/* Copyright (c) 2003, Roger Dingledine
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
* Copyright (c) 2007-2008, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/* $Id$ */
const char util_c_id[] = "$Id$";
/**
* \file util.c
* \brief Common functions for strings, IO, network, data structures,
* process control.
**/
/* This is required on rh7 to make strptime not complain.
*/
#define _GNU_SOURCE
#include "orconfig.h"
#include "util.h"
#include "log.h"
#include "crypto.h"
#include "torint.h"
#include "container.h"
#ifdef MS_WINDOWS
#include
#include
#include
#else
#include
#include
#endif
#ifdef HAVE_CTYPE_H
#include
#endif
#include
#include
#include
#include
#ifdef HAVE_NETINET_IN_H
#include
#endif
#ifdef HAVE_ARPA_INET_H
#include
#endif
#ifdef HAVE_ERRNO_H
#include
#endif
#ifdef HAVE_SYS_SOCKET_H
#include
#endif
#ifdef HAVE_SYS_TIME_H
#include
#endif
#ifdef HAVE_UNISTD_H
#include
#endif
#ifdef HAVE_SYS_STAT_H
#include
#endif
#ifdef HAVE_SYS_FCNTL_H
#include
#endif
#ifdef HAVE_FCNTL_H
#include
#endif
#ifdef HAVE_TIME_H
#include
#endif
#ifdef HAVE_MALLOC_MALLOC_H
#include
#endif
#ifdef HAVE_MALLOC_H
#include
#endif
/* =====
* Memory management
* ===== */
#ifdef USE_DMALLOC
#undef strndup
#include
#define DMALLOC_FN_ARGS , file, line
#if defined(HAVE_DMALLOC_STRDUP)
/* the dmalloc_strdup should be fine as defined */
#elif defined(HAVE_DMALLOC_STRNDUP)
#define dmalloc_strdup(file, line, string, xalloc_b) \
dmalloc_strndup(file, line, (string), -1, xalloc_b)
#else
#error "No dmalloc_strdup or equivalent"
#endif
#else /* not using dmalloc */
#define dmalloc_strdup(file, line, string, xalloc_b) strdup(string)
#define dmalloc_malloc(file, line, size, func_id, alignment, xalloc_b) \
malloc(size)
#define DMALLOC_FUNC_MALLOC 0
#define dmalloc_realloc(file, line, old_pnt, new_size, func_id, xalloc_b) \
realloc((old_pnt), (new_size))
#define DMALLOC_FUNC_REALLOC 0
#define DMALLOC_FN_ARGS
#endif
/** Allocate a chunk of size bytes of memory, and return a pointer to
* result. On error, log and terminate the process. (Same as malloc(size),
* but never returns NULL.)
*
* file and line are used if dmalloc is enabled, and
* ignored otherwise.
*/
void *
_tor_malloc(size_t size DMALLOC_PARAMS)
{
void *result;
#ifndef MALLOC_ZERO_WORKS
/* Some libcs don't do the right thing on size==0. Override them. */
if (size==0) {
size=1;
}
#endif
result = dmalloc_malloc(file, line, size, DMALLOC_FUNC_MALLOC, 0, 0);
if (PREDICT_UNLIKELY(result == NULL)) {
log_err(LD_MM,"Out of memory on malloc(). Dying.");
/* If these functions die within a worker process, they won't call
* spawn_exit, but that's ok, since the parent will run out of memory soon
* anyway. */
exit(1);
}
return result;
}
/** Allocate a chunk of size bytes of memory, fill the memory with
* zero bytes, and return a pointer to the result. Log and terminate
* the process on error. (Same as calloc(size,1), but never returns NULL.)
*/
void *
_tor_malloc_zero(size_t size DMALLOC_PARAMS)
{
void *result = _tor_malloc(size DMALLOC_FN_ARGS);
memset(result, 0, size);
return result;
}
/** Change the size of the memory block pointed to by ptr to size
* bytes long; return the new memory block. On error, log and
* terminate. (Like realloc(ptr,size), but never returns NULL.)
*/
void *
_tor_realloc(void *ptr, size_t size DMALLOC_PARAMS)
{
void *result;
result = dmalloc_realloc(file, line, ptr, size, DMALLOC_FUNC_REALLOC, 0);
if (PREDICT_UNLIKELY(result == NULL)) {
log_err(LD_MM,"Out of memory on realloc(). Dying.");
exit(1);
}
return result;
}
/** Return a newly allocated copy of the NUL-terminated string s. On
* error, log and terminate. (Like strdup(s), but never returns
* NULL.)
*/
char *
_tor_strdup(const char *s DMALLOC_PARAMS)
{
char *dup;
tor_assert(s);
dup = dmalloc_strdup(file, line, s, 0);
if (PREDICT_UNLIKELY(dup == NULL)) {
log_err(LD_MM,"Out of memory on strdup(). Dying.");
exit(1);
}
return dup;
}
/** Allocate and return a new string containing the first n
* characters of s. If s is longer than n
* characters, only the first n are copied. The result is
* always NUL-terminated. (Like strndup(s,n), but never returns
* NULL.)
*/
char *
_tor_strndup(const char *s, size_t n DMALLOC_PARAMS)
{
char *dup;
tor_assert(s);
dup = _tor_malloc((n+1) DMALLOC_FN_ARGS);
/* Performance note: Ordinarily we prefer strlcpy to strncpy. But
* this function gets called a whole lot, and platform strncpy is
* much faster than strlcpy when strlen(s) is much longer than n.
*/
strncpy(dup, s, n);
dup[n]='\0';
return dup;
}
/** Allocate a chunk of len bytes, with the same contents starting at
* mem. */
void *
_tor_memdup(const void *mem, size_t len DMALLOC_PARAMS)
{
char *dup;
tor_assert(mem);
dup = _tor_malloc(len DMALLOC_FN_ARGS);
memcpy(dup, mem, len);
return dup;
}
/** Helper for places that need to take a function pointer to the right
* spelling of "free()". */
void
_tor_free(void *mem)
{
tor_free(mem);
}
#if defined(HAVE_MALLOC_GOOD_SIZE) && !defined(HAVE_MALLOC_GOOD_SIZE_PROTOTYPE)
/* Some version of Mac OSX have malloc_good_size in their libc, but not
* actually defined in malloc/malloc.h. We detect this and work around it by
* prototyping.
*/
extern size_t malloc_good_size(size_t size);
#endif
/** Allocate and return a chunk of memory of size at least *size
, using
* the same resources we would use to malloc *sizep. Set *sizep
* to the number of usable bytes in the chunk of memory. */
void *
_tor_malloc_roundup(size_t *sizep DMALLOC_PARAMS)
{
#ifdef HAVE_MALLOC_GOOD_SIZE
*sizep = malloc_good_size(*sizep);
return _tor_malloc(*sizep DMALLOC_FN_ARGS);
#elif defined(HAVE_MALLOC_USABLE_SIZE) && !defined(USE_DMALLOC)
void *result = _tor_malloc(*sizep DMALLOC_FN_ARGS);
*sizep = malloc_usable_size(result);
return result;
#else
return _tor_malloc(*sizep DMALLOC_FN_ARGS);
#endif
}
/** Call the platform malloc info function, and dump the results to the log at
* level severity. If no such function exists, do nothing. */
void
tor_log_mallinfo(int severity)
{
#ifdef HAVE_MALLINFO
struct mallinfo mi;
memset(&mi, 0, sizeof(mi));
mi = mallinfo();
log(severity, LD_MM,
"mallinfo() said: arena=%d, ordblks=%d, smblks=%d, hblks=%d, "
"hblkhd=%d, usmblks=%d, fsmblks=%d, uordblks=%d, fordblks=%d, "
"keepcost=%d",
mi.arena, mi.ordblks, mi.smblks, mi.hblks,
mi.hblkhd, mi.usmblks, mi.fsmblks, mi.uordblks, mi.fordblks,
mi.keepcost);
#else
(void)severity;
#endif
#ifdef USE_DMALLOC
dmalloc_log_changed(0, /* Since the program started. */
1, /* Log info about non-freed pointers. */
0, /* Do not log info about freed pointers. */
0 /* Do not log individual pointers. */
);
#endif
}
/* =====
* Math
* ===== */
/** Returns floor(log2(u64)). If u64 is 0, (incorrectly) returns 0. */
int
tor_log2(uint64_t u64)
{
int r = 0;
if (u64 >= (U64_LITERAL(1)<<32)) {
u64 >>= 32;
r = 32;
}
if (u64 >= (U64_LITERAL(1)<<16)) {
u64 >>= 16;
r += 16;
}
if (u64 >= (U64_LITERAL(1)<<8)) {
u64 >>= 8;
r += 8;
}
if (u64 >= (U64_LITERAL(1)<<4)) {
u64 >>= 4;
r += 4;
}
if (u64 >= (U64_LITERAL(1)<<2)) {
u64 >>= 2;
r += 2;
}
if (u64 >= (U64_LITERAL(1)<<1)) {
u64 >>= 1;
r += 1;
}
return r;
}
/** Return the power of 2 closest to u64. */
uint64_t
round_to_power_of_2(uint64_t u64)
{
int lg2 = tor_log2(u64);
uint64_t low = U64_LITERAL(1) << lg2, high = U64_LITERAL(1) << (lg2+1);
if (high - u64 < u64 - low)
return high;
else
return low;
}
/* =====
* String manipulation
* ===== */
/** Remove from the string s every character which appears in
* strip. */
void
tor_strstrip(char *s, const char *strip)
{
char *read = s;
while (*read) {
if (strchr(strip, *read)) {
++read;
} else {
*s++ = *read++;
}
}
*s = '\0';
}
/** Return a pointer to a NUL-terminated hexadecimal string encoding
* the first fromlen bytes of from. (fromlen must be \<= 32.) The
* result does not need to be deallocated, but repeated calls to
* hex_str will trash old results.
*/
const char *
hex_str(const char *from, size_t fromlen)
{
static char buf[65];
if (fromlen>(sizeof(buf)-1)/2)
fromlen = (sizeof(buf)-1)/2;
base16_encode(buf,sizeof(buf),from,fromlen);
return buf;
}
/** Convert all alphabetic characters in the nul-terminated string s to
* lowercase. */
void
tor_strlower(char *s)
{
while (*s) {
*s = TOR_TOLOWER(*s);
++s;
}
}
/** Convert all alphabetic characters in the nul-terminated string s to
* lowercase. */
void
tor_strupper(char *s)
{
while (*s) {
*s = TOR_TOUPPER(*s);
++s;
}
}
/** Return 1 if every character in s is printable, else return 0.
*/
int
tor_strisprint(const char *s)
{
while (*s) {
if (!TOR_ISPRINT(*s))
return 0;
s++;
}
return 1;
}
/** Return 1 if no character in s is uppercase, else return 0.
*/
int
tor_strisnonupper(const char *s)
{
while (*s) {
if (TOR_ISUPPER(*s))
return 0;
s++;
}
return 1;
}
/** Compares the first strlen(s2) characters of s1 with s2. Returns as for
* strcmp.
*/
int
strcmpstart(const char *s1, const char *s2)
{
size_t n = strlen(s2);
return strncmp(s1, s2, n);
}
/** Compare the s1_len-byte string s1 with s2,
* without depending on a terminating nul in s1. Sorting order is first by
* length, then lexically; return values are as for strcmp.
