/* Copyright (c) 2003, Roger Dingledine. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. * Copyright (c) 2007-2015, The Tor Project, Inc. */ /* See LICENSE for licensing information */ /** * \file tortls.c * \brief Wrapper functions to present a consistent interface to * TLS, SSL, and X.509 functions from OpenSSL. **/ /* (Unlike other tor functions, these * are prefixed with tor_ in order to avoid conflicting with OpenSSL * functions and variables.) */ #include "orconfig.h" #define TORTLS_PRIVATE #include #ifdef _WIN32 /*wrkard for dtls1.h >= 0.9.8m of "#include "*/ #include #include #endif #ifdef __GNUC__ #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) #endif #if __GNUC__ && GCC_VERSION >= 402 #if GCC_VERSION >= 406 #pragma GCC diagnostic push #endif /* Some versions of OpenSSL declare SSL_get_selected_srtp_profile twice in * srtp.h. Suppress the GCC warning so we can build with -Wredundant-decl. */ #pragma GCC diagnostic ignored "-Wredundant-decls" #endif #include #include "crypto.h" #ifdef OPENSSL_NO_EC #error "We require OpenSSL with ECC support" #endif #include #include #include #include #include #include #include #include #if __GNUC__ && GCC_VERSION >= 402 #if GCC_VERSION >= 406 #pragma GCC diagnostic pop #else #pragma GCC diagnostic warning "-Wredundant-decls" #endif #endif #ifdef USE_BUFFEREVENTS #include #include #include #include "compat_libevent.h" #endif #define TORTLS_PRIVATE #include "tortls.h" #include "util.h" #include "torlog.h" #include "container.h" #include #define X509_get_notBefore_const(cert) \ ((const ASN1_TIME*) X509_get_notBefore((X509 *)cert)) #define X509_get_notAfter_const(cert) \ ((const ASN1_TIME*) X509_get_notAfter((X509 *)cert)) /* Copied from or.h */ #define LEGAL_NICKNAME_CHARACTERS \ "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789" /** How long do identity certificates live? (sec) */ #define IDENTITY_CERT_LIFETIME (365*24*60*60) #define ADDR(tls) (((tls) && (tls)->address) ? tls->address : "peer") #if OPENSSL_VERSION_NUMBER < OPENSSL_V(1,0,0,'f') /* This is a version of OpenSSL before 1.0.0f. It does not have * the CVE-2011-4576 fix, and as such it can't use RELEASE_BUFFERS and * SSL3 safely at the same time. */ #define DISABLE_SSL3_HANDSHAKE #endif /* We redefine these so that we can run correctly even if the vendor gives us * a version of OpenSSL that does not match its header files. (Apple: I am * looking at you.) */ #ifndef SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION #define SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION 0x00040000L #endif #ifndef SSL3_FLAGS_ALLOW_UNSAFE_LEGACY_RENEGOTIATION #define SSL3_FLAGS_ALLOW_UNSAFE_LEGACY_RENEGOTIATION 0x0010 #endif /** Return values for tor_tls_classify_client_ciphers. * * @{ */ /** An error occurred when examining the client ciphers */ #define CIPHERS_ERR -1 /** The client cipher list indicates that a v1 handshake was in use. */ #define CIPHERS_V1 1 /** The client cipher list indicates that the client is using the v2 or the * v3 handshake, but that it is (probably!) lying about what ciphers it * supports */ #define CIPHERS_V2 2 /** The client cipher list indicates that the client is using the v2 or the * v3 handshake, and that it is telling the truth about what ciphers it * supports */ #define CIPHERS_UNRESTRICTED 3 /** @} */ /** The ex_data index in which we store a pointer to an SSL object's * corresponding tor_tls_t object. */ STATIC int tor_tls_object_ex_data_index = -1; /** Helper: Allocate tor_tls_object_ex_data_index. */ STATIC void tor_tls_allocate_tor_tls_object_ex_data_index(void) { if (tor_tls_object_ex_data_index == -1) { tor_tls_object_ex_data_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, NULL); tor_assert(tor_tls_object_ex_data_index != -1); } } /** Helper: given a SSL* pointer, return the tor_tls_t object using that * pointer. */ STATIC inline tor_tls_t * tor_tls_get_by_ssl(const SSL *ssl) { tor_tls_t *result = SSL_get_ex_data(ssl, tor_tls_object_ex_data_index); if (result) tor_assert(result->magic == TOR_TLS_MAGIC); return result; } static void tor_tls_context_decref(tor_tls_context_t *ctx); static void tor_tls_context_incref(tor_tls_context_t *ctx); static int check_cert_lifetime_internal(int severity, const X509 *cert, int past_tolerance, int future_tolerance); /** Global TLS contexts. We keep them here because nobody else needs * to touch them. * * @{ */ STATIC tor_tls_context_t *server_tls_context = NULL; STATIC tor_tls_context_t *client_tls_context = NULL; /**@}*/ /** True iff tor_tls_init() has been called. */ static int tls_library_is_initialized = 0; /* Module-internal error codes. */ #define TOR_TLS_SYSCALL_ (MIN_TOR_TLS_ERROR_VAL_ - 2) #define TOR_TLS_ZERORETURN_ (MIN_TOR_TLS_ERROR_VAL_ - 1) /** Write a description of the current state of tls into the * sz-byte buffer at buf. */ void tor_tls_get_state_description(tor_tls_t *tls, char *buf, size_t sz) { const char *ssl_state; const char *tortls_state; if (PREDICT_UNLIKELY(!tls || !tls->ssl)) { strlcpy(buf, "(No SSL object)", sz); return; } ssl_state = SSL_state_string_long(tls->ssl); switch (tls->state) { #define CASE(st) case TOR_TLS_ST_##st: tortls_state = " in "#st ; break CASE(HANDSHAKE); CASE(OPEN); CASE(GOTCLOSE); CASE(SENTCLOSE); CASE(CLOSED); CASE(RENEGOTIATE); #undef CASE case TOR_TLS_ST_BUFFEREVENT: tortls_state = ""; break; default: tortls_state = " in unknown TLS state"; break; } tor_snprintf(buf, sz, "%s%s", ssl_state, tortls_state); } /** Log a single error err as returned by ERR_get_error(), which was * received while performing an operation doing on tls. Log * the message at severity, in log domain domain. */ void tor_tls_log_one_error(tor_tls_t *tls, unsigned long err, int severity, int domain, const char *doing) { const char *state = NULL, *addr; const char *msg, *lib, *func; state = (tls && tls->ssl)?SSL_state_string_long(tls->ssl):"---"; addr = tls ? tls->address : NULL; /* Some errors are known-benign, meaning they are the fault of the other * side of the connection. The caller doesn't know this, so override the * priority for those cases. */ switch (ERR_GET_REASON(err)) { case SSL_R_HTTP_REQUEST: case SSL_R_HTTPS_PROXY_REQUEST: case SSL_R_RECORD_LENGTH_MISMATCH: case SSL_R_RECORD_TOO_LARGE: case SSL_R_UNKNOWN_PROTOCOL: case SSL_R_UNSUPPORTED_PROTOCOL: severity = LOG_INFO; break; default: break; } msg = (const char*)ERR_reason_error_string(err); lib = (const char*)ERR_lib_error_string(err); func = (const char*)ERR_func_error_string(err); if (!msg) msg = "(null)"; if (!lib) lib = "(null)"; if (!func) func = "(null)"; if (doing) { tor_log(severity, domain, "TLS error while %s%s%s: %s (in %s:%s:%s)", doing, addr?" with ":"", addr?addr:"", msg, lib, func, state); } else { tor_log(severity, domain, "TLS error%s%s: %s (in %s:%s:%s)", addr?" with ":"", addr?addr:"", msg, lib, func, state); } } /** Log all pending tls errors at level severity in log domain * domain. Use doing to describe our current activities. */ STATIC void tls_log_errors(tor_tls_t *tls, int severity, int domain, const char *doing) { unsigned long err; while ((err = ERR_get_error()) != 0) { tor_tls_log_one_error(tls, err, severity, domain, doing); } } /** Convert an errno (or a WSAerrno on windows) into a TOR_TLS_* error * code. */ STATIC int tor_errno_to_tls_error(int e) { switch (e) { case SOCK_ERRNO(ECONNRESET): // most common return TOR_TLS_ERROR_CONNRESET; case SOCK_ERRNO(ETIMEDOUT): return TOR_TLS_ERROR_TIMEOUT; case SOCK_ERRNO(EHOSTUNREACH): case SOCK_ERRNO(ENETUNREACH): return TOR_TLS_ERROR_NO_ROUTE; case