/* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. * Copyright (c) 2007-2020, The Tor Project, Inc. */ /* See LICENSE for licensing information */ /** * \file hibernate.c * \brief Functions to close listeners, stop allowing new circuits, * etc in preparation for closing down or going dormant; and to track * bandwidth and time intervals to know when to hibernate and when to * stop hibernating. * * Ordinarily a Tor relay is "Live". * * A live relay can stop accepting connections for one of two reasons: either * it is trying to conserve bandwidth because of bandwidth accounting rules * ("soft hibernation"), or it is about to shut down ("exiting"). **/ /* hibernating, phase 1: - send destroy in response to create cells - send end (policy failed) in response to begin cells - close an OR conn when it has no circuits hibernating, phase 2: (entered when bandwidth hard limit reached) - close all OR/AP/exit conns) */ #define HIBERNATE_PRIVATE #include "core/or/or.h" #include "core/or/channel.h" #include "core/or/channeltls.h" #include "app/config/config.h" #include "core/mainloop/connection.h" #include "core/or/connection_edge.h" #include "core/or/connection_or.h" #include "feature/control/control_events.h" #include "lib/crypt_ops/crypto_rand.h" #include "lib/defs/time.h" #include "feature/hibernate/hibernate.h" #include "core/mainloop/mainloop.h" #include "feature/relay/router.h" #include "app/config/statefile.h" #include "lib/evloop/compat_libevent.h" #include "core/or/or_connection_st.h" #include "app/config/or_state_st.h" #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_SYSTEMD # if defined(__COVERITY__) && !defined(__INCLUDE_LEVEL__) /* Systemd's use of gcc's __INCLUDE_LEVEL__ extension macro appears to confuse * Coverity. Here's a kludge to unconfuse it. */ # define __INCLUDE_LEVEL__ 2 #endif /* defined(__COVERITY__) && !defined(__INCLUDE_LEVEL__) */ #include #endif /* defined(HAVE_SYSTEMD) */ /** Are we currently awake, asleep, running out of bandwidth, or shutting * down? */ static hibernate_state_t hibernate_state = HIBERNATE_STATE_INITIAL; /** If are hibernating, when do we plan to wake up? Set to 0 if we * aren't hibernating. */ static time_t hibernate_end_time = 0; /** If we are shutting down, when do we plan to finally exit? Set to 0 if we * aren't shutting down. (This is obsolete; scheduled shutdowns are supposed * to happen from mainloop_schedule_shutdown() now.) */ static time_t shutdown_time = 0; /** A timed event that we'll use when it's time to wake up from * hibernation. */ static mainloop_event_t *wakeup_event = NULL; /** Possible accounting periods. */ typedef enum { UNIT_MONTH=1, UNIT_WEEK=2, UNIT_DAY=3, } time_unit_t; /* * @file hibernate.c * *

Accounting

* Accounting is designed to ensure that no more than N bytes are sent in * either direction over a given interval (currently, one month, one week, or * one day) We could * try to do this by choking our bandwidth to a trickle, but that * would make our streams useless. Instead, we estimate what our * bandwidth usage will be, and guess how long we'll be able to * provide that much bandwidth before hitting our limit. We then * choose a random time within the accounting interval to come up (so * that we don't get 50 Tors running on the 1st of the month and none * on the 30th). * * Each interval runs as follows: * *
    *
  1. We guess our bandwidth usage, based on how much we used * last time. We choose a "wakeup time" within the interval to come up. *
  2. Until the chosen wakeup time, we hibernate. *
  3. We come up at the wakeup time, and provide bandwidth until we are * "very close" to running out. *
  4. Then we go into low-bandwidth mode, and stop accepting new * connections, but provide bandwidth until we run out. *
  5. Then we hibernate until the end of the interval. * * If the interval ends before we run out of bandwidth, we go back to * step one. * * Accounting is controlled by the AccountingMax, AccountingRule, and * AccountingStart options. */ /** How many bytes have we read in this accounting interval? */ static uint64_t n_bytes_read_in_interval = 0; /** How many bytes have we written in this accounting interval? */ static uint64_t n_bytes_written_in_interval = 0; /** How many seconds have we been running this interval? */ static uint32_t n_seconds_active_in_interval = 0; /** How many seconds were we active in this interval before we hit our soft * limit? */ static int n_seconds_to_hit_soft_limit = 0; /** When in this interval was the soft limit hit. */ static time_t soft_limit_hit_at = 0; /** How many bytes had we read/written when we hit the soft limit? */ static uint64_t n_bytes_at_soft_limit = 0; /** When did this accounting interval start? */ static time_t interval_start_time = 0; /** When will this accounting interval end? */ static time_t interval_end_time = 0; /** How far into the accounting interval should we hibernate? */ static time_t