*/
int
strcmp_len(const char *s1, const char *s2, size_t s1_len)
{
size_t s2_len = strlen(s2);
if (s1_len < s2_len)
return -1;
if (s1_len > s2_len)
return 1;
return memcmp(s1, s2, s2_len);
}
/** Compares the first strlen(s2) characters of s1 with s2. Returns as for
* strcasecmp.
*/
int
strcasecmpstart(const char *s1, const char *s2)
{
size_t n = strlen(s2);
return strncasecmp(s1, s2, n);
}
/** Compares the last strlen(s2) characters of s1 with s2. Returns as for
* strcmp.
*/
int
strcmpend(const char *s1, const char *s2)
{
size_t n1 = strlen(s1), n2 = strlen(s2);
if (n2>n1)
return strcmp(s1,s2);
else
return strncmp(s1+(n1-n2), s2, n2);
}
/** Compares the last strlen(s2) characters of s1 with s2. Returns as for
* strcasecmp.
*/
int
strcasecmpend(const char *s1, const char *s2)
{
size_t n1 = strlen(s1), n2 = strlen(s2);
if (n2>n1) /* then they can't be the same; figure out which is bigger */
return strcasecmp(s1,s2);
else
return strncasecmp(s1+(n1-n2), s2, n2);
}
/** Return a pointer to the first char of s that is not whitespace and
* not a comment, or to the terminating NUL if no such character exists.
*/
const char *
eat_whitespace(const char *s)
{
tor_assert(s);
while (1) {
switch (*s) {
case '\0':
default:
return s;
case ' ':
case '\t':
case '\n':
case '\r':
++s;
break;
case '#':
++s;
while (*s && *s != '\n')
++s;
}
}
}
/** Return a pointer to the first char of s that is not whitespace and
* not a comment, or to the terminating NUL if no such character exists.
*/
const char *
eat_whitespace_eos(const char *s, const char *eos)
{
tor_assert(s);
tor_assert(eos && s <= eos);
while (s < eos) {
switch (*s) {
case '\0':
default:
return s;
case ' ':
case '\t':
case '\n':
case '\r':
++s;
break;
case '#':
++s;
while (s < eos && *s && *s != '\n')
++s;
}
}
return s;
}
/** Return a pointer to the first char of s that is not a space or a tab
* or a \\r, or to the terminating NUL if no such character exists. */
const char *
eat_whitespace_no_nl(const char *s)
{
while (*s == ' ' || *s == '\t' || *s == '\r')
++s;
return s;
}
/** As eat_whitespace_no_nl, but stop at eos whether we have
* found a non-whitespace character or not. */
const char *
eat_whitespace_eos_no_nl(const char *s, const char *eos)
{
while (s < eos && (*s == ' ' || *s == '\t' || *s == '\r'))
++s;
return s;
}
/** Return a pointer to the first char of s that is whitespace or #,
* or to the terminating NUL if no such character exists.
*/
const char *
find_whitespace(const char *s)
{
/* tor_assert(s); */
while (1) {
switch (*s)
{
case '\0':
case '#':
case ' ':
case '\r':
case '\n':
case '\t':
return s;
default:
++s;
}
}
}
/** As find_whitespace, but stop at eos whether we have found a
* whitespace or not. */
const char *
find_whitespace_eos(const char *s, const char *eos)
{
/* tor_assert(s); */
while (s < eos) {
switch (*s)
{
case '\0':
case '#':
case ' ':
case '\r':
case '\n':
case '\t':
return s;
default:
++s;
}
}
return s;
}
/** Return true iff the 'len' bytes at 'mem' are all zero. */
int
tor_mem_is_zero(const char *mem, size_t len)
{
static const char ZERO[] = {
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0,
};
while (len >= sizeof(ZERO)) {
if (memcmp(mem, ZERO, sizeof(ZERO)))
return 0;
len -= sizeof(ZERO);
mem += sizeof(ZERO);
}
/* Deal with leftover bytes. */
if (len)
return ! memcmp(mem, ZERO, len);
return 1;
}
/** Return true iff the DIGEST_LEN bytes in digest are all zero. */
int
tor_digest_is_zero(const char *digest)
{
return tor_mem_is_zero(digest, DIGEST_LEN);
}
/* Helper: common code to check whether the result of a strtol or strtoul or
* strtoll is correct. */
#define CHECK_STRTOX_RESULT() \
/* Was at least one character converted? */ \
if (endptr == s) \
goto err; \
/* Were there unexpected unconverted characters? */ \
if (!next && *endptr) \
goto err; \
/* Is r within limits? */ \
if (r < min || r > max) \
goto err; \
if (ok) *ok = 1; \
if (next) *next = endptr; \
return r; \
err: \
if (ok) *ok = 0; \
if (next) *next = endptr; \
return 0
/** Extract a long from the start of s, in the given numeric base. If
* there is unconverted data and next is provided, set *next to the
* first unconverted character. An error has occurred if no characters
* are converted; or if there are unconverted characters and next is NULL; or
* if the parsed value is not between min and max. When no error occurs,
* return the parsed value and set *ok (if provided) to 1. When an error
* occurs, return 0 and set *ok (if provided) to 0.
*/
long
tor_parse_long(const char *s, int base, long min, long max,
int *ok, char **next)
{
char *endptr;
long r;
r = strtol(s, &endptr, base);
CHECK_STRTOX_RESULT();
}
/** As tor_parse_long(), but return an unsigned long. */
unsigned long
tor_parse_ulong(const char *s, int base, unsigned long min,
unsigned long max, int *ok, char **next)
{
char *endptr;
unsigned long r;
r = strtoul(s, &endptr, base);
CHECK_STRTOX_RESULT();
}
/** As tor_parse_log, but return a unit64_t. Only base 10 is guaranteed to
* work for now. */
uint64_t
tor_parse_uint64(const char *s, int base, uint64_t min,
uint64_t max, int *ok, char **next)
{
char *endptr;
uint64_t r;
#ifdef HAVE_STRTOULL
r = (uint64_t)strtoull(s, &endptr, base);
#elif defined(MS_WINDOWS)
#if defined(_MSC_VER) && _MSC_VER < 1300
tor_assert(base <= 10);
r = (uint64_t)_atoi64(s);
endptr = (char*)s;
while (TOR_ISSPACE(*endptr)) endptr++;
while (TOR_ISDIGIT(*endptr)) endptr++;
#else
r = (uint64_t)_strtoui64(s, &endptr, base);
#endif
#elif SIZEOF_LONG == 8
r = (uint64_t)strtoul(s, &endptr, base);
#else
#error "I don't know how to parse 64-bit numbers."
#endif
CHECK_STRTOX_RESULT();
}
/** Encode the srclen bytes at src in a NUL-terminated,
* uppercase hexadecimal string; store it in the destlen-byte buffer
* dest.
*/
void
base16_encode(char *dest, size_t destlen, const char *src, size_t srclen)
{
const char *end;
char *cp;
tor_assert(destlen >= srclen*2+1);
tor_assert(destlen < SIZE_T_CEILING);
cp = dest;
end = src+srclen;
while (src> 4 ];
*cp++ = "0123456789ABCDEF"[ (*(const uint8_t*)src) & 0xf ];
++src;
}
*cp = '\0';
}
/** Helper: given a hex digit, return its value, or -1 if it isn't hex. */
static INLINE int
hex_decode_digit(char c)
{
switch (c) {
case '0': return 0;
case '1': return 1;
case '2': return 2;
case '3': return 3;
case '4': return 4;
case '5': return 5;
case '6': return 6;
case '7': return 7;
case '8': return 8;
case '9': return 9;
case 'A': case 'a': return 10;
case 'B': case 'b': return 11;
case 'C': case 'c': return 12;
case 'D': case 'd': return 13;
case 'E': case 'e': return 14;
case 'F': case 'f': return 15;
default:
return -1;
}
}
/** Given a hexadecimal string of srclen bytes in src, decode it
* and store the result in the destlen-byte buffer at dest.
* Return 0 on success, -1 on failure. */
int
base16_decode(char *dest, size_t destlen, const char *src, size_t srclen)
{
const char *end;
int v1,v2;
if ((srclen % 2) != 0)
return -1;
if (destlen < srclen/2 || destlen > SIZE_T_CEILING)
return -1;
end = src+srclen;
while (srcs,
* surrounded by quotes and using standard C escapes.
*
* Generally, we use this for logging values that come in over the network to
* keep them from tricking users, and for sending certain values to the
* controller.
*
* We trust values from the resolver, OS, configuration file, and command line
* to not be maliciously ill-formed. We validate incoming routerdescs and
* SOCKS requests and addresses from BEGIN cells as they're parsed;
* afterwards, we trust them as non-malicious.
*/
char *
esc_for_log(const char *s)
{
const char *cp;
char *result, *outp;
size_t len = 3;
if (!s) {
return tor_strdup("");
}
for (cp = s; *cp; ++cp) {
switch (*cp) {
case '\\':
case '\"':
case '\'':
len += 2;
break;
default:
if (TOR_ISPRINT(*cp) && ((uint8_t)*cp)<127)
++len;
else
len += 4;
break;
}
}
result = outp = tor_malloc(len);
*outp++ = '\"';
for (cp = s; *cp; ++cp) {
switch (*cp) {
case '\\':
case '\"':
case '\'':
*outp++ = '\\';
*outp++ = *cp;
break;
case '\n':
*outp++ = '\\';
*outp++ = 'n';
break;
case '\t':
*outp++ = '\\';
*outp++ = 't';
break;
case '\r':
*outp++ = '\\';
*outp++ = 'r';
break;
default:
if (TOR_ISPRINT(*cp) && ((uint8_t)*cp)<127) {
*outp++ = *cp;
} else {
tor_snprintf(outp, 5, "\\%03o", (int)(uint8_t) *cp);
outp += 4;
}
break;
}
}
*outp++ = '\"';
*outp++ = 0;
return result;
}
/** Allocate and return a new string representing the contents of s,
* surrounded by quotes and using standard C escapes.
*
* THIS FUNCTION IS NOT REENTRANT. Don't call it from outside the main
* thread. Also, each call invalidates the last-returned value, so don't
* try log_warn(LD_GENERAL, "%s %s", escaped(a), escaped(b));
*/
const char *
escaped(const char *s)
{
static char *_escaped_val = NULL;
if (_escaped_val)
tor_free(_escaped_val);
if (s)
_escaped_val = esc_for_log(s);
else
_escaped_val = NULL;
return _escaped_val;
}
/** Rudimentary string wrapping code: given a un-wrapped string (no
* newlines!), break the string into newline-terminated lines of no more than
* width characters long (not counting newline) and insert them into
* out in order. Precede the first line with prefix0, and subsequent
* lines with prefixRest.
*/
/* This uses a stupid greedy wrapping algorithm right now:
* - For each line:
* - Try to fit as much stuff as possible, but break on a space.
* - If the first "word" of the line will extend beyond the allowable
* width, break the word at the end of the width.