SOCK_ERRNO(ECONNREFUSED): return TOR_TLS_ERROR_CONNREFUSED; // least common default: return TOR_TLS_ERROR_MISC; } } /** Given a TOR_TLS_* error code, return a string equivalent. */ const char * tor_tls_err_to_string(int err) { if (err >= 0) return "[Not an error.]"; switch (err) { case TOR_TLS_ERROR_MISC: return "misc error"; case TOR_TLS_ERROR_IO: return "unexpected close"; case TOR_TLS_ERROR_CONNREFUSED: return "connection refused"; case TOR_TLS_ERROR_CONNRESET: return "connection reset"; case TOR_TLS_ERROR_NO_ROUTE: return "host unreachable"; case TOR_TLS_ERROR_TIMEOUT: return "connection timed out"; case TOR_TLS_CLOSE: return "closed"; case TOR_TLS_WANTREAD: return "want to read"; case TOR_TLS_WANTWRITE: return "want to write"; default: return "(unknown error code)"; } } #define CATCH_SYSCALL 1 #define CATCH_ZERO 2 /** Given a TLS object and the result of an SSL_* call, use * SSL_get_error to determine whether an error has occurred, and if so * which one. Return one of TOR_TLS_{DONE|WANTREAD|WANTWRITE|ERROR}. * If extra&CATCH_SYSCALL is true, return TOR_TLS_SYSCALL_ instead of * reporting syscall errors. If extra&CATCH_ZERO is true, return * TOR_TLS_ZERORETURN_ instead of reporting zero-return errors. * * If an error has occurred, log it at level severity and describe the * current action as doing. */ STATIC int tor_tls_get_error(tor_tls_t *tls, int r, int extra, const char *doing, int severity, int domain) { int err = SSL_get_error(tls->ssl, r); int tor_error = TOR_TLS_ERROR_MISC; switch (err) { case SSL_ERROR_NONE: return TOR_TLS_DONE; case SSL_ERROR_WANT_READ: return TOR_TLS_WANTREAD; case SSL_ERROR_WANT_WRITE: return TOR_TLS_WANTWRITE; case SSL_ERROR_SYSCALL: if (extra&CATCH_SYSCALL) return TOR_TLS_SYSCALL_; if (r == 0) { tor_log(severity, LD_NET, "TLS error: unexpected close while %s (%s)", doing, SSL_state_string_long(tls->ssl)); tor_error = TOR_TLS_ERROR_IO; } else { int e = tor_socket_errno(tls->socket); tor_log(severity, LD_NET, "TLS error: (errno=%d: %s; state=%s)", doing, e, tor_socket_strerror(e), SSL_state_string_long(tls->ssl)); tor_error = tor_errno_to_tls_error(e); } tls_log_errors(tls, severity, domain, doing); return tor_error; case SSL_ERROR_ZERO_RETURN: if (extra&CATCH_ZERO) return TOR_TLS_ZERORETURN_; tor_log(severity, LD_NET, "TLS connection closed while %s in state %s", doing, SSL_state_string_long(tls->ssl)); tls_log_errors(tls, severity, domain, doing); return TOR_TLS_CLOSE; default: tls_log_errors(tls, severity, domain, doing); return TOR_TLS_ERROR_MISC; } } /** Initialize OpenSSL, unless it has already been initialized. */ static void tor_tls_init(void) { check_no_tls_errors(); if (!tls_library_is_initialized) { SSL_library_init(); SSL_load_error_strings(); #if (SIZEOF_VOID_P >= 8 && \ OPENSSL_VERSION_NUMBER >= OPENSSL_V_SERIES(1,0,1)) long version = OpenSSL_version_num(); /* LCOV_EXCL_START : we can't test these lines on the same machine */ if (version >= OPENSSL_V_SERIES(1,0,1)) { /* Warn if we could *almost* be running with much faster ECDH. If we're built for a 64-bit target, using OpenSSL 1.0.1, but we don't have one of the built-in __uint128-based speedups, we are just one build operation away from an accelerated handshake. (We could be looking at OPENSSL_NO_EC_NISTP_64_GCC_128 instead of doing this test, but that gives compile-time options, not runtime behavior.) */ EC_KEY *key = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1); const EC_GROUP *g = key ? EC_KEY_get0_group(key) : NULL; const EC_METHOD *m = g ? EC_GROUP_method_of(g) : NULL; const int warn = (m == EC_GFp_simple_method() || m == EC_GFp_mont_method() || m == EC_GFp_nist_method()); EC_KEY_free(key); if (warn) log_notice(LD_GENERAL, "We were built to run on a 64-bit CPU, with " "OpenSSL 1.0.1 or later, but with a version of OpenSSL " "that apparently lacks accelerated support for the NIST " "P-224 and P-256 groups. Building openssl with such " "support (using the enable-ec_nistp_64_gcc_128 option " "when configuring it) would make ECDH much faster."); } /* LCOV_EXCL_STOP */ #endif tor_tls_allocate_tor_tls_object_ex_data_index(); tls_library_is_initialized = 1; } } /** Free all global TLS structures. */ void tor_tls_free_all(void) { check_no_tls_errors(); if (server_tls_context) { tor_tls_context_t *ctx = server_tls_context; server_tls_context = NULL; tor_tls_context_decref(ctx); } if (client_tls_context) { tor_tls_context_t *ctx = client_tls_context; client_tls_context = NULL; tor_tls_context_decref(ctx); } } /** We need to give OpenSSL a callback to verify certificates. This is * it: We always accept peer certs and complete the handshake. We * don't validate them until later. */ STATIC int always_accept_verify_cb(int preverify_ok, X509_STORE_CTX *x509_ctx) { (void) preverify_ok; (void) x509_ctx; return 1; } /** Return a newly allocated X509 name with commonName cname. */ static X509_NAME * tor_x509_name_new(const char *cname) { int nid; X509_NAME *name; /* LCOV_EXCL_BR_START : these branches will only fail on OOM errors */ if (!(name = X509_NAME_new())) return NULL; if ((nid = OBJ_txt2nid("commonName")) == NID_undef) goto error; if (!(X509_NAME_add_entry_by_NID(name, nid, MBSTRING_ASC, (unsigned char*)cname, -1, -1, 0))) goto error; /* LCOV_EXCL_BR_STOP */ return name; error: /* LCOV_EXCL_START : these lines will only execute on out of memory errors*/ X509_NAME_free(name); return NULL; /* LCOV_EXCL_STOP */ } /** Generate and sign an X509 certificate with the public key rsa, * signed by the private key rsa_sign. The commonName of the * certificate will be cname; the commonName of the issuer will be * cname_sign. The cert will be valid for cert_lifetime * seconds, starting from some time in the past. * * Return a certificate on success, NULL on failure. */ MOCK_IMPL(STATIC X509 *, tor_tls_create_certificate,(crypto_pk_t *rsa, crypto_pk_t *rsa_sign, const char *cname, const char *cname_sign, unsigned int cert_lifetime)) { /* OpenSSL generates self-signed certificates with random 64-bit serial * numbers, so let's do that too. */ #define SERIAL_NUMBER_SIZE 8 time_t start_time, end_time; BIGNUM *serial_number = NULL; unsigned char serial_tmp[SERIAL_NUMBER_SIZE]; EVP_PKEY *sign_pkey = NULL, *pkey=NULL; X509 *x509 = NULL; X509_NAME *name = NULL, *name_issuer=NULL; tor_tls_init(); /* Make sure we're part-way through the certificate lifetime, rather * than having it start right now. Don't choose quite uniformly, since * then we might pick a time where we're about to expire. Lastly, be * sure to start on a day boundary. */ time_t now = time(NULL); start_time = crypto_rand_time_range(now - cert_lifetime, now) + 2*24*3600; start_time -= start_time % (24*3600); tor_assert(rsa); tor_assert(cname); tor_assert(rsa_sign); tor_assert(cname_sign); if (!(sign_pkey = crypto_pk_get_evp_pkey_(rsa_sign,1))) goto error; if (!(pkey = crypto_pk_get_evp_pkey_(rsa,0))) goto error; if (!(x509 = X509_new())) goto error; if (!(X509_set_version(x509, 2))) goto error; { /* our serial number is 8 random bytes. */ crypto_rand((char *)serial_tmp, sizeof(serial_tmp)); if (!(serial_number = BN_bin2bn(serial_tmp, sizeof(serial_tmp), NULL))) goto error; if (!(BN_to_ASN1_INTEGER(serial_number, X509_get_serialNumber(x509)))) goto error; } if (!(name = tor_x509_name_new(cname))) goto error; if (!(X509_set_subject_name(x509, name))) goto error; if (!(name_issuer = tor_x509_name_new(cname_sign))) goto error; if (!