interval_wakeup_time = 0; /** How much bandwidth do we 'expect' to use per minute? (0 if we have no * info from the last period.) */ static uint64_t expected_bandwidth_usage = 0; /** What unit are we using for our accounting? */ static time_unit_t cfg_unit = UNIT_MONTH; /** How many days,hours,minutes into each unit does our accounting interval * start? */ /** @{ */ static int cfg_start_day = 0, cfg_start_hour = 0, cfg_start_min = 0; /** @} */ static const char *hibernate_state_to_string(hibernate_state_t state); static void reset_accounting(time_t now); static int read_bandwidth_usage(void); static time_t start_of_accounting_period_after(time_t now); static time_t start_of_accounting_period_containing(time_t now); static void accounting_set_wakeup_time(void); static void on_hibernate_state_change(hibernate_state_t prev_state); static void hibernate_schedule_wakeup_event(time_t now, time_t end_time); static void wakeup_event_callback(mainloop_event_t *ev, void *data); /** * Return the human-readable name for the hibernation state state */ static const char * hibernate_state_to_string(hibernate_state_t state) { static char buf[64]; switch (state) { case HIBERNATE_STATE_EXITING: return "EXITING"; case HIBERNATE_STATE_LOWBANDWIDTH: return "SOFT"; case HIBERNATE_STATE_DORMANT: return "HARD"; case HIBERNATE_STATE_INITIAL: case HIBERNATE_STATE_LIVE: return "AWAKE"; default: log_warn(LD_BUG, "unknown hibernate state %d", state); tor_snprintf(buf, sizeof(buf), "unknown [%d]", state); return buf; } } /* ************ * Functions for bandwidth accounting. * ************/ /** Configure accounting start/end time settings based on * options->AccountingStart. Return 0 on success, -1 on failure. If * validate_only is true, do not change the current settings. */ int accounting_parse_options(const or_options_t *options, int validate_only) { time_unit_t unit; int ok, idx; long d,h,m; smartlist_t *items; const char *v = options->AccountingStart; const char *s; char *cp; if (!v) { if (!validate_only) { cfg_unit = UNIT_MONTH; cfg_start_day = 1; cfg_start_hour = 0; cfg_start_min = 0; } return 0; } items = smartlist_new(); smartlist_split_string(items, v, NULL, SPLIT_SKIP_SPACE|SPLIT_IGNORE_BLANK,0); if (smartlist_len(items)<2) { log_warn(LD_CONFIG, "Too few arguments to AccountingStart"); goto err; } s = smartlist_get(items,0); if (0==strcasecmp(s, "month")) { unit = UNIT_MONTH; } else if (0==strcasecmp(s, "week")) { unit = UNIT_WEEK; } else if (0==strcasecmp(s, "day")) { unit = UNIT_DAY; } else { log_warn(LD_CONFIG, "Unrecognized accounting unit '%s': only 'month', 'week'," " and 'day' are supported.", s); goto err; } switch (unit) { case UNIT_WEEK: d = tor_parse_long(smartlist_get(items,1), 10, 1, 7, &ok, NULL); if (!ok) { log_warn(LD_CONFIG, "Weekly accounting must begin on a day between " "1 (Monday) and 7 (Sunday)"); goto err; } break; case UNIT_MONTH: d = tor_parse_long(smartlist_get(items,1), 10, 1, 28, &ok, NULL); if (!ok) { log_warn(LD_CONFIG, "Monthly accounting must begin on a day between " "1 and 28"); goto err; } break; case UNIT_DAY: d = 0; break; /* Coverity dislikes unreachable default cases; some compilers warn on * switch statements missing a case. Tell Coverity not to worry. */ /* coverity[dead_error_begin] */ default: tor_assert(0); } idx = unit==UNIT_DAY?1:2; if (smartlist_len(items) != (idx+1)) { log_warn(LD_CONFIG,"Accounting unit '%s' requires %d argument%s.", s, idx, (idx>1)?"s":""); goto err; } s = smartlist_get(items, idx); h = tor_parse_long(s, 10, 0, 23, &ok, &cp); if (!ok) { log_warn(LD_CONFIG,"Accounting start time not parseable: bad hour."); goto err; } if (!cp || *cp!=':') { log_warn(LD_CONFIG, "Accounting start time not parseable: not in HH:MM format"); goto err; } m = tor_parse_long(cp+1, 10, 0, 59, &ok, &cp); if (!ok) { log_warn(LD_CONFIG, "Accounting start time not parseable: bad minute"); goto err; } if (!cp || *cp!='\0') { log_warn(LD_CONFIG, "Accounting start time not parseable: not in HH:MM format"); goto err; } if (!validate_only) { cfg_unit = unit; cfg_start_day = (int)d; cfg_start_hour = (int)h; cfg_start_min = (int)m; } SMARTLIST_FOREACH(items, char *, item, tor_free(item)); smartlist_free(items); return 0; err: SMARTLIST_FOREACH(items, char *, item, tor_free(item)); smartlist_free(items); return -1; } /** If we want to manage the accounting system and potentially * hibernate, return 1, else return 0. */ MOCK_IMPL(int, accounting_is_enabled,(const or_options_t *options)) { if (options->AccountingMax) return 1; return 0; } /** If accounting is enabled, return how long (in seconds) this * interval lasts. */ int accounting_get_interval_length(void) { return (int)(interval_end_time - interval_start_time); } /** Return the time at which the current accounting interval will end. */ MOCK_IMPL(time_t, accounting_get_end_time,(void)) { return interval_end_time; } /** Called from connection.c to tell us that seconds seconds have * passed, n_read