*/
void
wrap_string(smartlist_t *out, const char *string, size_t width,
const char *prefix0, const char *prefixRest)
{
size_t p0Len, pRestLen, pCurLen;
const char *eos, *prefixCur;
tor_assert(out);
tor_assert(string);
tor_assert(width);
if (!prefix0)
prefix0 = "";
if (!prefixRest)
prefixRest = "";
p0Len = strlen(prefix0);
pRestLen = strlen(prefixRest);
tor_assert(width > p0Len && width > pRestLen);
eos = strchr(string, '\0');
tor_assert(eos);
pCurLen = p0Len;
prefixCur = prefix0;
while ((eos-string)+pCurLen > width) {
const char *eol = string + width - pCurLen;
while (eol > string && *eol != ' ')
--eol;
/* eol is now the last space that can fit, or the start of the string. */
if (eol > string) {
size_t line_len = (eol-string) + pCurLen + 2;
char *line = tor_malloc(line_len);
memcpy(line, prefixCur, pCurLen);
memcpy(line+pCurLen, string, eol-string);
line[line_len-2] = '\n';
line[line_len-1] = '\0';
smartlist_add(out, line);
string = eol + 1;
} else {
size_t line_len = width + 2;
char *line = tor_malloc(line_len);
memcpy(line, prefixCur, pCurLen);
memcpy(line+pCurLen, string, width - pCurLen);
line[line_len-2] = '\n';
line[line_len-1] = '\0';
smartlist_add(out, line);
string += width-pCurLen;
}
prefixCur = prefixRest;
pCurLen = pRestLen;
}
if (string < eos) {
size_t line_len = (eos-string) + pCurLen + 2;
char *line = tor_malloc(line_len);
memcpy(line, prefixCur, pCurLen);
memcpy(line+pCurLen, string, eos-string);
line[line_len-2] = '\n';
line[line_len-1] = '\0';
smartlist_add(out, line);
}
}
/* =====
* Time
* ===== */
/** Return the number of microseconds elapsed between *start and *end.
*/
long
tv_udiff(const struct timeval *start, const struct timeval *end)
{
long udiff;
long secdiff = end->tv_sec - start->tv_sec;
if (labs(secdiff+1) > LONG_MAX/1000000) {
log_warn(LD_GENERAL, "comparing times too far apart.");
return LONG_MAX;
}
udiff = secdiff*1000000L + (end->tv_usec - start->tv_usec);
return udiff;
}
/** Yield true iff y is a leap-year. */
#define IS_LEAPYEAR(y) (!(y % 4) && ((y % 100) || !(y % 400)))
/** Helper: Return the number of leap-days between Jan 1, y1 and Jan 1, y2. */
static int
n_leapdays(int y1, int y2)
{
--y1;
--y2;
return (y2/4 - y1/4) - (y2/100 - y1/100) + (y2/400 - y1/400);
}
/** Number of days per month in non-leap year; used by tor_timegm. */
static const int days_per_month[] =
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
/** Return a time_t given a struct tm. The result is given in GMT, and
* does not account for leap seconds.
*/
time_t
tor_timegm(struct tm *tm)
{
/* This is a pretty ironclad timegm implementation, snarfed from Python2.2.
* It's way more brute-force than fiddling with tzset().
*/
time_t ret;
unsigned long year, days, hours, minutes;
int i;
year = tm->tm_year + 1900;
if (year < 1970 || tm->tm_mon < 0 || tm->tm_mon > 11) {
log_warn(LD_BUG, "Out-of-range argument to tor_timegm");
return -1;
}
tor_assert(year < INT_MAX);
days = 365 * (year-1970) + n_leapdays(1970,(int)year);
for (i = 0; i < tm->tm_mon; ++i)
days += days_per_month[i];
if (tm->tm_mon > 1 && IS_LEAPYEAR(year))
++days;
days += tm->tm_mday - 1;
hours = days*24 + tm->tm_hour;
minutes = hours*60 + tm->tm_min;
ret = minutes*60 + tm->tm_sec;
return ret;
}
/* strftime is locale-specific, so we need to replace those parts */
static const char *WEEKDAY_NAMES[] =
{ "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
static const char *MONTH_NAMES[] =
{ "Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
/** Set buf to the RFC1123 encoding of the GMT value of t.
* The buffer must be at least RFC1123_TIME_LEN+1 bytes long.
*
* (RFC1123 format is Fri, 29 Sep 2006 15:54:20 GMT)
*/
void
format_rfc1123_time(char *buf, time_t t)
{
struct tm tm;
tor_gmtime_r(&t, &tm);
strftime(buf, RFC1123_TIME_LEN+1, "___, %d ___ %Y %H:%M:%S GMT", &tm);
tor_assert(tm.tm_wday >= 0);
tor_assert(tm.tm_wday <= 6);
memcpy(buf, WEEKDAY_NAMES[tm.tm_wday], 3);
tor_assert(tm.tm_wday >= 0);
tor_assert(tm.tm_mon <= 11);
memcpy(buf+8, MONTH_NAMES[tm.tm_mon], 3);
}
/** Parse the the RFC1123 encoding of some time (in GMT) from buf,
* and store the result in *t.
*
* Return 0 on succcess, -1 on failure.
*/
int
parse_rfc1123_time(const char *buf, time_t *t)
{
struct tm tm;
char month[4];
char weekday[4];
int i, m;
if (strlen(buf) != RFC1123_TIME_LEN)
return -1;
memset(&tm, 0, sizeof(tm));
if (sscanf(buf, "%3s, %d %3s %d %d:%d:%d GMT", weekday,
&tm.tm_mday, month, &tm.tm_year, &tm.tm_hour,
&tm.tm_min, &tm.tm_sec) < 7) {
char *esc = esc_for_log(buf);
log_warn(LD_GENERAL, "Got invalid RFC1123 time %s", esc);
tor_free(esc);
return -1;
}
m = -1;
for (i = 0; i < 12; ++i) {
if (!strcmp(month, MONTH_NAMES[i])) {
m = i;
break;
}
}
if (m<0) {
char *esc = esc_for_log(buf);
log_warn(LD_GENERAL, "Got invalid RFC1123 time %s: No such month", esc);
tor_free(esc);
return -1;
}
tm.tm_mon = m;
if (tm.tm_year < 1970) {
char *esc = esc_for_log(buf);
log_warn(LD_GENERAL,
"Got invalid RFC1123 time %s. (Before 1970)", esc);
tor_free(esc);
return -1;
}
tm.tm_year -= 1900;
*t = tor_timegm(&tm);
return 0;
}
/** Set buf to the ISO8601 encoding of the local value of t.
* The buffer must be at least ISO_TIME_LEN+1 bytes long.
*
* (ISO8601 format is 2006-10-29 10:57:20)
*/
void
format_local_iso_time(char *buf, time_t t)
{
struct tm tm;
strftime(buf, ISO_TIME_LEN+1, "%Y-%m-%d %H:%M:%S", tor_localtime_r(&t, &tm));
}
/** Set buf to the ISO8601 encoding of the GMT value of t.
* The buffer must be at least ISO_TIME_LEN+1 bytes long.
*/
void
format_iso_time(char *buf, time_t t)
{
struct tm tm;
strftime(buf, ISO_TIME_LEN+1, "%Y-%m-%d %H:%M:%S", tor_gmtime_r(&t, &tm));
}
/** Given an ISO-formatted UTC time value (after the epoch) in cp,
* parse it and store its value in *t. Return 0 on success, -1 on
* failure. Ignore extraneous stuff in cp separated by whitespace from
* the end of the time string. */
int
parse_iso_time(const char *cp, time_t *t)
{
struct tm st_tm;
#ifdef HAVE_STRPTIME
if (!strptime(cp, "%Y-%m-%d %H:%M:%S", &st_tm)) {
log_warn(LD_GENERAL, "ISO time was unparseable by strptime"); return -1;
}
#else
unsigned int year=0, month=0, day=0, hour=100, minute=100, second=100;
if (sscanf(cp, "%u-%u-%u %u:%u:%u", &year, &month,
&day, &hour, &minute, &second) < 6) {
log_warn(LD_GENERAL, "ISO time was unparseable"); return -1;
}
if (year < 1970 || month < 1 || month > 12 || day < 1 || day > 31 ||
hour > 23 || minute > 59 || second > 61) {
log_warn(LD_GENERAL, "ISO time was nonsensical"); return -1;
}
st_tm.tm_year = year-1900;
st_tm.tm_mon = month-1;
st_tm.tm_mday = day;
st_tm.tm_hour = hour;
st_tm.tm_min = minute;
st_tm.tm_sec = second;
#endif
if (st_tm.tm_year < 70) {
char *esc = esc_for_log(cp);
log_warn(LD_GENERAL, "Got invalid ISO time %s. (Before 1970)", esc);
tor_free(esc);
return -1;
}
*t = tor_timegm(&st_tm);
return 0;
}
/** Given a date in one of the three formats allowed by HTTP (ugh),
* parse it into tm. Return 0 on success, negative on failure. */
int
parse_http_time(const char *date, struct tm *tm)
{
const char *cp;
char month[4];
char wkday[4];
int i;
tor_assert(tm);
memset(tm, 0, sizeof(*tm));
/* First, try RFC1123 or RFC850 format: skip the weekday. */
if ((cp = strchr(date, ','))) {
++cp;
if (sscanf(date, "%2d %3s %4d %2d:%2d:%2d GMT",
&tm->tm_mday, month, &tm->tm_year,
&tm->tm_hour, &tm->tm_min, &tm->tm_sec) == 6) {
/* rfc1123-date */
tm->tm_year -= 1900;
} else if (sscanf(date, "%2d-%3s-%2d %2d:%2d:%2d GMT",
&tm->tm_mday, month, &tm->tm_year,
&tm->tm_hour, &tm->tm_min, &tm->tm_sec) == 6) {
/* rfc850-date */
} else {
return -1;
}
} else {
/* No comma; possibly asctime() format. */
if (sscanf(date, "%3s %3s %2d %2d:%2d:%2d %4d",
wkday, month, &tm->tm_mday,
&tm->tm_hour, &tm->tm_min, &tm->tm_sec, &tm->tm_year) == 7) {
tm->tm_year -= 1900;
} else {
return -1;
}
}
month[3] = '\0';
/* Okay, now decode the month. */
for (i = 0; i < 12; ++i) {
if (!strcasecmp(MONTH_NAMES[i], month)) {
tm->tm_mon = i+1;
}
}
if (tm->tm_year < 0 ||
tm->tm_mon < 1 || tm->tm_mon > 12 ||
tm->tm_mday < 0 || tm->tm_mday > 31 ||
tm->tm_hour < 0 || tm->tm_hour > 23 ||
tm->tm_min < 0 || tm->tm_min > 59 ||
tm->tm_sec < 0 || tm->tm_sec > 61)
return -1; /* Out of range, or bad month. */
return 0;
}
/** Given an interval in seconds, try to write it to the
* out_len-byte buffer in out in a human-readable form.
* Return 0 on success, -1 on failure.
*/
int
format_time_interval(char *out, size_t out_len, long interval)
{
/* We only report seconds if there's no hours. */
long sec = 0, min = 0, hour = 0, day = 0;
if (interval < 0)
interval = -interval;
if (interval >= 86400) {
day = interval / 86400;
interval %= 86400;
}
if (interval >= 3600) {
hour = interval / 3600;
interval %= 3600;
}
if (interval >= 60) {
min = interval / 60;
interval %= 60;
}
sec = interval;
if (day) {
return tor_snprintf(out, out_len, "%ld days, %ld hours, %ld minutes",
day, hour, min);
} else if (hour) {
return tor_snprintf(out, out_len, "%ld hours, %ld minutes", hour, min);
} else if (min) {
return tor_snprintf(out, out_len, "%ld minutes, %ld seconds", min, sec);
} else {
return tor_snprintf(out, out_len, "%ld seconds", sec);
}
}
/* =====
* Fuzzy time
* ===== */
/* In a perfect world, everybody would run ntp, and ntp would be perfect, so
* if we wanted to know "Is the current time before time X?" we could just say
* "time(NULL) < X".