(X509_set_issuer_name(x509, name_issuer))) goto error; if (!X509_time_adj(X509_get_notBefore(x509),0,&start_time)) goto error; end_time = start_time + cert_lifetime; if (!X509_time_adj(X509_get_notAfter(x509),0,&end_time)) goto error; if (!X509_set_pubkey(x509, pkey)) goto error; if (!X509_sign(x509, sign_pkey, EVP_sha1())) goto error; goto done; error: if (x509) { X509_free(x509); x509 = NULL; } done: tls_log_errors(NULL, LOG_WARN, LD_NET, "generating certificate"); if (sign_pkey) EVP_PKEY_free(sign_pkey); if (pkey) EVP_PKEY_free(pkey); if (serial_number) BN_clear_free(serial_number); if (name) X509_NAME_free(name); if (name_issuer) X509_NAME_free(name_issuer); return x509; #undef SERIAL_NUMBER_SIZE } /** List of ciphers that servers should select from when the client might be * claiming extra unsupported ciphers in order to avoid fingerprinting. */ #define SERVER_CIPHER_LIST \ (TLS1_TXT_DHE_RSA_WITH_AES_256_SHA ":" \ TLS1_TXT_DHE_RSA_WITH_AES_128_SHA ":" \ SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA) /** List of ciphers that servers should select from when we actually have * our choice of what cipher to use. */ const char UNRESTRICTED_SERVER_CIPHER_LIST[] = /* This list is autogenerated with the gen_server_ciphers.py script; * don't hand-edit it. */ #ifdef TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384 TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384 ":" #endif #ifdef TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256 TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256 ":" #endif #ifdef TLS1_TXT_ECDHE_RSA_WITH_AES_256_SHA384 TLS1_TXT_ECDHE_RSA_WITH_AES_256_SHA384 ":" #endif #ifdef TLS1_TXT_ECDHE_RSA_WITH_AES_128_SHA256 TLS1_TXT_ECDHE_RSA_WITH_AES_128_SHA256 ":" #endif #ifdef TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA ":" #endif #ifdef TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA ":" #endif #ifdef TLS1_TXT_DHE_RSA_WITH_AES_256_GCM_SHA384 TLS1_TXT_DHE_RSA_WITH_AES_256_GCM_SHA384 ":" #endif #ifdef TLS1_TXT_DHE_RSA_WITH_AES_128_GCM_SHA256 TLS1_TXT_DHE_RSA_WITH_AES_128_GCM_SHA256 ":" #endif #ifdef TLS1_TXT_DHE_RSA_WITH_AES_256_SHA256 TLS1_TXT_DHE_RSA_WITH_AES_256_SHA256 ":" #endif #ifdef TLS1_TXT_DHE_RSA_WITH_AES_128_SHA256 TLS1_TXT_DHE_RSA_WITH_AES_128_SHA256 ":" #endif /* Required */ TLS1_TXT_DHE_RSA_WITH_AES_256_SHA ":" /* Required */ TLS1_TXT_DHE_RSA_WITH_AES_128_SHA ":" #ifdef TLS1_TXT_ECDHE_RSA_WITH_DES_192_CBC3_SHA TLS1_TXT_ECDHE_RSA_WITH_DES_192_CBC3_SHA ":" #endif /* Required */ SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA; /* Note: to set up your own private testing network with link crypto * disabled, set your Tors' cipher list to * (SSL3_TXT_RSA_NULL_SHA). If you do this, you won't be able to communicate * with any of the "real" Tors, though. */ #define CIPHER(id, name) name ":" #define XCIPHER(id, name) /** List of ciphers that clients should advertise, omitting items that * our OpenSSL doesn't know about. */ static const char CLIENT_CIPHER_LIST[] = #include "ciphers.inc" /* Tell it not to use SSLv2 ciphers, so that it can select an SSLv3 version * of any cipher we say. */ "!SSLv2" ; #undef CIPHER #undef XCIPHER /** Free all storage held in cert */ void tor_x509_cert_free(tor_x509_cert_t *cert) { if (! cert) return; if (cert->cert) X509_free(cert->cert); tor_free(cert->encoded); memwipe(cert, 0x03, sizeof(*cert)); /* LCOV_EXCL_BR_START since cert will never be NULL here */ tor_free(cert); /* LCOV_EXCL_BR_STOP */ } /** * Allocate a new tor_x509_cert_t to hold the certificate "x509_cert". * * Steals a reference to x509_cert. */ MOCK_IMPL(STATIC tor_x509_cert_t *, tor_x509_cert_new,(X509 *x509_cert)) { tor_x509_cert_t *cert; EVP_PKEY *pkey; RSA *rsa; int length; unsigned char *buf = NULL; if (!x509_cert) return NULL; length = i2d_X509(x509_cert, &buf); cert = tor_malloc_zero(sizeof(tor_x509_cert_t)); if (length <= 0 || buf == NULL) { /* LCOV_EXCL_START for the same reason as the exclusion above */ tor_free(cert); log_err(LD_CRYPTO, "Couldn't get length of encoded x509 certificate"); X509_free(x509_cert); return NULL; /* LCOV_EXCL_STOP */ } cert->encoded_len = (size_t) length; cert->encoded = tor_malloc(length); memcpy(cert->encoded, buf, length); OPENSSL_free(buf); cert->cert = x509_cert; crypto_digest_all(&cert->cert_digests, (char*)cert->encoded, cert->encoded_len); if ((pkey = X509_get_pubkey(x509_cert)) && (rsa = EVP_PKEY_get1_RSA(pkey))) { crypto_pk_t *pk = crypto_new_pk_from_rsa_(rsa); crypto_pk_get_all_digests(pk, &cert->pkey_digests); cert->pkey_digests_set = 1; crypto_pk_free(pk); EVP_PKEY_free(pkey); } return cert; } /** Read a DER-encoded X509 cert, of length exactly certificate_len, * from a certificate. Return a newly allocated tor_x509_cert_t on * success and NULL on failure. */ tor_x509_cert_t * tor_x509_cert_decode(const uint8_t *certificate, size_t certificate_len) { X509 *x509; const unsigned char *cp = (const unsigned char *)certificate; tor_x509_cert_t *newcert; tor_assert(certificate); check_no_tls_errors(); if (certificate_len > INT_MAX) goto err; x509 = d2i_X509(NULL, &cp, (int)certificate_len); if (!x509) goto err; /* Couldn't decode */ if (cp - certificate != (int)certificate_len) { X509_free(x509); goto err; /* Didn't use all the bytes */ } newcert = tor_x509_cert_new(x509); if (!newcert) { goto err; } if (newcert->encoded_len != certificate_len || fast_memneq(newcert->encoded, certificate, certificate_len)) { /* Cert wasn't in DER */ tor_x509_cert_free(newcert); goto err; } return newcert; err: tls_log_errors(NULL, LOG_INFO, LD_CRYPTO, "decoding a certificate"); return NULL; } /** Set *encoded_out and *size_out to cert's encoded DER * representation and length, respectively. */ void tor_x509_cert_get_der(const tor_x509_cert_t *cert, const uint8_t **encoded_out, size_t *size_out) { tor_assert(cert); tor_assert(encoded_out); tor_assert(size_out); *encoded_out = cert->encoded; *size_out = cert->encoded_len; } /** Return a set of digests for the public key in cert, or NULL if this * cert's public key is not one we know how to take the digest of. */ const digests_t * tor_x509_cert_get_id_digests(const tor_x509_cert_t *cert) { if (cert->pkey_digests_set) return &cert->pkey_digests; else return NULL; } /** Return a set of digests for the public key in cert. */ const digests_t * tor_x509_cert_get_cert_digests(const tor_x509_cert_t *cert) { return &cert->cert_digests; } /** Remove a reference to ctx, and free it if it has no more * references. */ static void tor_tls_context_decref(tor_tls_context_t *ctx) { tor_assert(ctx); if (--ctx->refcnt == 0) { SSL_CTX_free(ctx->ctx); tor_x509_cert_free(ctx->my_link_cert); tor_x509_cert_free(ctx->my_id_cert); tor_x509_cert_free(ctx->my_auth_cert); crypto_pk_free(ctx->link_key); crypto_pk_free(ctx->auth_key); /* LCOV_EXCL_BR_START since ctx will never be NULL here */ tor_free(ctx); /* LCOV_EXCL_BR_STOP */ } } /** Set *link_cert_out and *id_cert_out to the link certificate * and ID certificate that we're currently using for our V3 in-protocol * handshake's certificate chain. If server is true, provide the certs * that we use in server mode; otherwise, provide the certs that we use in * client mode. */ int tor_tls_get_my_certs(int server, const tor_x509_cert_t **link_cert_out, const tor_x509_cert_t **id_cert_out) { tor_tls_context_t *ctx = server ? server_tls_context : client_tls_context; if (! ctx) return -1; if (link_cert_out) *link_cert_out = server ? ctx->my_link_cert : ctx->my_auth_cert; if (id_cert_out) *id_cert_out = ctx->my_id_cert; return 0; } /** * Return the authentication key that we use to authenticate ourselves as a * client in the V3 in-protocol handshake. */ crypto_pk_t * tor_tls_get_my_client_auth_key(void) { if (! client_tls_context) return