bytes have been read, and n_written * bytes have been written. */ void accounting_add_bytes(size_t n_read, size_t n_written, int seconds) { n_bytes_read_in_interval += n_read; n_bytes_written_in_interval += n_written; /* If we haven't been called in 10 seconds, we're probably jumping * around in time. */ n_seconds_active_in_interval += (seconds < 10) ? seconds : 0; } /** If get_end, return the end of the accounting period that contains * the time now. Else, return the start of the accounting * period that contains the time now */ static time_t edge_of_accounting_period_containing(time_t now, int get_end) { int before; struct tm tm; tor_localtime_r(&now, &tm); /* Set 'before' to true iff the current time is before the hh:mm * changeover time for today. */ before = tm.tm_hour < cfg_start_hour || (tm.tm_hour == cfg_start_hour && tm.tm_min < cfg_start_min); /* Dispatch by unit. First, find the start day of the given period; * then, if get_end is true, increment to the end day. */ switch (cfg_unit) { case UNIT_MONTH: { /* If this is before the Nth, we want the Nth of last month. */ if (tm.tm_mday < cfg_start_day || (tm.tm_mday == cfg_start_day && before)) { --tm.tm_mon; } /* Otherwise, the month is correct. */ tm.tm_mday = cfg_start_day; if (get_end) ++tm.tm_mon; break; } case UNIT_WEEK: { /* What is the 'target' day of the week in struct tm format? (We say Sunday==7; struct tm says Sunday==0.) */ int wday = cfg_start_day % 7; /* How many days do we subtract from today to get to the right day? */ int delta = (7+tm.tm_wday-wday)%7; /* If we are on the right day, but the changeover hasn't happened yet, * then subtract a whole week. */ if (delta == 0 && before) delta = 7; tm.tm_mday -= delta; if (get_end) tm.tm_mday += 7; break; } case UNIT_DAY: if (before) --tm.tm_mday; if (get_end) ++tm.tm_mday; break; default: tor_assert(0); } tm.tm_hour = cfg_start_hour; tm.tm_min = cfg_start_min; tm.tm_sec = 0; tm.tm_isdst = -1; /* Autodetect DST */ return mktime(&tm); } /** Return the start of the accounting period containing the time * now. */ static time_t start_of_accounting_period_containing(time_t now) { return edge_of_accounting_period_containing(now, 0); } /** Return the start of the accounting period that comes after the one * containing the time now. */ static time_t start_of_accounting_period_after(time_t now) { return edge_of_accounting_period_containing(now, 1); } /** Return the length of the accounting period containing the time * now. */ static long length_of_accounting_period_containing(time_t now) { return edge_of_accounting_period_containing(now, 1) - edge_of_accounting_period_containing(now, 0); } /** Initialize the accounting subsystem. */ void configure_accounting(time_t now) { time_t s_now; /* Try to remember our recorded usage. */ if (!interval_start_time) read_bandwidth_usage(); /* If we fail, we'll leave values at zero, and * reset below.*/ s_now = start_of_accounting_period_containing(now); if (!interval_start_time) { /* We didn't have recorded usage; Start a new interval. */ log_info(LD_ACCT, "Starting new accounting interval."); reset_accounting(now); } else if (s_now == interval_start_time) { log_info(LD_ACCT, "Continuing accounting interval."); /* We are in the interval we thought we were in. Do nothing.*/ interval_end_time = start_of_accounting_period_after(interval_start_time); } else { long duration = length_of_accounting_period_containing(interval_start_time); double delta = ((double)(s_now - interval_start_time)) / duration; if (-0.50 <= delta && delta <= 0.50) { /* The start of the period is now a little later or earlier than we * remembered. That's fine; we might lose some bytes we could otherwise * have written, but better to err on the side of obeying accounting * settings. */ log_info(LD_ACCT, "Accounting interval moved by %.02f%%; " "that's fine.", delta*100); interval_end_time = start_of_accounting_period_after(now); } else if (delta >= 0.99) { /* This is the regular time-moved-forward case; don't be too noisy * about it or people will complain */ log_info(LD_ACCT, "Accounting interval elapsed; starting a new one"); reset_accounting(now); } else { log_warn(LD_ACCT, "Mismatched accounting interval: moved by %.02f%%. " "Starting a fresh one.", delta*100); reset_accounting(now); } } accounting_set_wakeup_time(); } /** Return the relevant number of bytes sent/received this interval * based on the set AccountingRule */ uint64_t get_accounting_bytes(void) { if (get_options()->AccountingRule == ACCT_SUM) return n_bytes_read_in_interval+n_bytes_written_in_interval; else if (get_options()->AccountingRule == ACCT_IN) return n_bytes_read_in_interval; else if (get_options()->AccountingRule == ACCT_OUT) return n_bytes_written_in_interval; else return MAX(n_bytes_read_in_interval, n_bytes_written_in_interval); } /** Set expected_bandwidth_usage based on how much we sent/received * per minute last interval (if we were up for at