*
* But unfortunately, many users are running Tor in an imperfect world, on
* even more imperfect computers. Hence, we need to track time oddly. We
* model the user's computer as being "skewed" from accurate time by
* -ftime_skew seconds, such that our best guess of the current time is
* time(NULL)+ftime_skew. We also assume that our measurements of time may
* have up to ftime_slop seconds of inaccuracy; IOW, our window of
* estimate for the current time is now + ftime_skew +/- ftime_slop.
*/
static int ftime_skew = 0;
static int ftime_slop = 60;
void
ftime_set_maximum_sloppiness(int seconds)
{
tor_assert(seconds >= 0);
ftime_slop = seconds;
}
void
ftime_set_estimated_skew(int seconds)
{
ftime_skew = seconds;
}
#if 0
void
ftime_get_window(time_t now, ftime_t *ft_out)
{
ft_out->earliest = now + ftime_skew - ftime_slop;
ft_out->latest = now + ftime_skew + ftime_slop;
}
#endif
int
ftime_maybe_after(time_t now, time_t when)
{
/* It may be after when iff the latest possible current time is after when */
return (now + ftime_skew + ftime_slop) >= when;
}
int
ftime_maybe_before(time_t now, time_t when)
{
/* It may be before when iff the earliest possible current time is before */
return (now + ftime_skew - ftime_slop) < when;
}
int
ftime_definitely_after(time_t now, time_t when)
{
/* It is definitely after when if the earliest time it could be is still
* after when. */
return (now + ftime_skew - ftime_slop) >= when;
}
int
ftime_definitely_before(time_t now, time_t when)
{
/* It is definitely before when if the latest time it could be is still
* before when. */
return (now + ftime_skew + ftime_slop) < when;
}
/* =====
* File helpers
* ===== */
/** Write count bytes from buf to fd. isSocket
* must be 1 if fd was returned by socket() or accept(), and 0 if fd
* was returned by open(). Return the number of bytes written, or -1
* on error. Only use if fd is a blocking fd. */
int
write_all(int fd, const char *buf, size_t count, int isSocket)
{
size_t written = 0;
ssize_t result;
tor_assert(count < INT_MAX); /*XXXX021 make returnval an ssize_t */
while (written != count) {
if (isSocket)
result = tor_socket_send(fd, buf+written, count-written, 0);
else
result = write(fd, buf+written, count-written);
if (result<0)
return -1;
written += result;
}
return (int)count;
}
/** Read from fd to buf, until we get count bytes
* or reach the end of the file. isSocket must be 1 if fd
* was returned by socket() or accept(), and 0 if fd was returned by
* open(). Return the number of bytes read, or -1 on error. Only use
* if fd is a blocking fd. */
int
read_all(int fd, char *buf, size_t count, int isSocket)
{
/*XXXX021 return ssize_t. */
size_t numread = 0;
ssize_t result;
if (count > SIZE_T_CEILING || count > INT_MAX)
return -1;
while (numread != count) {
if (isSocket)
result = tor_socket_recv(fd, buf+numread, count-numread, 0);
else
result = read(fd, buf+numread, count-numread);
if (result<0)
return -1;
else if (result == 0)
break;
numread += result;
}
return (int)numread;
}
/*
* Filesystem operations.
*/
/** Clean up name so that we can use it in a call to "stat". On Unix,
* we do nothing. On Windows, we remove a trailing slash, unless the path is
* the root of a disk. */
static void
clean_name_for_stat(char *name)
{
#ifdef MS_WINDOWS
size_t len = strlen(name);
if (!len)
return;
if (name[len-1]=='\\' || name[len-1]=='/') {
if (len == 1 || (len==3 && name[1]==':'))
return;
name[len-1]='\0';
}
#else
(void)name;
#endif
}
/** Return FN_ERROR if filename can't be read, FN_NOENT if it doesn't
* exist, FN_FILE if it is a regular file, or FN_DIR if it's a
* directory. */
file_status_t
file_status(const char *fname)
{
struct stat st;
char *f;
int r;
f = tor_strdup(fname);
clean_name_for_stat(f);
r = stat(f, &st);
tor_free(f);
if (r) {
if (errno == ENOENT) {
return FN_NOENT;
}
return FN_ERROR;
}
if (st.st_mode & S_IFDIR)
return FN_DIR;
else if (st.st_mode & S_IFREG)
return FN_FILE;
else
return FN_ERROR;
}
/** Check whether dirname exists and is private. If yes return 0. If
* it does not exist, and check==CPD_CREATE is set, try to create it
* and return 0 on success. If it does not exist, and
* check==CPD_CHECK, and we think we can create it, return 0. Else
* return -1. */
int
check_private_dir(const char *dirname, cpd_check_t check)
{
int r;
struct stat st;
char *f;
tor_assert(dirname);
f = tor_strdup(dirname);
clean_name_for_stat(f);
r = stat(f, &st);
tor_free(f);
if (r) {
if (errno != ENOENT) {
log(LOG_WARN, LD_FS, "Directory %s cannot be read: %s", dirname,
strerror(errno));
return -1;
}
if (check == CPD_NONE) {
log(LOG_WARN, LD_FS, "Directory %s does not exist.", dirname);
return -1;
} else if (check == CPD_CREATE) {
log_info(LD_GENERAL, "Creating directory %s", dirname);
#ifdef MS_WINDOWS
r = mkdir(dirname);
#else
r = mkdir(dirname, 0700);
#endif
if (r) {
log(LOG_WARN, LD_FS, "Error creating directory %s: %s", dirname,
strerror(errno));
return -1;
}
}
/* XXXX In the case where check==CPD_CHECK, we should look at the
* parent directory a little harder. */
return 0;
}
if (!(st.st_mode & S_IFDIR)) {
log(LOG_WARN, LD_FS, "%s is not a directory", dirname);
return -1;
}
#ifndef MS_WINDOWS
if (st.st_uid != getuid()) {
struct passwd *pw = NULL;
char *process_ownername = NULL;
pw = getpwuid(getuid());
process_ownername = pw ? tor_strdup(pw->pw_name) : tor_strdup("");
pw = getpwuid(st.st_uid);
log(LOG_WARN, LD_FS, "%s is not owned by this user (%s, %d) but by "
"%s (%d). Perhaps you are running Tor as the wrong user?",
dirname, process_ownername, (int)getuid(),
pw ? pw->pw_name : "", (int)st.st_uid);
tor_free(process_ownername);
return -1;
}
if (st.st_mode & 0077) {
log(LOG_WARN, LD_FS, "Fixing permissions on directory %s", dirname);
if (chmod(dirname, 0700)) {
log(LOG_WARN, LD_FS, "Could not chmod directory %s: %s", dirname,
strerror(errno));
return -1;
} else {
return 0;
}
}
#endif
return 0;
}
/** Create a file named fname with the contents str. Overwrite
* the previous fname if possible. Return 0 on success, -1 on failure.
*
* This function replaces the old file atomically, if possible. This
* function, and all other functions in util.c that create files, create them
* with mode 0600.
*/
int
write_str_to_file(const char *fname, const char *str, int bin)
{
#ifdef MS_WINDOWS
if (!bin && strchr(str, '\r')) {
log_warn(LD_BUG,
"We're writing a text string that already contains a CR.");
}
#endif
return write_bytes_to_file(fname, str, strlen(str), bin);
}
/** Represents a file that we're writing to, with support for atomic commit:
* we can write into a a temporary file, and either remove the file on
* failure, or replace the original file on success. */
struct open_file_t {
char *tempname; /**< Name of the temporary file. */
char *filename; /**< Name of the original file. */
int rename_on_close; /**< Are we using the temporary file or not? */
int fd; /**< fd for the open file. */
FILE *stdio_file; /**< stdio wrapper for fd. */
};
/** Try to start writing to the file in fname, passing the flags
* open_flags to the open() syscall, creating the file (if needed) with
* access value mode. If the O_APPEND flag is set, we append to the
* original file. Otherwise, we open a new temporary file in the same
* directory, and either replace the original or remove the temporary file
* when we're done.
*
* Return the fd for the newly opened file, and store working data in
* *data_out. The caller should not close the fd manually:
* instead, call finish_writing_to_file() or abort_writing_to_file().
* Returns -1 on failure.
*
* NOTE: When not appending, the flags O_CREAT and O_TRUNC are treated
* as true and the flag O_EXCL is treated as false.