NULL; return client_tls_context->auth_key; } /** * Return a newly allocated copy of the public key that a certificate * certifies. Return NULL if the cert's key is not RSA. */ crypto_pk_t * tor_tls_cert_get_key(tor_x509_cert_t *cert) { crypto_pk_t *result = NULL; EVP_PKEY *pkey = X509_get_pubkey(cert->cert); RSA *rsa; if (!pkey) return NULL; rsa = EVP_PKEY_get1_RSA(pkey); if (!rsa) { EVP_PKEY_free(pkey); return NULL; } result = crypto_new_pk_from_rsa_(rsa); EVP_PKEY_free(pkey); return result; } /** Return true iff the other side of tls has authenticated to us, and * the key certified in cert is the same as the key they used to do it. */ MOCK_IMPL(int, tor_tls_cert_matches_key,(const tor_tls_t *tls, const tor_x509_cert_t *cert)) { X509 *peercert = SSL_get_peer_certificate(tls->ssl); EVP_PKEY *link_key = NULL, *cert_key = NULL; int result; if (!peercert) return 0; link_key = X509_get_pubkey(peercert); cert_key = X509_get_pubkey(cert->cert); result = link_key && cert_key && EVP_PKEY_cmp(cert_key, link_key) == 1; X509_free(peercert); if (link_key) EVP_PKEY_free(link_key); if (cert_key) EVP_PKEY_free(cert_key); return result; } /** Check whether cert is well-formed, currently live, and correctly * signed by the public key in signing_cert. If check_rsa_1024, * make sure that it has an RSA key with 1024 bits; otherwise, just check that * the key is long enough. Return 1 if the cert is good, and 0 if it's bad or * we couldn't check it. */ int tor_tls_cert_is_valid(int severity, const tor_x509_cert_t *cert, const tor_x509_cert_t *signing_cert, int check_rsa_1024) { check_no_tls_errors(); EVP_PKEY *cert_key; int r, key_ok = 0; if (!signing_cert || !cert) goto bad; EVP_PKEY *signing_key = X509_get_pubkey(signing_cert->cert); if (!signing_key) goto bad; r = X509_verify(cert->cert, signing_key); EVP_PKEY_free(signing_key); if (r <= 0) goto bad; /* okay, the signature checked out right. Now let's check the check the * lifetime. */ if (check_cert_lifetime_internal(severity, cert->cert, 48*60*60, 30*24*60*60) < 0) goto bad; cert_key = X509_get_pubkey(cert->cert); if (check_rsa_1024 && cert_key) { RSA *rsa = EVP_PKEY_get1_RSA(cert_key); if (rsa && BN_num_bits(rsa->n) == 1024) key_ok = 1; if (rsa) RSA_free(rsa); } else if (cert_key) { int min_bits = 1024; #ifdef EVP_PKEY_EC if (EVP_PKEY_type(cert_key->type) == EVP_PKEY_EC) min_bits = 128; #endif if (EVP_PKEY_bits(cert_key) >= min_bits) key_ok = 1; } EVP_PKEY_free(cert_key); if (!key_ok) goto bad; /* XXXX compare DNs or anything? */ return 1; bad: tls_log_errors(NULL, LOG_INFO, LD_CRYPTO, "checking a certificate"); return 0; } /** Increase the reference count of ctx. */ static void tor_tls_context_incref(tor_tls_context_t *ctx) { ++ctx->refcnt; } /** Create new global client and server TLS contexts. * * If server_identity is NULL, this will not generate a server * TLS context. If TOR_TLS_CTX_IS_PUBLIC_SERVER is set in flags, use * the same TLS context for incoming and outgoing connections, and * ignore client_identity. If one of TOR_TLS_CTX_USE_ECDHE_P{224,256} * is set in flags, use that ECDHE group if possible; otherwise use * the default ECDHE group. */ int tor_tls_context_init(unsigned flags, crypto_pk_t *client_identity, crypto_pk_t *server_identity, unsigned int key_lifetime) { int rv1 = 0; int rv2 = 0; const int is_public_server = flags & TOR_TLS_CTX_IS_PUBLIC_SERVER; check_no_tls_errors(); if (is_public_server) { tor_tls_context_t *new_ctx; tor_tls_context_t *old_ctx; tor_assert(server_identity != NULL); rv1 = tor_tls_context_init_one(&server_tls_context, server_identity, key_lifetime, flags, 0); if (rv1 >= 0) { new_ctx = server_tls_context; tor_tls_context_incref(new_ctx); old_ctx = client_tls_context; client_tls_context = new_ctx; if (old_ctx != NULL) { tor_tls_context_decref(old_ctx); } } } else { if (server_identity != NULL) { rv1 = tor_tls_context_init_one(&server_tls_context, server_identity, key_lifetime, flags, 0); } else { tor_tls_context_t *old_ctx = server_tls_context; server_tls_context = NULL; if (old_ctx != NULL) { tor_tls_context_decref(old_ctx); } } rv2 = tor_tls_context_init_one(&client_tls_context, client_identity, key_lifetime, flags, 1); } tls_log_errors(NULL, LOG_WARN, LD_CRYPTO, "constructing a TLS context"); return MIN(rv1, rv2); } /** Create a new global TLS context. * * You can call this function multiple times. Each time you call it, * it generates new certificates; all new connections will use * the new SSL context. */ STATIC int tor_tls_context_init_one(tor_tls_context_t **ppcontext, crypto_pk_t *identity, unsigned int key_lifetime, unsigned int flags, int is_client) { tor_tls_context_t *new_ctx = tor_tls_context_new(identity, key_lifetime, flags, is_client); tor_tls_context_t *old_ctx = *ppcontext; if (new_ctx != NULL) { *ppcontext = new_ctx; /* Free the old context if one existed. */ if (old_ctx != NULL) { /* This is safe even if there are open connections: we reference- * count tor_tls_context_t objects. */ tor_tls_context_decref(old_ctx); } } return ((new_ctx != NULL) ? 0 : -1); } /** The group we should use for ecdhe when none was selected. */ #define NID_tor_default_ecdhe_group NID_X9_62_prime256v1 /** Create a new TLS context for use with Tor TLS handshakes. * identity should be set to the identity key used to sign the * certificate. */ STATIC tor_tls_context_t * tor_tls_context_new(crypto_pk_t *identity, unsigned int key_lifetime, unsigned flags, int is_client) { crypto_pk_t *rsa = NULL, *rsa_auth = NULL; EVP_PKEY *pkey = NULL; tor_tls_context_t *result = NULL; X509 *cert = NULL, *idcert = NULL, *authcert = NULL; char *nickname = NULL, *nn2 = NULL; tor_tls_init(); nickname = crypto_random_hostname(8, 20, "www.", ".net"); #ifdef DISABLE_V3_LINKPROTO_SERVERSIDE nn2 = crypto_random_hostname(8, 20, "www.", ".net"); #else nn2 = crypto_random_hostname(8, 20, "www.", ".com"); #endif /* Generate short-term RSA key for use with TLS. */ if (!(rsa = crypto_pk_new())) goto error; if (crypto_pk_generate_key(rsa)<0) goto error; if (!is_client) { /* Generate short-term RSA key for use in the in-protocol ("v3") * authentication handshake. */ if (!(rsa_auth = crypto_pk_new())) goto error; if (crypto_pk_generate_key(rsa_auth)<0) goto error; /* Create a link certificate signed by identity key. */ cert = tor_tls_create_certificate(rsa, identity, nickname, nn2, key_lifetime); /* Create self-signed certificate for identity key. */ idcert = tor_tls_create_certificate(identity, identity, nn2, nn2, IDENTITY_CERT_LIFETIME); /* Create an authentication certificate signed by identity key. */ authcert = tor_tls_create_certificate(rsa_auth, identity, nickname, nn2, key_lifetime); if (!cert || !idcert || !authcert) { log_warn(LD_CRYPTO, "Error creating certificate"); goto error; } } result = tor_malloc_zero(sizeof(tor_tls_context_t)); result->refcnt = 1; if (!is_client) { result->my_link_cert = tor_x509_cert_new(X509_dup(cert)); result->my_id_cert = tor_x509_cert_new(X509_dup(idcert)); result->my_auth_cert = tor_x509_cert_new(X509_dup(authcert)); if (!result->my_link_cert || !result->my_id_cert || !result->my_auth_cert) goto error; result->link_key = crypto_pk_dup_key(rsa); result->auth_key = crypto_pk_dup_key(rsa_auth); } #if 0 /* Tell OpenSSL to only use TLS1. This may have subtly different results * from SSLv23_method() with SSLv2 and SSLv3 disabled, so we need to do some * investigation before we consider adjusting it. It should be compatible * with existing Tors. */ if (!(result->ctx = SSL_CTX_new(TLSv1_method()))) goto error; #endif /* Tell OpenSSL to use TLS 1.0 or later but not SSL2 or SSL3. */ #ifdef HAVE_TLS_METHOD if (!