least 30 minutes), * or based on our declared bandwidth otherwise. */ static void update_expected_bandwidth(void) { uint64_t expected; const or_options_t *options= get_options(); uint64_t max_configured = (options->RelayBandwidthRate > 0 ? options->RelayBandwidthRate : options->BandwidthRate) * 60; /* max_configured is the larger of bytes read and bytes written * If we are accounting based on sum, worst case is both are * at max, doubling the expected sum of bandwidth */ if (get_options()->AccountingRule == ACCT_SUM) max_configured *= 2; #define MIN_TIME_FOR_MEASUREMENT (1800) if (soft_limit_hit_at > interval_start_time && n_bytes_at_soft_limit && (soft_limit_hit_at - interval_start_time) > MIN_TIME_FOR_MEASUREMENT) { /* If we hit our soft limit last time, only count the bytes up to that * time. This is a better predictor of our actual bandwidth than * considering the entirety of the last interval, since we likely started * using bytes very slowly once we hit our soft limit. */ expected = n_bytes_at_soft_limit / (soft_limit_hit_at - interval_start_time); expected /= 60; } else if (n_seconds_active_in_interval >= MIN_TIME_FOR_MEASUREMENT) { /* Otherwise, we either measured enough time in the last interval but * never hit our soft limit, or we're using a state file from a Tor that * doesn't know to store soft-limit info. Just take rate at which * we were reading/writing in the last interval as our expected rate. */ uint64_t used = get_accounting_bytes(); expected = used / (n_seconds_active_in_interval / 60); } else { /* If we haven't gotten enough data last interval, set 'expected' * to 0. This will set our wakeup to the start of the interval. * Next interval, we'll choose our starting time based on how much * we sent this interval. */ expected = 0; } if (expected > max_configured) expected = max_configured; expected_bandwidth_usage = expected; } /** Called at the start of a new accounting interval: reset our * expected bandwidth usage based on what happened last time, set up * the start and end of the interval, and clear byte/time totals. */ static void reset_accounting(time_t now) { log_info(LD_ACCT, "Starting new accounting interval."); update_expected_bandwidth(); interval_start_time = start_of_accounting_period_containing(now); interval_end_time = start_of_accounting_period_after(interval_start_time); n_bytes_read_in_interval = 0; n_bytes_written_in_interval = 0; n_seconds_active_in_interval = 0; n_bytes_at_soft_limit = 0; soft_limit_hit_at = 0; n_seconds_to_hit_soft_limit = 0; } /** Return true iff we should save our bandwidth usage to disk. */ static inline int time_to_record_bandwidth_usage(time_t now) { /* Note every 600 sec */ #define NOTE_INTERVAL (600) /* Or every 20 megabytes */ #define NOTE_BYTES (20*1024*1024) static uint64_t last_read_bytes_noted = 0; static uint64_t last_written_bytes_noted = 0; static time_t last_time_noted = 0; if (last_time_noted + NOTE_INTERVAL <= now || last_read_bytes_noted + NOTE_BYTES <= n_bytes_read_in_interval || last_written_bytes_noted + NOTE_BYTES <= n_bytes_written_in_interval || (interval_end_time && interval_end_time <= now)) { last_time_noted = now; last_read_bytes_noted = n_bytes_read_in_interval; last_written_bytes_noted = n_bytes_written_in_interval; return 1; } return 0; } /** Invoked once per second. Checks whether it is time to hibernate, * record bandwidth used, etc. */ void accounting_run_housekeeping(time_t now) { if (now >= interval_end_time) { configure_accounting(now); } if (time_to_record_bandwidth_usage(now)) { if (accounting_record_bandwidth_usage(now, get_or_state())) { log_warn(LD_FS, "Couldn't record bandwidth usage to disk."); } } } /** Based on our interval and our estimated bandwidth, choose a * deterministic (but random-ish) time to wake up. */ static void accounting_set_wakeup_time(void) { char digest[DIGEST_LEN]; crypto_digest_t *d_env; uint64_t time_to_exhaust_bw; int time_to_consider; if (! server_identity_key_is_set()) { if (init_keys() < 0) { log_err(LD_BUG, "Error initializing keys"); tor_assert(0); } } if (server_identity_key_is_set()) { char buf[ISO_TIME_LEN+1]; format_iso_time(buf, interval_start_time); if (crypto_pk_get_digest(get_server_identity_key(), digest) < 0) { log_err(LD_BUG, "Error getting our key's digest."); tor_assert(0); } d_env = crypto_digest_new(); crypto_digest_add_bytes(d_env, buf, ISO_TIME_LEN); crypto_digest_add_bytes(d_env, digest, DIGEST_LEN); crypto_digest_get_digest(d_env, digest, DIGEST_LEN); crypto_digest_free(d_env); } else { crypto_rand(digest, DIGEST_LEN); } if (!expected_bandwidth_usage) { char buf1[ISO_TIME_LEN+1]; char buf2[ISO_TIME_LEN+1]; format_local_iso_time(buf1, interval_start_time); format_local_iso_time(buf2, interval_end_time); interval_wakeup_time = interval_start_time; log_notice(LD_ACCT, "Configured hibernation. This interval begins at %s " "and ends at %s. We have no prior estimate for bandwidth, so " "we will start