*/
int
start_writing_to_file(const char *fname, int open_flags, int mode,
open_file_t **data_out)
{
size_t tempname_len = strlen(fname)+16;
open_file_t *new_file = tor_malloc_zero(sizeof(open_file_t));
const char *open_name;
tor_assert(fname);
tor_assert(data_out);
#if (O_BINARY != 0 && O_TEXT != 0)
tor_assert((open_flags & (O_BINARY|O_TEXT)) != 0);
#endif
new_file->fd = -1;
tempname_len = strlen(fname)+16;
tor_assert(tempname_len > strlen(fname)); /*check for overflow*/
new_file->filename = tor_strdup(fname);
if (open_flags & O_APPEND) {
open_name = fname;
new_file->rename_on_close = 0;
} else {
open_name = new_file->tempname = tor_malloc(tempname_len);
if (tor_snprintf(new_file->tempname, tempname_len, "%s.tmp", fname)<0) {
log(LOG_WARN, LD_GENERAL, "Failed to generate filename");
goto err;
}
/* We always replace an existing temporary file if there is one. */
open_flags |= O_CREAT|O_TRUNC;
open_flags &= ~O_EXCL;
new_file->rename_on_close = 1;
}
if ((new_file->fd = open(open_name, open_flags, mode))
< 0) {
log(LOG_WARN, LD_FS, "Couldn't open \"%s\" (%s) for writing: %s",
open_name, fname, strerror(errno));
goto err;
}
*data_out = new_file;
return new_file->fd;
err:
*data_out = NULL;
tor_free(new_file->filename);
tor_free(new_file->tempname);
tor_free(new_file);
return -1;
}
/** Given file_data from start_writing_to_file(), return a stdio FILE*
* that can be used to write to the same file. The caller should not mix
* stdio calls with non-stdio calls. */
FILE *
fdopen_file(open_file_t *file_data)
{
tor_assert(file_data);
if (file_data->stdio_file)
return file_data->stdio_file;
tor_assert(file_data->fd >= 0);
if (!(file_data->stdio_file = fdopen(file_data->fd, "a"))) {
log_warn(LD_FS, "Couldn't fdopen \"%s\": %s", file_data->filename,
strerror(errno));
}
return file_data->stdio_file;
}
/** Combines start_writing_to_file with fdopen_file(): arguments are as
* for start_writing_to_file, but */
FILE *
start_writing_to_stdio_file(const char *fname, int open_flags, int mode,
open_file_t **data_out)
{
FILE *res;
if (start_writing_to_file(fname, open_flags, mode, data_out)<0)
return NULL;
if (!(res = fdopen_file(*data_out)))
abort_writing_to_file(*data_out);
return res;
}
/** Helper function: close and free the underlying file and memory in
* file_data. If we were writing into a temporary file, then delete
* that file (if abort_write is true) or replaces the target file with
* the temporary file (if abort_write is false). */
static int
finish_writing_to_file_impl(open_file_t *file_data, int abort_write)
{
int r = 0;
tor_assert(file_data && file_data->filename);
if (file_data->stdio_file) {
if (fclose(file_data->stdio_file)) {
log_warn(LD_FS, "Error closing \"%s\": %s", file_data->filename,
strerror(errno));
abort_write = r = -1;
}
} else if (file_data->fd >= 0 && close(file_data->fd) < 0) {
log_warn(LD_FS, "Error flushing \"%s\": %s", file_data->filename,
strerror(errno));
abort_write = r = -1;
}
if (file_data->rename_on_close) {
tor_assert(file_data->tempname && file_data->filename);
if (abort_write) {
unlink(file_data->tempname);
} else {
tor_assert(strcmp(file_data->filename, file_data->tempname));
if (replace_file(file_data->tempname, file_data->filename)) {
log_warn(LD_FS, "Error replacing \"%s\": %s", file_data->filename,
strerror(errno));
r = -1;
}
}
}
tor_free(file_data->filename);
tor_free(file_data->tempname);
tor_free(file_data);
return r;
}
/** Finish writing to file_data: close the file handle, free memory as
* needed, and if using a temporary file, replace the original file with
* the temporary file. */
int
finish_writing_to_file(open_file_t *file_data)
{
return finish_writing_to_file_impl(file_data, 0);
}
/** Finish writing to file_data: close the file handle, free memory as
* needed, and if using a temporary file, delete it. */
int
abort_writing_to_file(open_file_t *file_data)
{
return finish_writing_to_file_impl(file_data, 1);
}
/** Helper: given a set of flags as passed to open(2), open the file
* fname and write all the sized_chunk_t structs in chunks to
* the file. Do so as atomically as possible e.g. by opening temp files and
* renaming. */
static int
write_chunks_to_file_impl(const char *fname, const smartlist_t *chunks,
int open_flags)
{
open_file_t *file = NULL;
int fd, result;
fd = start_writing_to_file(fname, open_flags, 0600, &file);
if (fd<0)
return -1;
SMARTLIST_FOREACH(chunks, sized_chunk_t *, chunk,
{
result = write_all(fd, chunk->bytes, chunk->len, 0);
if (result < 0 || (size_t)result != chunk->len) {
log(LOG_WARN, LD_FS, "Error writing to \"%s\": %s", fname,
strerror(errno));
goto err;
}
});
return finish_writing_to_file(file);
err:
abort_writing_to_file(file);
return -1;
}
/** Given a smartlist of sized_chunk_t, write them atomically to a file
* fname, overwriting or creating the file as necessary. */
int
write_chunks_to_file(const char *fname, const smartlist_t *chunks, int bin)
{
int flags = OPEN_FLAGS_REPLACE|(bin?O_BINARY:O_TEXT);
return write_chunks_to_file_impl(fname, chunks, flags);
}
/** As write_str_to_file, but does not assume a NUL-terminated
* string. Instead, we write len bytes, starting at str. */
int
write_bytes_to_file(const char *fname, const char *str, size_t len,
int bin)
{
int flags = OPEN_FLAGS_REPLACE|(bin?O_BINARY:O_TEXT);
int r;
sized_chunk_t c = { str, len };
smartlist_t *chunks = smartlist_create();
smartlist_add(chunks, &c);
r = write_chunks_to_file_impl(fname, chunks, flags);
smartlist_free(chunks);
return r;
}
/** As write_bytes_to_file, but if the file already exists, append the bytes
* to the end of the file instead of overwriting it. */
int
append_bytes_to_file(const char *fname, const char *str, size_t len,
int bin)
{
int flags = OPEN_FLAGS_APPEND|(bin?O_BINARY:O_TEXT);
int r;
sized_chunk_t c = { str, len };
smartlist_t *chunks = smartlist_create();
smartlist_add(chunks, &c);
r = write_chunks_to_file_impl(fname, chunks, flags);
smartlist_free(chunks);
return r;
}
/** Read the contents of filename into a newly allocated
* string; return the string on success or NULL on failure.
*
* If stat_out is provided, store the result of stat()ing the
* file into stat_out.
*
* If flags & RFTS_BIN, open the file in binary mode.
* If flags & RFTS_IGNORE_MISSING, don't warn if the file
* doesn't exist.
*/
/*
* This function may return an erroneous result if the file
* is modified while it is running, but must not crash or overflow.
* Right now, the error case occurs when the file length grows between
* the call to stat and the call to read_all: the resulting string will
* be truncated.
*/
char *
read_file_to_str(const char *filename, int flags, struct stat *stat_out)
{
int fd; /* router file */
struct stat statbuf;
char *string;
int r;
int bin = flags & RFTS_BIN;
tor_assert(filename);
fd = open(filename,O_RDONLY|(bin?O_BINARY:O_TEXT),0);
if (fd<0) {
int severity = LOG_WARN;
int save_errno = errno;
if (errno == ENOENT && (flags & RFTS_IGNORE_MISSING))
severity = LOG_INFO;
log_fn(severity, LD_FS,"Could not open \"%s\": %s ",filename,
strerror(errno));
errno = save_errno;
return NULL;
}
if (fstat(fd, &statbuf)<0) {
int save_errno = errno;
close(fd);
log_warn(LD_FS,"Could not fstat \"%s\".",filename);
errno = save_errno;
return NULL;
}
if ((uint64_t)(statbuf.st_size)+1 > SIZE_T_MAX)
return NULL;
string = tor_malloc((size_t)(statbuf.st_size+1));
r = read_all(fd,string,(size_t)statbuf.st_size,0);
if (r<0) {
int save_errno = errno;
log_warn(LD_FS,"Error reading from file \"%s\": %s", filename,
strerror(errno));
tor_free(string);
close(fd);
errno = save_errno;
return NULL;
}
string[r] = '\0'; /* NUL-terminate the result. */
#ifdef MS_WINDOWS
if (!bin && strchr(string, '\r')) {
log_debug(LD_FS, "We didn't convert CRLF to LF as well as we hoped "
"when reading %s. Coping.",
filename);
tor_strstrip(string, "\r");
r = strlen(string);
}
if (!bin) {
statbuf.st_size = (size_t) r;
} else
#endif
if (r != statbuf.st_size) {
/* Unless we're using text mode on win32, we'd better have an exact
* match for size. */
int save_errno = errno;
log_warn(LD_FS,"Could read only %d of %ld bytes of file \"%s\".",
r, (long)statbuf.st_size,filename);
tor_free(string);
close(fd);
errno = save_errno;
return NULL;
}
close(fd);
if (stat_out) {
memcpy(stat_out, &statbuf, sizeof(struct stat));
}
return string;
}
#define TOR_ISODIGIT(c) ('0' <= (c) && (c) <= '7')
/* Given a c-style double-quoted escaped string in s, extract and
* decode its contents into a newly allocated string. On success, assign this
* string to *result, assign its length to size_out (if
* provided), and return a pointer to the position in s immediately
* after the string. On failure, return NULL.
*/
static const char *
unescape_string(const char *s, char **result, size_t *size_out)
{
const char *cp;
char *out;
if (s[0] != '\"')
return NULL;
cp = s+1;
while (1) {
switch (*cp) {
case '\0':
case '\n':
return NULL;
case '\"':
goto end_of_loop;
case '\\':
if ((cp[1] == 'x' || cp[1] == 'X')
&& TOR_ISXDIGIT(cp[2]) && TOR_ISXDIGIT(cp[3])) {
cp += 4;
} else if (TOR_ISODIGIT(cp[1])) {
cp += 2;
if (TOR_ISODIGIT(*cp)) ++cp;
if (TOR_ISODIGIT(*cp)) ++cp;
} else if (cp[1]) {
cp += 2;
} else {
return NULL;
}
break;
default:
++cp;
break;
}
}
end_of_loop:
out = *result = tor_malloc(cp-s + 1);
cp = s+1;
while (1) {
switch (*cp)
{
case '\"':
*out = '\0';
if (size_out) *size_out = out - *result;
return cp+1;
case '\0':
tor_fragile_assert();
tor_free(*result);
return NULL;
case '\\':
switch (cp[1])
{
case 'n': *out++ = '\n'; cp += 2; break;
case 'r': *out++ = '\r'; cp += 2; break;
case 't': *out++ = '\t'; cp += 2; break;
case 'x': case 'X':
*out++ = ((hex_decode_digit(cp[2])<<4) +
hex_decode_digit(cp[3]));
cp += 4;
break;
case '0': case '1': case '2': case '3': case '4': case '5':
case '6': case '7':
{
int n = cp[1]-'0';
cp += 2;
if (TOR_ISODIGIT(*cp)) { n = n*8 + *cp-'0'; cp++; }
if (TOR_ISODIGIT(*cp)) { n = n*8 + *cp-'0'; cp++; }
if (n > 255) { tor_free(*result); return NULL; }
*out++ = (char)n;
}
break;
case '\'':
case '\"':
case '\\':
case '\?':
*out++ = cp[1];
cp += 2;
break;
default:
tor_free(*result); return NULL;
}
break;
default:
*out++ = *cp++;
}
}
}
/** Given a string containing part of a configuration file or similar format,
* advance past comments and whitespace and try to parse a single line. If we
* parse a line successfully, set *key_out to a new string holding the
* key portion and *value_out to a new string holding the value portion
* of the line, and return a pointer to the start of the next line. If we run
* out of data, return a pointer to the end of the string. If we encounter an
* error, return NULL.
*/
const char *
parse_config_line_from_str(const char *line, char **key_out, char **value_out)
{
const char *key, *val, *cp;
tor_assert(key_out);
tor_assert(value_out);
*key_out = *value_out = NULL;
key = val = NULL;
/* Skip until the first keyword. */
while (1) {
while (TOR_ISSPACE(*line))
++line;
if (*line == '#') {
while (*line && *line != '\n')
++line;
} else {
break;
}
}
if (!*line) { /* End of string? */
*key_out = *value_out = NULL;
return line;
}
/* Skip until the next space. */
key = line;
while (*line && !TOR_ISSPACE(*line) && *line != '#')
++line;
*key_out = tor_strndup(key, line-key);
/* Skip until the value. */
while (*line == ' ' || *line == '\t')
++line;
val = line;
/* Find the end of the line. */
if (*line == '\"') {
if (!(line = unescape_string(line, value_out, NULL)))
return NULL;
while (*line == ' ' || *line == '\t')
++line;
if (*line && *line != '#' && *line != '\n')
return NULL;
} else {
while (*line && *line != '\n' && *line != '#')
++line;
if (*line == '\n') {
cp = line++;
} else {
cp = line;
}
while (cp>val && TOR_ISSPACE(*(cp-1)))
--cp;
tor_assert(cp >= val);
*value_out = tor_strndup(val, cp-val);
}
if (*line == '#') {
do {
++line;
} while (*line && *line != '\n');
}
while (TOR_ISSPACE(*line)) ++line;
return line;
}
/** Expand any homedir prefix on filename; return a newly allocated
* string. */
char *
expand_filename(const char *filename)
{
tor_assert(filename);
if (*filename == '~') {
size_t len;
char *home, *result;
const char *rest;
if (filename[1] == '/' || filename[1] == '\0') {
home = getenv("HOME");
if (!home) {
log_warn(LD_CONFIG, "Couldn't find $HOME environment variable while "
"expanding \"%s\"", filename);
return NULL;
}
home = tor_strdup(home);
rest = strlen(filename)>=2?(filename+2):"";
} else {
#ifdef HAVE_PWD_H
char *username, *slash;
slash = strchr(filename, '/');
if (slash)
username = tor_strndup(filename+1,slash-filename-1);
else
username = tor_strdup(filename+1);
if (!(home = get_user_homedir(username))) {
log_warn(LD_CONFIG,"Couldn't get homedir for \"%s\"",username);
tor_free(username);
return NULL;
}
tor_free(username);
rest = slash ? (slash+1) : "";
#else
log_warn(LD_CONFIG, "Couldn't expend homedir on system without pwd.h");
return tor_strdup(filename);
#endif
}
tor_assert(home);
/* Remove trailing slash. */
if (strlen(home)>1 && !strcmpend(home,PATH_SEPARATOR)) {
home[strlen(home)-1] = '\0';
}
/* Plus one for /, plus one for NUL.