(result->ctx = SSL_CTX_new(TLS_method()))) goto error; #else if (!(result->ctx = SSL_CTX_new(SSLv23_method()))) goto error; #endif SSL_CTX_set_options(result->ctx, SSL_OP_NO_SSLv2); SSL_CTX_set_options(result->ctx, SSL_OP_NO_SSLv3); /* Prefer the server's ordering of ciphers: the client's ordering has * historically been chosen for fingerprinting resistance. */ SSL_CTX_set_options(result->ctx, SSL_OP_CIPHER_SERVER_PREFERENCE); /* Disable TLS tickets if they're supported. We never want to use them; * using them can make our perfect forward secrecy a little worse, *and* * create an opportunity to fingerprint us (since it's unusual to use them * with TLS sessions turned off). * * In 0.2.4, clients advertise support for them though, to avoid a TLS * distinguishability vector. This can give us worse PFS, though, if we * get a server that doesn't set SSL_OP_NO_TICKET. With luck, there will * be few such servers by the time 0.2.4 is more stable. */ #ifdef SSL_OP_NO_TICKET if (! is_client) { SSL_CTX_set_options(result->ctx, SSL_OP_NO_TICKET); } #endif SSL_CTX_set_options(result->ctx, SSL_OP_SINGLE_DH_USE); SSL_CTX_set_options(result->ctx, SSL_OP_SINGLE_ECDH_USE); #ifdef SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION SSL_CTX_set_options(result->ctx, SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION); #endif /* Yes, we know what we are doing here. No, we do not treat a renegotiation * as authenticating any earlier-received data. */ { SSL_CTX_set_options(result->ctx, SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION); } #ifdef SSL_OP_NO_COMPRESSION SSL_CTX_set_options(result->ctx, SSL_OP_NO_COMPRESSION); #endif #if OPENSSL_VERSION_NUMBER < OPENSSL_V_SERIES(1,1,0) #ifndef OPENSSL_NO_COMP /* Don't actually allow compression; it uses ram and time, but the data * we transmit is all encrypted anyway. */ if (result->ctx->comp_methods) result->ctx->comp_methods = NULL; #endif #endif #ifdef SSL_MODE_RELEASE_BUFFERS SSL_CTX_set_mode(result->ctx, SSL_MODE_RELEASE_BUFFERS); #endif if (! is_client) { if (cert && !SSL_CTX_use_certificate(result->ctx,cert)) goto error; X509_free(cert); /* We just added a reference to cert. */ cert=NULL; if (idcert) { X509_STORE *s = SSL_CTX_get_cert_store(result->ctx); tor_assert(s); X509_STORE_add_cert(s, idcert); X509_free(idcert); /* The context now owns the reference to idcert */ idcert = NULL; } } SSL_CTX_set_session_cache_mode(result->ctx, SSL_SESS_CACHE_OFF); if (!is_client) { tor_assert(rsa); if (!(pkey = crypto_pk_get_evp_pkey_(rsa,1))) goto error; if (!SSL_CTX_use_PrivateKey(result->ctx, pkey)) goto error; EVP_PKEY_free(pkey); pkey = NULL; if (!SSL_CTX_check_private_key(result->ctx)) goto error; } { crypto_dh_t *dh = crypto_dh_new(DH_TYPE_TLS); tor_assert(dh); SSL_CTX_set_tmp_dh(result->ctx, crypto_dh_get_dh_(dh)); crypto_dh_free(dh); } if (! is_client) { int nid; EC_KEY *ec_key; if (flags & TOR_TLS_CTX_USE_ECDHE_P224) nid = NID_secp224r1; else if (flags & TOR_TLS_CTX_USE_ECDHE_P256) nid = NID_X9_62_prime256v1; else nid = NID_tor_default_ecdhe_group; /* Use P-256 for ECDHE. */ ec_key = EC_KEY_new_by_curve_name(nid); if (ec_key != NULL) /*XXXX Handle errors? */ SSL_CTX_set_tmp_ecdh(result->ctx, ec_key); EC_KEY_free(ec_key); } SSL_CTX_set_verify(result->ctx, SSL_VERIFY_PEER, always_accept_verify_cb); /* let us realloc bufs that we're writing from */ SSL_CTX_set_mode(result->ctx, SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER); if (rsa) crypto_pk_free(rsa); if (rsa_auth) crypto_pk_free(rsa_auth); X509_free(authcert); tor_free(nickname); tor_free(nn2); return result; error: tls_log_errors(NULL, LOG_WARN, LD_NET, "creating TLS context"); tor_free(nickname); tor_free(nn2); if (pkey) EVP_PKEY_free(pkey); if (rsa) crypto_pk_free(rsa); if (rsa_auth) crypto_pk_free(rsa_auth); if (result) tor_tls_context_decref(result); if (cert) X509_free(cert); if (idcert) X509_free(idcert); if (authcert) X509_free(authcert); return NULL; } /** Invoked when a TLS state changes: log the change at severity 'debug' */ STATIC void tor_tls_debug_state_callback(const SSL *ssl, int type, int val) { /* LCOV_EXCL_START since this depends on whether debug is captured or not */ log_debug(LD_HANDSHAKE, "SSL %p is now in state %s [type=%d,val=%d].", ssl, SSL_state_string_long(ssl), type, val); /* LCOV_EXCL_STOP */ } /* Return the name of the negotiated ciphersuite in use on tls */ const char * tor_tls_get_ciphersuite_name(tor_tls_t *tls) { return SSL_get_cipher(tls->ssl); } /* Here's the old V2 cipher list we sent from 0.2.1.1-alpha up to * 0.2.3.17-beta. If a client is using this list, we can't believe the ciphers * that it claims to support. We'll prune this list to remove the ciphers * *we* don't recognize. */ STATIC uint16_t v2_cipher_list[] = { 0xc00a, /* TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA */ 0xc014, /* TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA */ 0x0039, /* TLS1_TXT_DHE_RSA_WITH_AES_256_SHA */ 0x0038, /* TLS1_TXT_DHE_DSS_WITH_AES_256_SHA */ 0xc00f, /* TLS1_TXT_ECDH_RSA_WITH_AES_256_CBC_SHA */ 0xc005, /* TLS1_TXT_ECDH_ECDSA_WITH_AES_256_CBC_SHA */ 0x0035, /* TLS1_TXT_RSA_WITH_AES_256_SHA */ 0xc007, /* TLS1_TXT_ECDHE_ECDSA_WITH_RC4_128_SHA */ 0xc009, /* TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA */ 0xc011, /* TLS1_TXT_ECDHE_RSA_WITH_RC4_128_SHA */ 0xc013, /* TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA */ 0x0033, /* TLS1_TXT_DHE_RSA_WITH_AES_128_SHA */ 0x0032, /* TLS1_TXT_DHE_DSS_WITH_AES_128_SHA */ 0xc00c, /* TLS1_TXT_ECDH_RSA_WITH_RC4_128_SHA */ 0xc00e, /* TLS1_TXT_ECDH_RSA_WITH_AES_128_CBC_SHA */ 0xc002, /* TLS1_TXT_ECDH_ECDSA_WITH_RC4_128_SHA */ 0xc004, /* TLS1_TXT_ECDH_ECDSA_WITH_AES_128_CBC_SHA */ 0x0004, /* SSL3_TXT_RSA_RC4_128_MD5 */ 0x0005, /* SSL3_TXT_RSA_RC4_128_SHA */ 0x002f, /* TLS1_TXT_RSA_WITH_AES_128_SHA */ 0xc008, /* TLS1_TXT_ECDHE_ECDSA_WITH_DES_192_CBC3_SHA */ 0xc012, /* TLS1_TXT_ECDHE_RSA_WITH_DES_192_CBC3_SHA */ 0x0016, /* SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA */ 0x0013, /* SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA */ 0xc00d, /* TLS1_TXT_ECDH_RSA_WITH_DES_192_CBC3_SHA */ 0xc003, /* TLS1_TXT_ECDH_ECDSA_WITH_DES_192_CBC3_SHA */ 0xfeff, /* SSL3_TXT_RSA_FIPS_WITH_3DES_EDE_CBC_SHA */ 0x000a, /* SSL3_TXT_RSA_DES_192_CBC3_SHA */ 0 }; /** Have we removed the unrecognized ciphers from v2_cipher_list yet? */ static int v2_cipher_list_pruned = 0; /** Return 0 if m does not support the cipher with ID cipher; * return 1 if it does support it, or if we have no way to tell. */ STATIC int find_cipher_by_id(const SSL *ssl, const SSL_METHOD *m, uint16_t cipher) { const SSL_CIPHER *c; #ifdef HAVE_SSL_CIPHER_FIND (void) m; { unsigned char cipherid[3]; tor_assert(ssl); set_uint16(cipherid, htons(cipher)); cipherid[2] = 0; /* If ssl23_get_cipher_by_char finds no cipher starting * with a two-byte 'cipherid', it may look for a v2 * cipher with the appropriate 3 bytes. */ c = SSL_CIPHER_find((SSL*)ssl, cipherid); if (c) tor_assert((SSL_CIPHER_get_id(c) & 0xffff) == cipher); return c != NULL; } #else # if defined(HAVE_STRUCT_SSL_METHOD_ST_GET_CIPHER_BY_CHAR) if (m && m->get_cipher_by_char) { unsigned char cipherid[3]; set_uint16(cipherid, htons(cipher)); cipherid[2] = 0; /* If ssl23_get_cipher_by_char finds no cipher starting * with a two-byte 'cipherid', it may look for a v2 * cipher with the appropriate 3 bytes. */ c = m->get_cipher_by_char(cipherid); if (c) tor_assert((c->id & 0xffff) == cipher); return c != NULL; } # endif # if OPENSSL_VERSION_NUMBER < OPENSSL_V_SERIES(1,1,0) if (m && m->get_cipher && m->num_ciphers) { /* It would seem that some of the "let's-clean-up-openssl" forks have * removed the get_cipher_by_char function. Okay, so now you get a * quadratic search. */ int i; for (i = 0; i < m->num_ciphers(); ++i) { c = m->get_cipher(i); if (c && (c->id & 0xffff) == cipher) { return 1; } } return 0; } # endif (void) ssl; (void) m; (void) cipher; return 1; /* No way to search */ #endif } /** Remove from v2_cipher_list every cipher that we don't support, so that * comparing v2_cipher_list to a client's cipher list will give a sensible * result. */ static void prune_v2_cipher_list(const SSL *ssl) { uint16_t *inp, *outp; #ifdef HAVE_TLS_METHOD const SSL_METHOD *m = TLS_method(); #else const SSL_METHOD *m = SSLv23_method(); #endif inp = outp = v2_cipher_list; while (*inp) { if (find_cipher_by_id(ssl, m, *inp)) { *outp++ = *inp++; } else { inp++; } } *outp = 0; v2_cipher_list_pruned = 1; } /** Examine the client cipher list in ssl, and determine what kind of * client it is. Return one of CIPHERS_ERR, CIPHERS_V1, CIPHERS_V2, * CIPHERS_UNRESTRICTED. **/ STATIC int tor_tls_classify_client_ciphers(const SSL *ssl, STACK_OF(SSL_CIPHER) *peer_ciphers) { int i, res; tor_tls_t *tor_tls; if (PREDICT_UNLIKELY(!v2_cipher_list_pruned)) prune_v2_cipher_list(ssl); tor_tls = tor_tls_get_by_ssl(ssl); if (tor_tls && tor_tls->client_cipher_list_type) return tor_tls->client_cipher_list_type; /* If we reached this point, we just got a client hello. See if there is * a cipher list. */ if (!peer_ciphers) { log_info(LD_NET, "No ciphers on session"); res = CIPHERS_ERR; goto done; } /* Now we need to see if there are any ciphers whose presence means we're * dealing with an updated Tor. */ for (i = 0; i < sk_SSL_CIPHER_num(peer_ciphers); ++i) { SSL_CIPHER *cipher = sk_SSL_CIPHER_value(peer_ciphers, i); const char *ciphername = SSL_CIPHER_get_name(cipher); if (strcmp(ciphername, TLS1_TXT_DHE_RSA_WITH_AES_128_SHA) && strcmp(ciphername, TLS1_TXT_DHE_RSA_WITH_AES_256_SHA) && strcmp(ciphername, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA) && strcmp(ciphername, "(NONE)")) { log_debug(LD_NET, "Got a non-version-1 cipher called '%s'", ciphername); // return 1; goto v2_or_higher; } } res = CIPHERS_V1; goto done; v2_or_higher: { const uint16_t *v2_cipher = v2_cipher_list; for (i = 0; i < sk_SSL_CIPHER_num(peer_ciphers); ++i) { SSL_CIPHER *cipher = sk_SSL_CIPHER_value(peer_ciphers, i); uint16_t id = SSL_CIPHER_get_id(cipher) & 0xffff; if (id == 0x00ff) /* extended renegotiation indicator. */ continue; if (!id || id != *v2_cipher) { res = CIPHERS_UNRESTRICTED; goto dump_ciphers; } ++v2_cipher; } if (*v2_cipher != 0) { res = CIPHERS_UNRESTRICTED; goto dump_ciphers; } res = CIPHERS_V2; } dump_ciphers: { smartlist_t *elts = smartlist_new(); char *s; for (i = 0; i < sk_SSL_CIPHER_num(peer_ciphers); ++i) { SSL_CIPHER *cipher = sk_SSL_CIPHER_value(peer_ciphers, i); const char *ciphername = SSL_CIPHER_get_name(cipher); smartlist_add(elts, (char*)ciphername); } s = smartlist_join_strings(elts, ":", 0, NULL); log_debug(LD_NET, "Got a %s V2/V3 cipher list from %s. It is: '%s'", (res == CIPHERS_V2) ? "fictitious" : "real", ADDR(tor_tls), s); tor_free(s); smartlist_free(elts); } done: if (tor_tls) return tor_tls->client_cipher_list_type = res; return res; } /** Return true iff the cipher list suggested by the client for ssl is * a list that indicates that the client knows how to do the v2 TLS connection * handshake. */ STATIC int tor_tls_client_is_using_v2_ciphers(const SSL *ssl) { STACK_OF(SSL_CIPHER) *ciphers; #ifdef HAVE_SSL_GET_CLIENT_CIPHERS ciphers = SSL_get_client_ciphers(ssl); #else SSL_SESSION *session; if (!(session = SSL_get_session((SSL *)ssl))) { log_info(LD_NET, "No session on TLS?"); return CIPHERS_ERR; } ciphers = session->ciphers; #endif return tor_tls_classify_client_ciphers(ssl, ciphers) >= CIPHERS_V2; } /** Invoked when we're accepting a connection on ssl, and the connection * changes state. We use this: *
  • To alter the state of the handshake partway through, so we * do not send or request extra certificates in v2 handshakes.
  • *
  • To detect renegotiation
*/ STATIC void tor_tls_server_info_callback(const SSL *ssl, int type, int val) { tor_tls_t *tls; (void) val; tor_tls_debug_state_callback(ssl, type, val); if (type != SSL_CB_ACCEPT_LOOP) return; OSSL_HANDSHAKE_STATE ssl_state = SSL_get_state(ssl); if (! STATE_IS_SW_SERVER_HELLO(ssl_state)) return; tls = tor_tls_get_by_ssl(ssl); if (tls) { /* Check whether we're watching for renegotiates. If so, this is one! */ if (tls->negotiated_callback) tls->got_renegotiate = 1; if (tls->server_handshake_count < 127) /*avoid any overflow possibility*/ ++tls->server_handshake_count; } else { log_warn(LD_BUG, "Couldn't look up the tls for an SSL*. How odd!"); return; } /* Now check the cipher list. */ if (tor_tls_client_is_using_v2_ciphers(ssl)) { if (tls->wasV2Handshake) return; /* We already turned this stuff off for the first handshake; * This is a renegotiation. */ /* Yes, we're casting away the const from ssl. This is very naughty of us. * Let's hope openssl doesn't notice! */ /* Set SSL_MODE_NO_AUTO_CHAIN to keep from sending back any extra certs. */ SSL_set_mode((SSL*) ssl, SSL_MODE_NO_AUTO_CHAIN); /* Don't send a hello request. */ SSL_set_verify((SSL*) ssl, SSL_VERIFY_NONE, NULL); if (tls) { tls->wasV2Handshake = 1; } else { /* LCOV_EXCL_START this line is not reachable */ log_warn(LD_BUG, "Couldn't look up the tls for an SSL*. How odd!"); /* LCOV_EXCL_STOP */ } } } /** Callback to get invoked on a server after we've read the list of ciphers * the client supports, but before we pick our own ciphersuite. * * We can't abuse an info_cb for this, since by the time one of the * client_hello info_cbs is called, we've already picked which ciphersuite to * use. * * Technically, this function is an abuse of this callback, since the point of * a session_secret_cb is to try to set up and/or verify a shared-secret for * authentication on the fly. But as long as we return 0, we won't actually be * setting up a shared secret, and all will be fine. */ STATIC int tor_tls_session_secret_cb(SSL *ssl, void *secret, int *secret_len, STACK_OF(SSL_CIPHER) *peer_ciphers, SSL_CIPHER **cipher, void *arg) { (void) secret; (void) secret_len; (void) peer_ciphers; (void) cipher; (void) arg; if (tor_tls_classify_client_ciphers(ssl, peer_ciphers) == CIPHERS_UNRESTRICTED) { SSL_set_cipher_list(ssl, UNRESTRICTED_SERVER_CIPHER_LIST); } SSL_set_session_secret_cb(ssl, NULL, NULL); return 0; } static void tor_tls_setup_session_secret_cb(tor_tls_t *tls) { SSL_set_session_secret_cb(tls->ssl, tor_tls_session_secret_cb, NULL); } /** Create a new TLS object from a file descriptor, and a flag to * determine whether it is functioning as a server. */ tor_tls_t * tor_tls_new(int sock, int isServer) { BIO *bio = NULL; tor_tls_t *result = tor_malloc_zero(sizeof(tor_tls_t)); tor_tls_context_t *context = isServer ? server_tls_context : client_tls_context; result->magic = TOR_TLS_MAGIC; check_no_tls_errors(); tor_assert(context); /* make sure somebody made it first */ if (!