out awake and hibernate when we exhaust our quota.", buf1, buf2); return; } time_to_exhaust_bw = (get_options()->AccountingMax/expected_bandwidth_usage)*60; if (time_to_exhaust_bw > INT_MAX) { time_to_exhaust_bw = INT_MAX; time_to_consider = 0; } else { time_to_consider = accounting_get_interval_length() - (int)time_to_exhaust_bw; } if (time_to_consider<=0) { interval_wakeup_time = interval_start_time; } else { /* XXX can we simplify this just by picking a random (non-deterministic) * time to be up? If we go down and come up, then we pick a new one. Is * that good enough? -RD */ /* This is not a perfectly unbiased conversion, but it is good enough: * in the worst case, the first half of the day is 0.06 percent likelier * to be chosen than the last half. */ interval_wakeup_time = interval_start_time + (get_uint32(digest) % time_to_consider); } { char buf1[ISO_TIME_LEN+1]; char buf2[ISO_TIME_LEN+1]; char buf3[ISO_TIME_LEN+1]; char buf4[ISO_TIME_LEN+1]; time_t down_time; if (interval_wakeup_time+time_to_exhaust_bw > TIME_MAX) down_time = TIME_MAX; else down_time = (time_t)(interval_wakeup_time+time_to_exhaust_bw); if (down_time>interval_end_time) down_time = interval_end_time; format_local_iso_time(buf1, interval_start_time); format_local_iso_time(buf2, interval_wakeup_time); format_local_iso_time(buf3, down_time); format_local_iso_time(buf4, interval_end_time); log_notice(LD_ACCT, "Configured hibernation. This interval began at %s; " "the scheduled wake-up time %s %s; " "we expect%s to exhaust our quota for this interval around %s; " "the next interval begins at %s (all times local)", buf1, time(NULL)AccountingIntervalStart = interval_start_time; state->AccountingBytesReadInInterval = ROUND_UP(n_bytes_read_in_interval); state->AccountingBytesWrittenInInterval = ROUND_UP(n_bytes_written_in_interval); state->AccountingSecondsActive = n_seconds_active_in_interval; state->AccountingExpectedUsage = expected_bandwidth_usage; state->AccountingSecondsToReachSoftLimit = n_seconds_to_hit_soft_limit; state->AccountingSoftLimitHitAt = soft_limit_hit_at; state->AccountingBytesAtSoftLimit = n_bytes_at_soft_limit; or_state_mark_dirty(state, now+(get_options()->AvoidDiskWrites ? 7200 : 60)); return 0; } #undef ROUND_UP /** Read stored accounting information from disk. Return 0 on success; * return -1 and change nothing on failure. */ static int read_bandwidth_usage(void) { or_state_t *state = get_or_state(); { char *fname = get_datadir_fname("bw_accounting"); int res; res = unlink(fname); if (res != 0 && errno != ENOENT) { log_warn(LD_FS, "Failed to unlink %s: %s", fname, strerror(errno)); } tor_free(fname); } if (!state) return -1; log_info(LD_ACCT, "Reading bandwidth accounting data from state file"); n_bytes_read_in_interval = state->AccountingBytesReadInInterval; n_bytes_written_in_interval = state->AccountingBytesWrittenInInterval; n_seconds_active_in_interval = state->AccountingSecondsActive; interval_start_time = state->AccountingIntervalStart; expected_bandwidth_usage = state->AccountingExpectedUsage; /* Older versions of Tor (before 0.2.2.17-alpha or so) didn't generate these * fields. If you switch back and forth, you might get an * AccountingSoftLimitHitAt value from long before the most recent * interval_start_time. If that's so, then ignore the softlimit-related * values. */ if (state->AccountingSoftLimitHitAt > interval_start_time) { soft_limit_hit_at = state->AccountingSoftLimitHitAt; n_bytes_at_soft_limit = state->AccountingBytesAtSoftLimit; n_seconds_to_hit_soft_limit = state->AccountingSecondsToReachSoftLimit; } else { soft_limit_hit_at = 0; n_bytes_at_soft_limit = 0; n_seconds_to_hit_soft_limit = 0; } { char tbuf1[ISO_TIME_LEN+1]; char tbuf2[ISO_TIME_LEN+1]; format_iso_time(tbuf1, state->LastWritten); format_iso_time(tbuf2, state->AccountingIntervalStart); log_info(LD_ACCT, "Successfully read bandwidth accounting info from state written at %s " "for interval starting at %s. We have been active for %lu seconds in " "this interval. At the start of the interval, we expected to use " "about %lu KB per second. (%"PRIu64" bytes read so far, " "%"PRIu64" bytes written so far)", tbuf1, tbuf2, (unsigned long)n_seconds_active_in_interval, (unsigned long)(expected_bandwidth_usage*1024/60), (n_bytes_read_in_interval), (n_bytes_written_in_interval)); } return 0; } /** Return true iff we have sent/received all the bytes we are willing * to send/receive this interval. */ static int hibernate_hard_limit_reached(void) { uint64_t hard_limit = get_options()->AccountingMax; if (!hard_limit) return 0; return get_accounting_bytes() >= hard_limit; } /** Return true iff we have sent/received almost all the bytes we are willing * to send/receive this interval. */ static int hibernate_soft_limit_reached(void) { const uint64_t acct_max = get_options()->AccountingMax; #define SOFT_LIM_PCT (.95) #define SOFT_LIM_BYTES (500*1024*1024) #define SOFT_LIM_MINUTES (3*60) /* The 