_pk->pubkey);
if (cached_desc == NULL || entry_has_decrypted_descriptor(cached_desc)) {
/* No entry for that service or the descriptor is already decoded. */
goto end;
}
/* Attempt a decode. If we are successful, inform the caller. */
if (hs_client_decode_descriptor(cached_desc->encoded_desc, service_pk,
&cached_desc->desc) == HS_DESC_DECODE_OK) {
ret = true;
}
end:
return ret;
}
/**************** Generics *********************************/
/** Do a round of OOM cleanup on all directory caches. Return the amount of
* removed bytes. It is possible that the returned value is lower than
* min_remove_bytes if the caches get emptied out so the caller should be
* aware of this. */
size_t
hs_cache_handle_oom(time_t now, size_t min_remove_bytes)
{
time_t k;
size_t bytes_removed = 0;
/* Our OOM handler called with 0 bytes to remove is a code flow error. */
tor_assert(min_remove_bytes != 0);
/* The algorithm is as follow. K is the oldest expected descriptor age.
*
* 1) Deallocate all entries from v2 cache that are older than K hours.
* 1.1) If the amount of remove bytes has been reached, stop.
* 2) Deallocate all entries from v3 cache that are older than K hours
* 2.1) If the amount of remove bytes has been reached, stop.
* 3) Set K = K - RendPostPeriod and repeat process until K is < 0.
*
* This ends up being O(Kn).
*/
/* Set K to the oldest expected age in seconds which is the maximum
* lifetime of a cache entry. We'll use the v2 lifetime because it's much
* bigger than the v3 thus leading to cleaning older descriptors. */
k = rend_cache_max_entry_lifetime();
do {
time_t cutoff;
/* If K becomes negative, it means we've empty the caches so stop and
* return what we were able to cleanup. */
if (k < 0) {
break;
}
/* Compute a cutoff value with K and the current time. */
cutoff = now - k;
/* Start by cleaning the v2 cache with that cutoff. */
bytes_removed += rend_cache_clean_v2_descs_as_dir(cutoff);
if (bytes_removed < min_remove_bytes) {
/* We haven't remove enough bytes so clean v3 cache. */
bytes_removed += cache_clean_v3_as_dir(now, cutoff);
/* Decrement K by a post period to shorten the cutoff. */
k -= get_options()->RendPostPeriod;
}
} while (bytes_removed < min_remove_bytes);
return bytes_removed;
}
/** Return the maximum size of a v3 HS descriptor. */
unsigned int
hs_cache_get_max_descriptor_size(void)
{
return (unsigned) networkstatus_get_param(NULL,
"HSV3MaxDescriptorSize",
HS_DESC_MAX_LEN, 1, INT32_MAX);
}
/** Initialize the hidden service cache subsystem. */
void
hs_cache_init(void)
{
/* Calling this twice is very wrong code flow. */
tor_assert(!hs_cache_v3_dir);
hs_cache_v3_dir = digest256map_new();
tor_assert(!hs_cache_v3_client);
hs_cache_v3_client = digest256map_new();
tor_assert(!hs_cache_client_intro_state);
hs_cache_client_intro_state = digest256map_new();
}
/** Cleanup the hidden service cache subsystem. */
void
hs_cache_free_all(void)
{
digest256map_free(hs_cache_v3_dir, cache_dir_desc_free_void);
hs_cache_v3_dir = NULL;
digest256map_free(hs_cache_v3_client, cache_client_desc_free_void);
hs_cache_v3_client = NULL;
digest256map_free(hs_cache_client_intro_state,
cache_client_intro_state_free_void);
hs_cache_client_intro_state = NULL;
}