* Round up to 16 in case we can't do math. */
len = strlen(home)+strlen(rest)+16;
result = tor_malloc(len);
tor_snprintf(result,len,"%s"PATH_SEPARATOR"%s",home,rest);
tor_free(home);
return result;
} else {
return tor_strdup(filename);
}
}
/** Return a new list containing the filenames in the directory dirname.
* Return NULL on error or if dirname is not a directory.
*/
smartlist_t *
tor_listdir(const char *dirname)
{
smartlist_t *result;
#ifdef MS_WINDOWS
char *pattern;
HANDLE handle;
WIN32_FIND_DATA findData;
size_t pattern_len = strlen(dirname)+16;
pattern = tor_malloc(pattern_len);
tor_snprintf(pattern, pattern_len, "%s\\*", dirname);
if (!(handle = FindFirstFile(pattern, &findData))) {
tor_free(pattern);
return NULL;
}
result = smartlist_create();
while (1) {
if (strcmp(findData.cFileName, ".") &&
strcmp(findData.cFileName, "..")) {
smartlist_add(result, tor_strdup(findData.cFileName));
}
if (!FindNextFile(handle, &findData)) {
if (GetLastError() != ERROR_NO_MORE_FILES) {
log_warn(LD_FS, "Error reading directory.");
}
break;
}
}
FindClose(handle);
tor_free(pattern);
#else
DIR *d;
struct dirent *de;
if (!(d = opendir(dirname)))
return NULL;
result = smartlist_create();
while ((de = readdir(d))) {
if (!strcmp(de->d_name, ".") ||
!strcmp(de->d_name, ".."))
continue;
smartlist_add(result, tor_strdup(de->d_name));
}
closedir(d);
#endif
return result;
}
/** Return true iff filename is a relative path. */
int
path_is_relative(const char *filename)
{
if (filename && filename[0] == '/')
return 0;
#ifdef MS_WINDOWS
else if (filename && filename[0] == '\\')
return 0;
else if (filename && strlen(filename)>3 && TOR_ISALPHA(filename[0]) &&
filename[1] == ':' && filename[2] == '\\')
return 0;
#endif
else
return 1;
}
/* =====
* Net helpers
* ===== */
/** Return true iff ip (in host order) is an IP reserved to localhost,
* or reserved for local networks by RFC 1918.
*/
int
is_internal_IP(uint32_t ip, int for_listening)
{
tor_addr_t myaddr;
myaddr.family = AF_INET;
myaddr.addr.in_addr.s_addr = htonl(ip);
return tor_addr_is_internal(&myaddr, for_listening);
}
/** Return true iff ip is an IP reserved to localhost or local networks
* in RFC1918 or RFC4193 or RFC4291. (fec0::/10, deprecated by RFC3879, is
* also treated as internal for now.)
*/
int
tor_addr_is_internal(const tor_addr_t *addr, int for_listening)
{
uint32_t iph4 = 0;
uint32_t iph6[4];
sa_family_t v_family;
v_family = IN_FAMILY(addr);
if (v_family == AF_INET) {
iph4 = IPV4IPh(addr);
} else if (v_family == AF_INET6) {
if (tor_addr_is_v4(addr)) { /* v4-mapped */
v_family = AF_INET;
iph4 = ntohl(IN6_ADDRESS32(addr)[3]);
}
}
if (v_family == AF_INET6) {
iph6[0] = ntohl(IN6_ADDRESS32(addr)[0]);
iph6[1] = ntohl(IN6_ADDRESS32(addr)[1]);
iph6[2] = ntohl(IN6_ADDRESS32(addr)[2]);
iph6[3] = ntohl(IN6_ADDRESS32(addr)[3]);
if (for_listening && !iph6[0] && !iph6[1] && !iph6[2] && !iph6[3]) /* :: */
return 0;
if (((iph6[0] & 0xfe000000) == 0xfc000000) || /* fc00/7 - RFC4193 */
((iph6[0] & 0xffc00000) == 0xfe800000) || /* fe80/10 - RFC4291 */
((iph6[0] & 0xffc00000) == 0xfec00000)) /* fec0/10 D- RFC3879 */
return 1;
if (!iph6[0] && !iph6[1] && !iph6[2] &&
((iph6[3] & 0xfffffffe) == 0x00000000)) /* ::/127 */
return 1;
return 0;
} else if (v_family == AF_INET) {
if (for_listening && !iph4) /* special case for binding to 0.0.0.0 */
return 0;
if (((iph4 & 0xff000000) == 0x0a000000) || /* 10/8 */
((iph4 & 0xff000000) == 0x00000000) || /* 0/8 */
((iph4 & 0xff000000) == 0x7f000000) || /* 127/8 */
((iph4 & 0xffff0000) == 0xa9fe0000) || /* 169.254/16 */
((iph4 & 0xfff00000) == 0xac100000) || /* 172.16/12 */
((iph4 & 0xffff0000) == 0xc0a80000)) /* 192.168/16 */
return 1;
return 0;
}
/* unknown address family... assume it's not safe for external use */
/* rather than tor_assert(0) */
log_warn(LD_BUG, "tor_addr_is_internal() called with a non-IP address.");
return 1;
}
#if 0
/** Convert a tor_addr_t addr into a string, and store it in
* dest of size len. Returns a pointer to dest on success,
* or NULL on failure.
*/
void
tor_addr_to_str(char *dest, const tor_addr_t *addr, int len)
{
const char *ptr;
tor_assert(addr && dest);
switch (IN_FAMILY(addr)) {
case AF_INET:
ptr = tor_inet_ntop(AF_INET, &addr->sa.sin_addr, dest, len);
break;
case AF_INET6:
ptr = tor_inet_ntop(AF_INET6, &addr->sa6.sin6_addr, dest, len);
break;
default:
return NULL;
}
return ptr;
}
#endif
/** Parse a string of the form "host[:port]" from addrport. If
* address is provided, set *address to a copy of the
* host portion of the string. If addr is provided, try to
* resolve the host portion of the string and store it into
* *addr (in host byte order). If port_out is provided,
* store the port number into *port_out, or 0 if no port is given.
* If port_out is NULL, then there must be no port number in
* addrport.
* Return 0 on success, -1 on failure.
*/
int
parse_addr_port(int severity, const char *addrport, char **address,
uint32_t *addr, uint16_t *port_out)
{
const char *colon;
char *_address = NULL;
int _port;
int ok = 1;
tor_assert(addrport);
colon = strchr(addrport, ':');
if (colon) {
_address = tor_strndup(addrport, colon-addrport);
_port = (int) tor_parse_long(colon+1,10,1,65535,NULL,NULL);
if (!_port) {
log_fn(severity, LD_GENERAL, "Port %s out of range", escaped(colon+1));
ok = 0;
}
if (!port_out) {
char *esc_addrport = esc_for_log(addrport);
log_fn(severity, LD_GENERAL,
"Port %s given on %s when not required",
escaped(colon+1), esc_addrport);
tor_free(esc_addrport);
ok = 0;
}
} else {
_address = tor_strdup(addrport);
_port = 0;
}
if (addr) {
/* There's an addr pointer, so we need to resolve the hostname. */
if (tor_lookup_hostname(_address,addr)) {
log_fn(severity, LD_NET, "Couldn't look up %s", escaped(_address));
ok = 0;
*addr = 0;
}
}
if (address && ok) {
*address = _address;
} else {
if (address)
*address = NULL;
tor_free(_address);
}
if (port_out)
*port_out = ok ? ((uint16_t) _port) : 0;
return ok ? 0 : -1;
}
/** If mask is an address mask for a bit-prefix, return the number of
* bits. Otherwise, return -1. */
int
addr_mask_get_bits(uint32_t mask)
{
int i;
if (mask == 0)
return 0;
if (mask == 0xFFFFFFFFu)
return 32;
for (i=0; i<=32; ++i) {
if (mask == (uint32_t) ~((1u<<(32-i))-1)) {
return i;
}
}
return -1;
}
/** Compare two addresses a1 and a2 for equality under a
* etmask of mbits bits. Return -1, 0, or 1.
*
* XXXX_IP6 Temporary function to allow masks as bitcounts everywhere. This
* will be replaced with an IPv6-aware version as soon as 32-bit addresses are
* no longer passed around.
*/
int
addr_mask_cmp_bits(uint32_t a1, uint32_t a2, maskbits_t bits)
{
if (bits > 32)
bits = 32;
else if (bits == 0)
return 0;
a1 >>= (32-bits);
a2 >>= (32-bits);
if (a1 < a2)
return -1;
else if (a1 > a2)
return 1;
else
return 0;
}
/** Parse a string s in the format of (*|port(-maxport)?)?, setting the
* various *out pointers as appropriate. Return 0 on success, -1 on failure.
*/
int
parse_port_range(const char *port, uint16_t *port_min_out,
uint16_t *port_max_out)
{
int port_min, port_max, ok;
tor_assert(port_min_out);
tor_assert(port_max_out);
if (!port || *port == '\0' || strcmp(port, "*") == 0) {
port_min = 1;
port_max = 65535;
} else {
char *endptr = NULL;
port_min = (int)tor_parse_long(port, 10, 0, 65535, &ok, &endptr);
if (!ok) {
log_warn(LD_GENERAL,
"Malformed port %s on address range; rejecting.",
escaped(port));
return -1;
} else if (endptr && *endptr == '-') {
port = endptr+1;
endptr = NULL;
port_max = (int)tor_parse_long(port, 10, 1, 65536, &ok, &endptr);
if (!ok) {
log_warn(LD_GENERAL,
"Malformed port %s on address range; rejecting.",
escaped(port));
return -1;
}
} else {
port_max = port_min;
}
if (port_min > port_max) {
log_warn(LD_GENERAL, "Insane port range on address policy; rejecting.");
return -1;
}
}
if (port_min < 1)
port_min = 1;
if (port_max > 65535)
port_max = 65535;
*port_min_out = (uint16_t) port_min;
*port_max_out = (uint16_t) port_max;
return 0;
}
/** Parse a string s in the format of
* (IP(/mask|/mask-bits)?|*)(:(*|port(-maxport))?)?, setting the various
* *out pointers as appropriate. Return 0 on success, -1 on failure.