'soft limit' is a fair bit more complicated now than once it was. * We want to stop accepting connections when ALL of the following are true: * - We expect to use up the remaining bytes in under 3 hours * - We have used up 95% of our bytes. * - We have less than 500MBytes left. */ uint64_t soft_limit = (uint64_t) (acct_max * SOFT_LIM_PCT); if (acct_max > SOFT_LIM_BYTES && acct_max - SOFT_LIM_BYTES > soft_limit) { soft_limit = acct_max - SOFT_LIM_BYTES; } if (expected_bandwidth_usage) { const uint64_t expected_usage = expected_bandwidth_usage * SOFT_LIM_MINUTES; if (acct_max > expected_usage && acct_max - expected_usage > soft_limit) soft_limit = acct_max - expected_usage; } if (!soft_limit) return 0; return get_accounting_bytes() >= soft_limit; } /** Called when we get a SIGINT, or when bandwidth soft limit is * reached. Puts us into "loose hibernation": we don't accept new * connections, but we continue handling old ones. */ static void hibernate_begin(hibernate_state_t new_state, time_t now) { const or_options_t *options = get_options(); if (new_state == HIBERNATE_STATE_EXITING && hibernate_state != HIBERNATE_STATE_LIVE) { log_notice(LD_GENERAL,"SIGINT received %s; exiting now.", hibernate_state == HIBERNATE_STATE_EXITING ? "a second time" : "while hibernating"); tor_shutdown_event_loop_and_exit(0); return; } if (new_state == HIBERNATE_STATE_LOWBANDWIDTH && hibernate_state == HIBERNATE_STATE_LIVE) { soft_limit_hit_at = now; n_seconds_to_hit_soft_limit = n_seconds_active_in_interval; n_bytes_at_soft_limit = get_accounting_bytes(); } /* close listeners. leave control listener(s). */ connection_mark_all_noncontrol_listeners(); /* XXX kill intro point circs */ /* XXX upload rendezvous service descriptors with no intro points */ if (new_state == HIBERNATE_STATE_EXITING) { log_notice(LD_GENERAL,"Interrupt: we have stopped accepting new " "connections, and will shut down in %d seconds. Interrupt " "again to exit now.", options->ShutdownWaitLength); /* We add an arbitrary delay here so that even if something goes wrong * with the mainloop shutdown code, we can still shutdown from * consider_hibernation() if we call it... but so that the * mainloop_schedule_shutdown() mechanism will be the first one called. */ shutdown_time = time(NULL) + options->ShutdownWaitLength + 5; mainloop_schedule_shutdown(options->ShutdownWaitLength); #ifdef HAVE_SYSTEMD /* tell systemd that we may need more than the default 90 seconds to shut * down so they don't kill us. add some extra time to actually finish * shutting down, otherwise systemd will kill us immediately after the * EXTEND_TIMEOUT_USEC expires. this is an *upper* limit; tor will probably * only take one or two more seconds, but assume that maybe we got swapped * out and it takes a little while longer. * * as of writing, this is a no-op with all-defaults: ShutdownWaitLength is * 30 seconds, so this will extend the timeout to 60 seconds. * default systemd DefaultTimeoutStopSec is 90 seconds, so systemd will * wait (up to) 90 seconds anyways. * * 2^31 usec = ~2147 sec = ~35 min. probably nobody will actually set * ShutdownWaitLength to more than that, but use a longer type so we don't * need to think about UB on overflow */ sd_notifyf(0, "EXTEND_TIMEOUT_USEC=%" PRIu64, ((uint64_t)(options->ShutdownWaitLength) + 30) * TOR_USEC_PER_SEC); #endif /* defined(HAVE_SYSTEMD) */ } else { /* soft limit reached */ hibernate_end_time = interval_end_time; } hibernate_state = new_state; accounting_record_bandwidth_usage(now, get_or_state()); or_state_mark_dirty(get_or_state(), get_options()->AvoidDiskWrites ? now+600 : 0); } /** Called when we've been hibernating and our timeout is reached. */ static void hibernate_end(hibernate_state_t new_state) { tor_assert(hibernate_state == HIBERNATE_STATE_LOWBANDWIDTH || hibernate_state == HIBERNATE_STATE_DORMANT || hibernate_state == HIBERNATE_STATE_INITIAL); /* listeners will be relaunched in run_scheduled_events() in main.c */ if (hibernate_state != HIBERNATE_STATE_INITIAL) log_notice(LD_ACCT,"Hibernation period ended. Resuming normal activity."); hibernate_state = new_state; hibernate_end_time = 0; /* no longer hibernating */ reset_uptime(); /* reset published uptime */ } /** A wrapper around hibernate_begin, for when we get SIGINT. */ void hibernate_begin_shutdown(void) { hibernate_begin(HIBERNATE_STATE_EXITING, time(NULL)); } /** * Return true iff we are currently hibernating -- that is, if we are in * any non-live state. */ MOCK_IMPL(int, we_are_hibernating,(void)) { return hibernate_state != HIBERNATE_STATE_LIVE; } /** * Return true iff we are currently _fully_ hibernating -- that is, if we are * in a state where we expect to handle no network activity at all. */ MOCK_IMPL(int, we_are_fully_hibernating,(void)) { return hibernate_state == HIBERNATE_STATE_DORMANT; } /** If we aren't currently dormant, close all connections and become * dormant. */ static void hibernate_go_dormant(time_t now) { connection_t *conn; if (hibernate_state == HIBERNATE_STATE_DORMANT) return; else if (hibernate_state == HIBERNATE_STATE_LOWBANDWIDTH) hibernate_state = HIBERNATE_STATE_DORMANT; else hibernate_begin(HIBERNATE_STATE_DORMANT, now); log_notice(LD_ACCT,"Going dormant. Blowing away remaining connections."); /* Close all OR/AP/exit conns. Leave dir conns because we still want * to be able to upload server descriptors so clients know we're still * running, and download directories so we can detect if we're obsolete. * Leave control conns because we still want to be controllable. */ while ((conn = connection_get_by_type(CONN_TYPE_OR)) || (conn = connection_get_by_type(CONN_TYPE_AP)) || (conn = connection_get_by_type(CONN_TYPE_EXIT))) { if (CONN_IS_EDGE(conn)) { connection_edge_end(TO_EDGE_CONN(conn), END_STREAM_REASON_HIBERNATING); } log_info(LD_NET,"Closing conn type %d", conn->type); if (conn->type == CONN_TYPE_AP) { /* send socks failure if needed */ connection_mark_unattached_ap(TO_ENTRY_CONN(conn), END_STREAM_REASON_HIBERNATING); } else if (conn->type == CONN_TYPE_OR) { if (TO_OR_CONN(conn)->chan) { connection_or_close_normally(TO_OR_CONN(conn), 0); } else { connection_mark_for_close(conn); } } else { connection_mark_for_close(conn); } } if (now < interval_wakeup_time) hibernate_end_time = interval_wakeup_time; else hibernate_end_time = interval_end_time; accounting_record_bandwidth_usage(now, get_or_state()); or_state_mark_dirty(get_or_state(), get_options()->AvoidDiskWrites ? now+600 : 0); hibernate_schedule_wakeup_event(now, hibernate_end_time); } /** * Schedule a mainloop event at end_time to wake up from a dormant * state. We can't rely on this happening from second_elapsed_callback, * since second_elapsed_callback will be shut down when we're dormant. * * (Note that We might immediately go back to sleep after we set the next * wakeup time.) */ static void hibernate_schedule_wakeup_event(time_t now, time_t end_time) { struct timeval delay = { 0, 0 }; if (now >= end_time) { // In these cases we always wait at least a second, to avoid running // the callback in a tight loop. delay.tv_sec = 1; } else { delay.tv_sec = (end_time - now); } if (!wakeup_event) { wakeup_event = mainloop_event_postloop_new(wakeup_event_callback, NULL); } mainloop_event_schedule(wakeup_event, &delay); } /** * Called at the end of the interval, or at the wakeup time of the current * interval, to exit the dormant state. **/ static void wakeup_event_callback(mainloop_event_t *ev, void *data) { (void) ev; (void) data; const time_t now = time(NULL); accounting_run_housekeeping(now); consider_hibernation(now); if (hibernate_state != HIBERNATE_STATE_DORMANT) { /* We woke up, so everything's great here */ return; } /* We're still dormant. */ if (now < interval_wakeup_time) hibernate_end_time = interval_wakeup_time; else hibernate_end_time = interval_end_time; hibernate_schedule_wakeup_event(now, hibernate_end_time); } /** Called when hibernate_end_time has arrived. */ static void hibernate_end_time_elapsed(time_t now) { char buf[ISO_TIME_LEN+1]; /* The interval has ended, or it is wakeup time. Find out which. */ accounting_run_housekeeping(now); if (interval_wakeup_time <= now) { /* The interval hasn't changed, but interval_wakeup_time has passed. * It's time to wake up and start being a server. */ hibernate_end(HIBERNATE_STATE_LIVE); return; } else { /* The interval has changed, and it isn't time to wake up yet. */ hibernate_end_time = interval_wakeup_time; format_iso_time(buf,interval_wakeup_time); if (hibernate_state != HIBERNATE_STATE_DORMANT) { /* We weren't sleeping before; we should sleep now. */ log_notice(LD_ACCT, "Accounting period ended. Commencing hibernation until " "%s UTC", buf); hibernate_go_dormant(now); } else { log_notice(LD_ACCT, "Accounting period ended. This period, we will hibernate" " until %s UTC",buf); } } } /** Consider our environment and decide if it's time * to start/stop hibernating. */ void consider_hibernation(time_t now) { int accounting_enabled = get_options()->AccountingMax != 0; char buf[ISO_TIME_LEN+1]; hibernate_state_t prev_state = hibernate_state; /* If we're in 'exiting' mode, then we just shut down after the interval * elapses. The mainloop was supposed to catch this via * mainloop_schedule_shutdown(), but apparently it didn't. */ if (hibernate_state == HIBERNATE_STATE_EXITING) { tor_assert(shutdown_time); if (shutdown_time <= now) { log_notice(LD_BUG, "Mainloop did not catch shutdown event; exiting."); tor_shutdown_event_loop_and_exit(0); } return; /* if exiting soon, don't worry about bandwidth limits */ } if (hibernate_state == HIBERNATE_STATE_DORMANT) { /* We've been hibernating because of bandwidth accounting. */ tor_assert(hibernate_end_time); if (hibernate_end_time > now && accounting_enabled) { /* If we're hibernating, don't wake up until it's time, regardless of * whether we're in a new interval. */ return; } else { hibernate_end_time_elapsed(now); } } /* Else, we aren't hibernating. See if it's time to start hibernating, or to * go dormant. */ if (hibernate_state == HIBERNATE_STATE_LIVE || hibernate_state == HIBERNATE_STATE_INITIAL) { if (hibernate_soft_limit_reached()) { log_notice(LD_ACCT, "Bandwidth soft limit reached; commencing hibernation. " "No new connections will be accepted"); hibernate_begin(HIBERNATE_STATE_LOWBANDWIDTH, now); } else if (accounting_enabled && now < interval_wakeup_time) { format_local_iso_time(buf,interval_wakeup_time); log_notice(LD_ACCT, "Commencing hibernation. We will wake up at %s local time.", buf); hibernate_go_dormant(now); } else if (hibernate_state == HIBERNATE_STATE_INITIAL) { hibernate_end(HIBERNATE_STATE_LIVE); } } if (hibernate_state == HIBERNATE_STATE_LOWBANDWIDTH) { if (!accounting_enabled) { hibernate_end_time_elapsed(now); } else if (hibernate_hard_limit_reached()) { hibernate_go_dormant(now); } else if (hibernate_end_time <= now) { /* The hibernation period ended while we were still in lowbandwidth.*/ hibernate_end_time_elapsed(now); } } /* Dispatch a controller event if the hibernation state changed. */ if (hibernate_state != prev_state) on_hibernate_state_change(prev_state); } /** Helper function: called when we get a GETINFO request for an * accounting-related key on the control connection conn. If we can * answer the request for question, then set *answer to a newly * allocated string holding the result. Otherwise, set *answer to * NULL. */ int getinfo_helper_accounting(control_connection_t *conn, const char *question, char **answer, const char **errmsg) { (void) conn; (void) errmsg; if (!strcmp(question, "accounting/enabled")) { *answer = tor_strdup(accounting_is_enabled(get_options()) ? "1" : "0"); } else if (!strcmp(question, "accounting/hibernating")) { *answer = tor_strdup(hibernate_state_to_string(hibernate_state)); tor_strlower(*answer); } else if (!strcmp(question, "accounting/bytes")) { tor_asprintf(answer, "%"PRIu64" %"PRIu64, (n_bytes_read_in_interval), (n_bytes_written_in_interval)); } else if (!strcmp(question, "accounting/bytes-left")) { uint64_t limit = get_options()->AccountingMax; if (get_options()->AccountingRule == ACCT_SUM) { uint64_t total_left = 0; uint64_t total_bytes = get_accounting_bytes(); if (total_bytes < limit) total_left = limit - total_bytes; tor_asprintf(answer, "%"PRIu64" %"PRIu64, (total_left), (total_left)); } else if (get_options()->AccountingRule == ACCT_IN) { uint64_t read_left = 0; if (n_bytes_read_in_interval < limit) read_left = limit - n_bytes_read_in_interval; tor_asprintf(answer, "%"PRIu64" %"PRIu64, (read_left), (limit)); } else if (get_options()->AccountingRule == ACCT_OUT) { uint64_t write_left = 0; if (n_bytes_written_in_interval < limit) write_left = limit - n_bytes_written_in_interval; tor_asprintf(answer, "%"PRIu64" %"PRIu64, (limit), (write_left)); } else { uint64_t read_left = 0, write_left = 0; if (n_bytes_read_in_interval < limit) read_left = limit - n_bytes_read_in_interval; if (n_bytes_written_in_interval < limit) write_left = limit - n_bytes_written_in_interval; tor_asprintf(answer, "%"PRIu64" %"PRIu64, (read_left), (write_left)); } } else if (!strcmp(question, "accounting/interval-start")) { *answer = tor_malloc(ISO_TIME_LEN+1); format_iso_time(*answer, interval_start_time); } else if (!strcmp(question, "accounting/interval-wake")) { *answer = tor_malloc(ISO_TIME_LEN+1); format_iso_time(*answer, interval_wakeup_time); } else if (!strcmp(question, "accounting/interval-end")) { *answer = tor_malloc(ISO_TIME_LEN+1); format_iso_time(*answer, interval_end_time); } else { *answer = NULL; } return 0; } /** * Helper function: called when the hibernation state changes, and sends a * SERVER_STATUS event to notify interested controllers of the accounting * state change. */ static void on_hibernate_state_change(hibernate_state_t prev_state) { control_event_server_status(LOG_NOTICE, "HIBERNATION_STATUS STATUS=%s", hibernate_state_to_string(hibernate_state)); /* We are changing hibernation state, this can affect the main loop event * list. Rescan it to update the events state. We do this whatever the new * hibernation state because they can each possibly affect an event. The * initial state means we are booting up so we shouldn't scan here because * at this point the events in the list haven't been initialized. */ if (prev_state != HIBERNATE_STATE_INITIAL) { rescan_periodic_events(get_options()); } } /** Free all resources held by the accounting module */ void accounting_free_all(void) { mainloop_event_free(wakeup_event); hibernate_state = HIBERNATE_STATE_INITIAL; hibernate_end_time = 0; shutdown_time = 0; } #ifdef TOR_UNIT_TESTS /** * Manually change the hibernation state. Private; used only by the unit * tests. */ void hibernate_set_state_for_testing_(hibernate_state_t newstate) { hibernate_state = newstate; } #endif /* defined(TOR_UNIT_TESTS) */