*/
int
parse_addr_and_port_range(const char *s, uint32_t *addr_out,
maskbits_t *maskbits_out, uint16_t *port_min_out,
uint16_t *port_max_out)
{
char *address;
char *mask, *port, *endptr;
struct in_addr in;
int bits;
tor_assert(s);
tor_assert(addr_out);
tor_assert(maskbits_out);
tor_assert(port_min_out);
tor_assert(port_max_out);
address = tor_strdup(s);
/* Break 'address' into separate strings.
*/
mask = strchr(address,'/');
port = strchr(mask?mask:address,':');
if (mask)
*mask++ = '\0';
if (port)
*port++ = '\0';
/* Now "address" is the IP|'*' part...
* "mask" is the Mask|Maskbits part...
* and "port" is the *|port|min-max part.
*/
if (strcmp(address,"*")==0) {
*addr_out = 0;
} else if (tor_inet_aton(address, &in) != 0) {
*addr_out = ntohl(in.s_addr);
} else {
log_warn(LD_GENERAL, "Malformed IP %s in address pattern; rejecting.",
escaped(address));
goto err;
}
if (!mask) {
if (strcmp(address,"*")==0)
*maskbits_out = 0;
else
*maskbits_out = 32;
} else {
endptr = NULL;
bits = (int) strtol(mask, &endptr, 10);
if (!*endptr) {
/* strtol handled the whole mask. */
if (bits < 0 || bits > 32) {
log_warn(LD_GENERAL,
"Bad number of mask bits on address range; rejecting.");
goto err;
}
*maskbits_out = bits;
} else if (tor_inet_aton(mask, &in) != 0) {
bits = addr_mask_get_bits(ntohl(in.s_addr));
if (bits < 0) {
log_warn(LD_GENERAL,
"Mask %s on address range isn't a prefix; dropping",
escaped(mask));
goto err;
}
*maskbits_out = bits;
} else {
log_warn(LD_GENERAL,
"Malformed mask %s on address range; rejecting.",
escaped(mask));
goto err;
}
}
if (parse_port_range(port, port_min_out, port_max_out)<0)
goto err;
tor_free(address);
return 0;
err:
tor_free(address);
return -1;
}
/** Parse a string s containing an IPv4/IPv6 address, and possibly
* a mask and port or port range. Store the parsed address in
* addr_out, a mask (if any) in mask_out, and port(s) (if any)
* in port_min_out and port_max_out.
*
* The syntax is:
* Address OptMask OptPortRange
* Address ::= IPv4Address / "[" IPv6Address "]" / "*"
* OptMask ::= "/" Integer /
* OptPortRange ::= ":*" / ":" Integer / ":" Integer "-" Integer /
*
* - If mask, minport, or maxport are NULL, we do not want these
* options to be set; treat them as an error if present.
* - If the string has no mask, the mask is set to /32 (IPv4) or /128 (IPv6).
* - If the string has one port, it is placed in both min and max port
* variables.
* - If the string has no port(s), port_(min|max)_out are set to 1 and 65535.
*
* Return an address family on success, or -1 if an invalid address string is
* provided.
*/
int
tor_addr_parse_mask_ports(const char *s, tor_addr_t *addr_out,
maskbits_t *maskbits_out,
uint16_t *port_min_out, uint16_t *port_max_out)
{
char *base = NULL, *address, *mask = NULL, *port = NULL, *rbracket = NULL;
char *endptr;
int any_flag=0, v4map=0;
tor_assert(s);
tor_assert(addr_out);
/* IP, [], /mask, ports */
#define MAX_ADDRESS_LENGTH (TOR_ADDR_BUF_LEN+2+(1+INET_NTOA_BUF_LEN)+12+1)
if (strlen(s) > MAX_ADDRESS_LENGTH) {
log_warn(LD_GENERAL, "Impossibly long IP %s; rejecting", escaped(s));
goto err;
}
base = tor_strdup(s);
/* Break 'base' into separate strings. */
address = base;
if (*address == '[') { /* Probably IPv6 */
address++;
rbracket = strchr(address, ']');
if (!rbracket) {
log_warn(LD_GENERAL,
"No closing IPv6 bracket in address pattern; rejecting.");
goto err;
}
}
mask = strchr((rbracket?rbracket:address),'/');
port = strchr((mask?mask:(rbracket?rbracket:address)), ':');
if (port)
*port++ = '\0';
if (mask)
*mask++ = '\0';
if (rbracket)
*rbracket = '\0';
if (port && mask)
tor_assert(port > mask);
if (mask && rbracket)
tor_assert(mask > rbracket);
/* Now "address" is the a.b.c.d|'*'|abcd::1 part...
* "mask" is the Mask|Maskbits part...
* and "port" is the *|port|min-max part.
*/
/* Process the address portion */
memset(addr_out, 0, sizeof(tor_addr_t));
if (!strcmp(address, "*")) {
addr_out->family = AF_INET; /* AF_UNSPEC ???? XXXX_IP6 */
any_flag = 1;
} else if (tor_inet_pton(AF_INET6, address, &addr_out->addr.in6_addr) > 0) {
addr_out->family = AF_INET6;
} else if (tor_inet_pton(AF_INET, address, &addr_out->addr.in_addr) > 0) {
addr_out->family = AF_INET;
} else {
log_warn(LD_GENERAL, "Malformed IP %s in address pattern; rejecting.",
escaped(address));
goto err;
}
v4map = tor_addr_is_v4(addr_out);
/*
#ifdef ALWAYS_V6_MAP
if (v_family == AF_INET) {
v_family = AF_INET6;
IN_ADDR6(addr_out).s6_addr32[3] = IN6_ADDRESS(addr_out).s_addr;
memset(&IN6_ADDRESS(addr_out), 0, 10);
IN_ADDR6(addr_out).s6_addr16[5] = 0xffff;
}
#else
if (v_family == AF_INET6 && v4map) {
v_family = AF_INET;
IN4_ADDRESS((addr_out).s_addr = IN6_ADDRESS(addr_out).s6_addr32[3];
}
#endif
*/
/* Parse mask */
if (maskbits_out) {
int bits = 0;
struct in_addr v4mask;
if (mask) { /* the caller (tried to) specify a mask */
bits = (int) strtol(mask, &endptr, 10);
if (!*endptr) { /* strtol converted everything, so it was an integer */
if ((bits<0 || bits>128) ||
((IN_FAMILY(addr_out) == AF_INET) && bits > 32)) {
log_warn(LD_GENERAL,
"Bad number of mask bits (%d) on address range; rejecting.",
bits);
goto err;
}
} else { /* mask might still be an address-style mask */
if (tor_inet_pton(AF_INET, mask, &v4mask) > 0) {
bits = addr_mask_get_bits(ntohl(v4mask.s_addr));
if (bits < 0) {
log_warn(LD_GENERAL,
"IPv4-style mask %s is not a prefix address; rejecting.",
escaped(mask));
goto err;
}
} else { /* Not IPv4; we don't do address-style IPv6 masks. */
log_warn(LD_GENERAL,
"Malformed mask on address range %s; rejecting.",
escaped(s));
goto err;
}
}
if (IN_FAMILY(addr_out) == AF_INET6 && v4map) {
if (bits > 32 && bits < 96) { /* Crazy */
log_warn(LD_GENERAL,
"Bad mask bits %i for V4-mapped V6 address; rejecting.",
bits);
goto err;
}
/* XXXX_IP6 is this really what we want? */
bits = 96 + bits%32; /* map v4-mapped masks onto 96-128 bits */
}
} else { /* pick an appropriate mask, as none was given */
if (any_flag)
bits = 0; /* This is okay whether it's V6 or V4 (FIX V4-mapped V6!) */
else if (IN_FAMILY(addr_out) == AF_INET)
bits = 32;
else if (IN_FAMILY(addr_out) == AF_INET6)
bits = 128;
}
*maskbits_out = (maskbits_t) bits;
} else {
if (mask) {
log_warn(LD_GENERAL,
"Unexpected mask in addrss %s; rejecting", escaped(s));
goto err;
}
}
/* Parse port(s) */
if (port_min_out) {
uint16_t port2;
if (!port_max_out) /* caller specified one port; fake the second one */
port_max_out = &port2;
if (parse_port_range(port, port_min_out, port_max_out) < 0) {
goto err;
} else if ((*port_min_out != *port_max_out) && port_max_out == &port2) {
log_warn(LD_GENERAL,
"Wanted one port from address range, but there are two.");
port_max_out = NULL; /* caller specified one port, so set this back */
goto err;
}
} else {
if (port) {
log_warn(LD_GENERAL,
"Unexpected ports in addrss %s; rejecting", escaped(s));
goto err;
}
}
tor_free(base);
return IN_FAMILY(addr_out);
err:
tor_free(base);
return -1;
}
/** Determine whether an address is IPv4, either native or ipv4-mapped ipv6.
* Note that this is about representation only, as any decent stack will
* reject ipv4-mapped addresses received on the wire (and won't use them
* on the wire either).
*/
int
tor_addr_is_v4(const tor_addr_t *addr)
{
tor_assert(addr);
if (IN_FAMILY(addr) == AF_INET)
return 1;
if (IN_FAMILY(addr) == AF_INET6) { /* First two don't need to be ordered */
if ((IN6_ADDRESS32(addr)[0] == 0) &&
(IN6_ADDRESS32(addr)[1] == 0) &&
(ntohl(IN6_ADDRESS32(addr)[2]) == 0x0000ffffu))
return 1;
}
return 0; /* Not IPv4 - unknown family or a full-blood IPv6 address */
}
/** Determine whether an address addr is null, either all zeroes or
* belonging to family AF_UNSPEC.
*/
int
tor_addr_is_null(const tor_addr_t *addr)
{
tor_assert(addr);
switch (IN_FAMILY(addr)) {
case AF_INET6:
return (!IN6_ADDRESS32(addr)[0] &&
!IN6_ADDRESS32(addr)[1] &&
!IN6_ADDRESS32(addr)[2] &&
!IN6_ADDRESS32(addr)[3]);
case AF_INET:
return (!IN4_ADDRESS(addr)->s_addr);
default:
return 1;
}
//return 1;
}
/** Given an IPv4 in_addr struct *in (in network order, as usual),
* write it as a string into the buf_len-byte buffer in
* buf.
*/
int
tor_inet_ntoa(const struct in_addr *in, char *buf, size_t buf_len)
{
uint32_t a = ntohl(in->s_addr);
return tor_snprintf(buf, buf_len, "%d.%d.%d.%d",
(int)(uint8_t)((a>>24)&0xff),
(int)(uint8_t)((a>>16)&0xff),
(int)(uint8_t)((a>>8 )&0xff),
(int)(uint8_t)((a )&0xff));
}
/** Take a 32-bit host-order ipv4 address v4addr and store it in the
* tor_addr *dest.
*
* XXXX_IP6 Temporary, for use while 32-bit int addresses are still being
* passed around.
*/
void
tor_addr_from_ipv4(tor_addr_t *dest, uint32_t v4addr)
{
tor_assert(dest);
memset(dest, 0, sizeof(dest));
dest->family = AF_INET;
dest->addr.in_addr.s_addr = htonl(v4addr);
}
/** Copy a tor_addr_t from src to dest.
*/
void
tor_addr_copy(tor_addr_t *dest, const tor_addr_t *src)
{
tor_assert(src && dest);
memcpy(dest, src, sizeof(tor_addr_t));
}
/** Given two addresses addr1 and addr2, return 0 if the two
* addresses are equivalent under the mask mbits, less than 0 if addr1
* preceeds addr2, and greater than 0 otherwise.
*
* Different address families (IPv4 vs IPv6) are always considered unequal.
*/
int
tor_addr_compare(const tor_addr_t *addr1, const tor_addr_t *addr2)
{
return tor_addr_compare_masked(addr1, addr2, 128);
}
/** As tor_addr_compare(), but only looks at the first mask bits of
* the address.
*
* Reduce over-specific masks (>128 for ipv6, >32 for ipv4) to 128 or 32.
*/
int
tor_addr_compare_masked(const tor_addr_t *addr1, const tor_addr_t *addr2,
maskbits_t mbits)
{
uint32_t ip4a=0, ip4b=0;
sa_family_t v_family[2];
int idx;
uint32_t masked_a, masked_b;
tor_assert(addr1 && addr2);
/* XXXX_IP6 this code doesn't handle mask bits right it's using v4-mapped v6
* addresses. If I ask whether ::ffff:1.2.3.4 and ::ffff:1.2.7.8 are the
* same in the first 16 bits, it will say "yes." That's not so intuitive.
*/
v_family[0] = IN_FAMILY(addr1);
v_family[1] = IN_FAMILY(addr2);
if (v_family[0] == AF_INET) { /* If this is native IPv4, note the address */
ip4a = IPV4IPh(addr1); /* Later we risk overwriting a v4-mapped address */
} else if ((v_family[0] == AF_INET6) && tor_addr_is_v4(addr1)) {
v_family[0] = AF_INET;
ip4a = IPV4MAPh(addr1);
}
if (v_family[1] == AF_INET) { /* If this is native IPv4, note the address */
ip4b = IPV4IPh(addr2); /* Later we risk overwriting a v4-mapped address */
} else if ((v_family[1] == AF_INET6) && tor_addr_is_v4(addr2)) {
v_family[1] = AF_INET;
ip4b = IPV4MAPh(addr2);
}
if (v_family[0] > v_family[1]) /* Comparison of virtual families */
return 1;
else if (v_family[0] < v_family[1])
return -1;
if (mbits == 0) /* Under a complete wildcard mask, consider them equal */
return 0;
if (v_family[0] == AF_INET) { /* Real or mapped IPv4 */
if (mbits >= 32) {
masked_a = ip4a;
masked_b = ip4b;
} else if (mbits == 0) {
return 0;
} else {
masked_a = ip4a >> (32-mbits);
masked_b = ip4b >> (32-mbits);
}
if (masked_a < masked_b)
return -1;
else if (masked_a > masked_b)
return 1;
return 0;
} else if (v_family[0] == AF_INET6) { /* Real IPv6 */
const uint32_t *a1 = IN6_ADDRESS32(addr1);
const uint32_t *a2 = IN6_ADDRESS32(addr2);
for (idx = 0; idx < 4; ++idx) {
uint32_t masked_a = ntohl(a1[idx]);
uint32_t masked_b = ntohl(a2[idx]);
if (!mbits) {
return 0; /* Mask covers both addresses from here on */
} else if (mbits < 32) {
masked_a >>= (32-mbits);
masked_b >>= (32-mbits);
}
if (masked_a > masked_b)
return 1;
else if (masked_a < masked_b)
return -1;
if (mbits < 32)
return 0;
mbits -= 32;
}
return 0;
}
tor_assert(0); /* Unknown address family */
return -1; /* unknown address family, return unequal? */
}
/** Given a host-order addr, call tor_inet_ntop() on it
* and return a strdup of the resulting address.
*/
char *
tor_dup_addr(uint32_t addr)
{
char buf[TOR_ADDR_BUF_LEN];
struct in_addr in;
in.s_addr = htonl(addr);
tor_inet_ntop(AF_INET, &in, buf, sizeof(buf));
return tor_strdup(buf);
}
/** Convert the tor_addr_t *addr into string form and store it in
* dest, which can hold at least len bytes. Returns dest
* on success, NULL on failure.
*/
const char *
tor_addr_to_str(char *dest, const tor_addr_t *addr, int len)
{
tor_assert(addr && dest);
if (IN_FAMILY(addr) == AF_INET) {
return tor_inet_ntop(AF_INET, IN4_ADDRESS(addr), dest, len);
} else if (IN_FAMILY(addr) == AF_INET6) {
return tor_inet_ntop(AF_INET6, IN6_ADDRESS(addr), dest, len);
} else {
return NULL;
}
}
/** Convert the string in src to a tor_addr_t addr.
*
* Return an address family on success, or -1 if an invalid address string is
* provided. */
int
tor_addr_from_str(tor_addr_t *addr, const char *src)
{
tor_assert(addr && src);
return tor_addr_parse_mask_ports(src, addr, NULL, NULL, NULL);
}
/** Set *addr to the IP address (if any) of whatever interface
* connects to the internet. This address should only be used in checking
* whether our address has changed. Return 0 on success, -1 on failure.
*/
int
get_interface_address6(int severity, sa_family_t family, tor_addr_t *addr)
{
int sock=-1, r=-1;
struct sockaddr_storage my_addr, target_addr;
socklen_t my_addr_len;
tor_assert(addr);
memset(addr, 0, sizeof(tor_addr_t));
memset(&target_addr, 0, sizeof(target_addr));
my_addr_len = (socklen_t)sizeof(my_addr);
((struct sockaddr_in*)&target_addr)->sin_port = 9; /* DISGARD port */
/* Don't worry: no packets are sent. We just need to use a real address
* on the actual internet. */
if (family == AF_INET6) {
struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)&target_addr;
sock = tor_open_socket(PF_INET6,SOCK_DGRAM,IPPROTO_UDP);
my_addr_len = (socklen_t)sizeof(struct sockaddr_in6);
sin6->sin6_family = AF_INET6;
S6_ADDR16(sin6->sin6_addr)[0] = htons(0x2002); /* 2002:: */
} else if (family == AF_INET) {
struct sockaddr_in *sin = (struct sockaddr_in*)&target_addr;
sock = tor_open_socket(PF_INET,SOCK_DGRAM,IPPROTO_UDP);
my_addr_len = (socklen_t)sizeof(struct sockaddr_in);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = htonl(0x12000001); /* 18.0.0.1 */
} else {
return -1;
}
if (sock < 0) {
int e = tor_socket_errno(-1);
log_fn(severity, LD_NET, "unable to create socket: %s",
tor_socket_strerror(e));
goto err;
}
if (connect(sock,(struct sockaddr *)&target_addr,
(socklen_t)sizeof(target_addr))<0) {
int e = tor_socket_errno(sock);
log_fn(severity, LD_NET, "connect() failed: %s", tor_socket_strerror(e));
goto err;
}
if (getsockname(sock,(struct sockaddr*)&my_addr, &my_addr_len)) {
int e = tor_socket_errno(sock);
log_fn(severity, LD_NET, "getsockname() to determine interface failed: %s",
tor_socket_strerror(e));
goto err;
}
memcpy(addr, &my_addr, sizeof(tor_addr_t));
r=0;
err:
if (sock >= 0)
tor_close_socket(sock);
return r;
}
/**
* Set *addr to the host-order IPv4 address (if any) of whatever
* interface connects to the internet. This address should only be used in
* checking whether our address has changed. Return 0 on success, -1 on
* failure.
*/
int
get_interface_address(int severity, uint32_t *addr)
{
tor_addr_t local_addr;
int r;
r = get_interface_address6(severity, AF_INET, &local_addr);
if (r>=0)
*addr = IPV4IPh(&local_addr);
return r;
}
/* =====
* Process helpers
* ===== */
#ifndef MS_WINDOWS
/* Based on code contributed by christian grothoff */
/** True iff we've called start_daemon(). */
static int start_daemon_called = 0;
/** True iff we've called finish_daemon(). */
static int finish_daemon_called = 0;
/** Socketpair used to communicate between parent and child process while
* daemonizing. */
static int daemon_filedes[2];
/** Start putting the process into daemon mode: fork and drop all resources
* except standard fds. The parent process never returns, but stays around
* until finish_daemon is called. (Note: it's safe to call this more
* than once: calls after the first are ignored.)
*/
void
start_daemon(void)
{
pid_t pid;
if (start_daemon_called)
return;
start_daemon_called = 1;
if (pipe(daemon_filedes)) {
log_err(LD_GENERAL,"pipe failed; exiting. Error was %s", strerror(errno));
exit(1);
}
pid = fork();
if (pid < 0) {
log_err(LD_GENERAL,"fork failed. Exiting.");
exit(1);
}
if (pid) { /* Parent */
int ok;
char c;
close(daemon_filedes[1]); /* we only read */
ok = -1;
while (0 < read(daemon_filedes[0], &c, sizeof(char))) {
if (c == '.')
ok = 1;
}
fflush(stdout);
if (ok == 1)
exit(0);
else
exit(1); /* child reported error */
} else { /* Child */
close(daemon_filedes[0]); /* we only write */
pid = setsid(); /* Detach from controlling terminal */
/*
* Fork one more time, so the parent (the session group leader) can exit.
* This means that we, as a non-session group leader, can never regain a
* controlling terminal. This part is recommended by Stevens's
* _Advanced Programming in the Unix Environment_.
*/
if (fork() != 0) {
exit(0);
}
return;
}
}
/** Finish putting the process into daemon mode: drop standard fds, and tell
* the parent process to exit. (Note: it's safe to call this more than once:
* calls after the first are ignored. Calls start_daemon first if it hasn't
* been called already.)
*/
void
finish_daemon(const char *desired_cwd)
{
int nullfd;
char c = '.';
if (finish_daemon_called)
return;
if (!start_daemon_called)
start_daemon();
finish_daemon_called = 1;
if (!desired_cwd)
desired_cwd = "/";
/* Don't hold the wrong FS mounted */
if (chdir(desired_cwd) < 0) {
log_err(LD_GENERAL,"chdir to \"%s\" failed. Exiting.",desired_cwd);
exit(1);
}
nullfd = open("/dev/null",
O_CREAT | O_RDWR | O_APPEND);
if (nullfd < 0) {
log_err(LD_GENERAL,"/dev/null can't be opened. Exiting.");
exit(1);
}
/* close fds linking to invoking terminal, but
* close usual incoming fds, but redirect them somewhere
* useful so the fds don't get reallocated elsewhere.
*/
if (dup2(nullfd,0) < 0 ||
dup2(nullfd,1) < 0 ||
dup2(nullfd,2) < 0) {
log_err(LD_GENERAL,"dup2 failed. Exiting.");
exit(1);
}
if (nullfd > 2)
close(nullfd);
/* signal success */
if (write(daemon_filedes[1], &c, sizeof(char)) != sizeof(char)) {
log_err(LD_GENERAL,"write failed. Exiting.");
}
close(daemon_filedes[1]);
}
#else
/* defined(MS_WINDOWS) */
void
start_daemon(void)
{
}
void
finish_daemon(const char *cp)
{
(void)cp;
}
#endif
/** Write the current process ID, followed by NL, into filename.
*/
void
write_pidfile(char *filename)
{
FILE *pidfile;
if ((pidfile = fopen(filename, "w")) == NULL) {
log_warn(LD_FS, "Unable to open \"%s\" for writing: %s", filename,
strerror(errno));
} else {
#ifdef MS_WINDOWS
fprintf(pidfile, "%d\n", (int)_getpid());
#else
fprintf(pidfile, "%d\n", (int)getpid());
#endif
fclose(pidfile);
}
}