(result->ssl = SSL_new(context->ctx))) { tls_log_errors(NULL, LOG_WARN, LD_NET, "creating SSL object"); tor_free(result); goto err; } #ifdef SSL_set_tlsext_host_name /* Browsers use the TLS hostname extension, so we should too. */ if (!isServer) { char *fake_hostname = crypto_random_hostname(4,25, "www.",".com"); SSL_set_tlsext_host_name(result->ssl, fake_hostname); tor_free(fake_hostname); } #endif if (!SSL_set_cipher_list(result->ssl, isServer ? SERVER_CIPHER_LIST : CLIENT_CIPHER_LIST)) { tls_log_errors(NULL, LOG_WARN, LD_NET, "setting ciphers"); #ifdef SSL_set_tlsext_host_name SSL_set_tlsext_host_name(result->ssl, NULL); #endif SSL_free(result->ssl); tor_free(result); goto err; } result->socket = sock; bio = BIO_new_socket(sock, BIO_NOCLOSE); if (! bio) { tls_log_errors(NULL, LOG_WARN, LD_NET, "opening BIO"); #ifdef SSL_set_tlsext_host_name SSL_set_tlsext_host_name(result->ssl, NULL); #endif SSL_free(result->ssl); tor_free(result); goto err; } { int set_worked = SSL_set_ex_data(result->ssl, tor_tls_object_ex_data_index, result); if (!set_worked) { log_warn(LD_BUG, "Couldn't set the tls for an SSL*; connection will fail"); } } SSL_set_bio(result->ssl, bio, bio); tor_tls_context_incref(context); result->context = context; result->state = TOR_TLS_ST_HANDSHAKE; result->isServer = isServer; result->wantwrite_n = 0; result->last_write_count = BIO_number_written(bio); result->last_read_count = BIO_number_read(bio); if (result->last_write_count || result->last_read_count) { log_warn(LD_NET, "Newly created BIO has read count %lu, write count %lu", result->last_read_count, result->last_write_count); } if (isServer) { SSL_set_info_callback(result->ssl, tor_tls_server_info_callback); } else { SSL_set_info_callback(result->ssl, tor_tls_debug_state_callback); } if (isServer) tor_tls_setup_session_secret_cb(result); goto done; err: result = NULL; done: /* Not expected to get called. */ tls_log_errors(NULL, LOG_WARN, LD_NET, "creating tor_tls_t object"); return result; } /** Make future log messages about tls display the address * address. */ void tor_tls_set_logged_address(tor_tls_t *tls, const char *address) { tor_assert(tls); tor_free(tls->address); tls->address = tor_strdup(address); } /** Set cb to be called with argument arg whenever tls * next gets a client-side renegotiate in the middle of a read. Do not * invoke this function until after initial handshaking is done! */ void tor_tls_set_renegotiate_callback(tor_tls_t *tls, void (*cb)(tor_tls_t *, void *arg), void *arg) { tls->negotiated_callback = cb; tls->callback_arg = arg; tls->got_renegotiate = 0; if (cb) { SSL_set_info_callback(tls->ssl, tor_tls_server_info_callback); } else { SSL_set_info_callback(tls->ssl, tor_tls_debug_state_callback); } } /** If this version of openssl requires it, turn on renegotiation on * tls. */ void tor_tls_unblock_renegotiation(tor_tls_t *tls) { /* Yes, we know what we are doing here. No, we do not treat a renegotiation * as authenticating any earlier-received data. */ SSL_set_options(tls->ssl, SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION); } /** If this version of openssl supports it, turn off renegotiation on * tls. (Our protocol never requires this for security, but it's nice * to use belt-and-suspenders here.) */ void tor_tls_block_renegotiation(tor_tls_t *tls) { #ifdef SUPPORT_UNSAFE_RENEGOTIATION_FLAG tls->ssl->s3->flags &= ~SSL3_FLAGS_ALLOW_UNSAFE_LEGACY_RENEGOTIATION; #else (void) tls; #endif } /** Assert that the flags that allow legacy renegotiation are still set */ void tor_tls_assert_renegotiation_unblocked(tor_tls_t *tls) { long options = SSL_get_options(tls->ssl); tor_assert(0 != (options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)); } /** Return whether this tls initiated the connect (client) or * received it (server). */ int tor_tls_is_server(tor_tls_t *tls) { tor_assert(tls); return tls->isServer; } /** Release resources associated with a TLS object. Does not close the * underlying file descriptor. */ void tor_tls_free(tor_tls_t *tls) { if (!tls) return; tor_assert(tls->ssl); { size_t r,w; tor_tls_get_n_raw_bytes(tls,&r,&w); /* ensure written_by_tls is updated */ } #ifdef SSL_set_tlsext_host_name SSL_set_tlsext_host_name(tls->ssl, NULL); #endif SSL_free(tls->ssl); tls->ssl = NULL; tls->negotiated_callback = NULL; if (tls->context) tor_tls_context_decref(tls->context); tor_free(tls->address); tls->magic = 0x99999999; tor_free(tls); } /** Underlying function for TLS reading. Reads up to len * characters from tls into cp. On success, returns the * number of characters read. On failure, returns TOR_TLS_ERROR, * TOR_TLS_CLOSE, TOR_TLS_WANTREAD, or TOR_TLS_WANTWRITE. */ MOCK_IMPL(int, tor_tls_read,(tor_tls_t *tls, char *cp, size_t len)) { int r, err; tor_assert(tls); tor_assert(tls->ssl); tor_assert(tls->state == TOR_TLS_ST_OPEN); tor_assert(lenssl, cp, (int)len); if (r > 0) { if (tls->got_renegotiate) { /* Renegotiation happened! */ log_info(LD_NET, "Got a TLS renegotiation from %s", ADDR(tls)); if (tls->negotiated_callback) tls->negotiated_callback(tls, tls->callback_arg); tls->got_renegotiate = 0; } return r; } err = tor_tls_get_error(tls, r, CATCH_ZERO, "reading", LOG_DEBUG, LD_NET); if (err == TOR_TLS_ZERORETURN_ || err == TOR_TLS_CLOSE) { log_debug(LD_NET,"read returned r=%d; TLS is closed",r); tls->state = TOR_TLS_ST_CLOSED; return TOR_TLS_CLOSE; } else { tor_assert(err != TOR_TLS_DONE); log_debug(LD_NET,"read returned r=%d, err=%d",r,err); return err; } } /** Total number of bytes that we've used TLS to send. Used to track TLS * overhead. */ STATIC uint64_t total_bytes_written_over_tls = 0; /** Total number of bytes that TLS has put on the network for us. Used to * track TLS overhead. */ STATIC uint64_t total_bytes_written_by_tls = 0; /** Underlying function for TLS writing. Write up to n * characters from cp onto tls. On success, returns the * number of characters written. On failure, returns TOR_TLS_ERROR, * TOR_TLS_WANTREAD, or TOR_TLS_WANTWRITE. */ int tor_tls_write(tor_tls_t *tls, const char *cp, size_t n) { int r, err; tor_assert(tls); tor_assert(tls->ssl); tor_assert(tls->state == TOR_TLS_ST_OPEN); tor_assert(n < INT_MAX); if (n == 0) return 0; if (tls->wantwrite_n) { /* if WANTWRITE last time, we must use the _same_ n as before */ tor_assert(n >= tls->wantwrite_n); log_debug(LD_NET,"resuming pending-write, (%d to flush, reusing %d)", (int)n, (int)tls->wantwrite_n); n = tls->wantwrite_n; tls->wantwrite_n = 0; } r = SSL_write(tls->ssl, cp, (int)n); err = tor_tls_get_error(tls, r, 0, "writing", LOG_INFO, LD_NET); if (err == TOR_TLS_DONE) { total_bytes_written_over_tls += r; return r; } if (err == TOR_TLS_WANTWRITE || err == TOR_TLS_WANTREAD) { tls->wantwrite_n = n; } return err; } /** Perform initial handshake on tls. When finished, returns * TOR_TLS_DONE. On failure, returns TOR_TLS_ERROR, TOR_TLS_WANTREAD, * or TOR_TLS_WANTWRITE. */ int tor_tls_handshake(tor_tls_t *tls) { int r; tor_assert(tls); tor_assert(tls->ssl); tor_assert(tls->state == TOR_TLS_ST_HANDSHAKE); check_no_tls_errors(); OSSL_HANDSHAKE_STATE oldstate = SSL_get_state(tls->ssl); if (tls->isServer) { log_debug(LD_HANDSHAKE, "About to call SSL_accept on %p (%s)", tls, SSL_state_string_long(tls->ssl)); r = SSL_accept(tls->ssl); } else { log_debug(LD_HANDSHAKE, "About to call SSL_connect on %p (%s)", tls, SSL_state_string_long(tls->ssl)); r = SSL_connect(tls->ssl); } OSSL_HANDSHAKE_STATE newstate = SSL_get_state(tls->ssl); if (oldstate != newstate) log_debug(LD_HANDSHAKE, "After call, %p was in state %s", tls, SSL_state_string_long(tls->ssl)); /* We need to call this here and not earlier, since OpenSSL has a penchant * for clearing its flags when you say accept or connect. */ tor_tls_unblock_renegotiation(tls); r = tor_tls_get_error(tls,r,0, "handshaking", LOG_INFO, LD_HANDSHAKE); if (ERR_peek_error() != 0) { tls_log_errors(tls, tls->isServer ? LOG_INFO : LOG_WARN, LD_HANDSHAKE, "handshaking"); return TOR_TLS_ERROR_MISC; } if (r == TOR_TLS_DONE) { tls->state = TOR_TLS_ST_OPEN; return tor_tls_finish_handshake(tls); } return r; } /** Perform the final part of the intial TLS handshake on tls. This * should be called for the first handshake only: it determines whether the v1 * or the v2 handshake was used, and adjusts things for the renegotiation * handshake as appropriate. * * tor_tls_handshake() calls this on its own; you only need to call this if * bufferevent is doing the handshake for you. */ int tor_tls_finish_handshake(tor_tls_t *tls) { int r = TOR_TLS_DONE; check_no_tls_errors(); if (tls->isServer) { SSL_set_info_callback(tls->ssl, NULL); SSL_set_verify(tls->ssl, SSL_VERIFY_PEER, always_accept_verify_cb); SSL_clear_mode(tls->ssl, SSL_MODE_NO_AUTO_CHAIN); if (tor_tls_client_is_using_v2_ciphers(tls->ssl)) { /* This check is redundant, but back when we did it in the callback, * we might have not been able to look up the tor_tls_t if the code * was buggy. Fixing that. */ if (!tls->wasV2Handshake) { log_warn(LD_BUG, "For some reason, wasV2Handshake didn't" " get set. Fixing that."); } tls->wasV2Handshake = 1; log_debug(LD_HANDSHAKE, "Completed V2 TLS handshake with client; waiting" " for renegotiation."); } else { tls->wasV2Handshake = 0; } } else { /* Client-side */ tls->wasV2Handshake = 1; /* XXXX this can move, probably? -NM */ if (SSL_set_cipher_list(tls->ssl, SERVER_CIPHER_LIST) == 0) { tls_log_errors(NULL, LOG_WARN, LD_HANDSHAKE, "re-setting ciphers"); r = TOR_TLS_ERROR_MISC; } } tls_log_errors(NULL, LOG_WARN, LD_NET, "finishing the handshake"); return r; } /** Shut down an open tls connection tls. When finished, returns * TOR_TLS_DONE. On failure, returns TOR_TLS_ERROR, TOR_TLS_WANTREAD, * or TOR_TLS_WANTWRITE. */ int tor_tls_shutdown(tor_tls_t *tls) { int r, err; char buf[128]; tor_assert(tls); tor_assert(tls->ssl); check_no_tls_errors(); while (1) { if (tls->state == TOR_TLS_ST_SENTCLOSE) { /* If we've already called shutdown once to send a close message, * we read until the other side has closed too. */ do { r = SSL_read(tls->ssl, buf, 128); } while (r>0); err = tor_tls_get_error(tls, r, CATCH_ZERO, "reading to shut down", LOG_INFO, LD_NET); if (err == TOR_TLS_ZERORETURN_) { tls->state = TOR_TLS_ST_GOTCLOSE; /* fall through... */ } else { return err; } } r = SSL_shutdown(tls->ssl); if (r == 1) { /* If shutdown returns 1, the connection is entirely closed. */ tls->state = TOR_TLS_ST_CLOSED; return TOR_TLS_DONE; } err = tor_tls_get_error(tls, r, CATCH_SYSCALL|CATCH_ZERO, "shutting down", LOG_INFO, LD_NET); if (err == TOR_TLS_SYSCALL_) { /* The underlying TCP connection closed while we were shutting down. */ tls->state = TOR_TLS_ST_CLOSED; return TOR_TLS_DONE; } else if (err == TOR_TLS_ZERORETURN_) { /* The TLS connection says that it sent a shutdown record, but * isn't done shutting down yet. Make sure that this hasn't * happened before, then go back to the start of the function * and try to read. */ if (tls->state == TOR_TLS_ST_GOTCLOSE || tls->state == TOR_TLS_ST_SENTCLOSE) { log_warn(LD_NET, "TLS returned \"half-closed\" value while already half-closed"); return TOR_TLS_ERROR_MISC; } tls->state = TOR_TLS_ST_SENTCLOSE; /* fall through ... */ } else { return err; } } /* end loop */ } /** Return true iff this TLS connection is authenticated. */ int tor_tls_peer_has_cert(tor_tls_t *tls) { X509 *cert; cert = SSL_get_peer_certificate(tls->ssl); tls_log_errors(tls, LOG_WARN, LD_HANDSHAKE, "getting peer certificate"); if (!cert) return 0; X509_free(cert); return 1; } /** Return the peer certificate, or NULL if there isn't one. */ MOCK_IMPL(tor_x509_cert_t *, tor_tls_get_peer_cert,(tor_tls_t *tls)) { X509 *cert; cert = SSL_get_peer_certificate(tls->ssl); tls_log_errors(tls, LOG_WARN, LD_HANDSHAKE, "getting peer certificate"); if (!cert) return NULL; return tor_x509_cert_new(cert); } /** Warn that a certificate lifetime extends through a certain range. */ static void log_cert_lifetime(int severity, const X509 *cert, const char *problem) { BIO *bio = NULL; BUF_MEM *buf; char *s1=NULL, *s2=NULL; char mytime[33]; time_t now = time(NULL); struct tm tm; size_t n; if (problem) tor_log(severity, LD_GENERAL, "Certificate %s. Either their clock is set wrong, or your clock " "is wrong.", problem); if (!(bio = BIO_new(BIO_s_mem()))) { log_warn(LD_GENERAL, "Couldn't allocate BIO!"); goto end; } if (!(ASN1_TIME_print(bio, X509_get_notBefore_const(cert)))) { tls_log_errors(NULL, LOG_WARN, LD_NET, "printing certificate lifetime"); goto end; } BIO_get_mem_ptr(bio, &buf); s1 = tor_strndup(buf->data, buf->length); (void)BIO_reset(bio); if (!(ASN1_TIME_print(bio, X509_get_notAfter_const(cert)))) { tls_log_errors(NULL, LOG_WARN, LD_NET, "printing certificate lifetime"); goto end; } BIO_get_mem_ptr(bio, &buf); s2 = tor_strndup(buf->data, buf->length); n = strftime(mytime, 32, "%b %d %H:%M:%S %Y UTC", tor_gmtime_r(&now, &tm)); if (n > 0) { tor_log(severity, LD_GENERAL, "(certificate lifetime runs from %s through %s. Your time is %s.)", s1,s2,mytime); } else { tor_log(severity, LD_GENERAL, "(certificate lifetime runs from %s through %s. " "Couldn't get your time.)", s1, s2); } end: /* Not expected to get invoked */ tls_log_errors(NULL, LOG_WARN, LD_NET, "getting certificate lifetime"); if (bio) BIO_free(bio); tor_free(s1); tor_free(s2); } /** Helper function: try to extract a link certificate and an identity * certificate from tls, and store them in *cert_out and * *id_cert_out respectively. Log all messages at level * severity. * * Note that a reference is added to cert_out, so it needs to be * freed. id_cert_out doesn't. */ MOCK_IMPL(STATIC void, try_to_extract_certs_from_tls,(int severity, tor_tls_t *tls, X509 **cert_out, X509 **id_cert_out)) { X509 *cert = NULL, *id_cert = NULL; STACK_OF(X509) *chain = NULL; int num_in_chain, i; *cert_out = *id_cert_out = NULL; if (!(cert = SSL_get_peer_certificate(tls->ssl))) return; *cert_out = cert; if (!(chain = SSL_get_peer_cert_chain(tls->ssl))) return; num_in_chain = sk_X509_num(chain); /* 1 means we're receiving (server-side), and it's just the id_cert. * 2 means we're connecting (client-side), and it's both the link * cert and the id_cert. */ if (num_in_chain < 1) { log_fn(severity,LD_PROTOCOL, "Unexpected number of certificates in chain (%d)", num_in_chain); return; } for (i=0; iidentity_key to the identity certificate's key and return * 0. Else, return -1 and log complaints with log-level severity. */ int tor_tls_verify(int severity, tor_tls_t *tls, crypto_pk_t **identity_key) { X509 *cert = NULL, *id_cert = NULL; EVP_PKEY *id_pkey = NULL; RSA *rsa; int r = -1; check_no_tls_errors(); *identity_key = NULL; try_to_extract_certs_from_tls(severity, tls, &cert, &id_cert); if (!cert) goto done; if (!id_cert) { log_fn(severity,LD_PROTOCOL,"No distinct identity certificate found"); goto done; } tls_log_errors(tls, severity, LD_HANDSHAKE, "before verifying certificate"); if (!(id_pkey = X509_get_pubkey(id_cert)) || X509_verify(cert, id_pkey) <= 0) { log_fn(severity,LD_PROTOCOL,"X509_verify on cert and pkey returned <= 0"); tls_log_errors(tls, severity, LD_HANDSHAKE, "verifying certificate"); goto done; } rsa = EVP_PKEY_get1_RSA(id_pkey); if (!rsa) goto done; *identity_key = crypto_new_pk_from_rsa_(rsa); r = 0; done: if (cert) X509_free(cert); if (id_pkey) EVP_PKEY_free(id_pkey); /* This should never get invoked, but let's make sure in case OpenSSL * acts unexpectedly. */ tls_log_errors(tls, LOG_WARN, LD_HANDSHAKE, "finishing tor_tls_verify"); return r; } /** Check whether the certificate set on the connection tls is expired * give or take past_tolerance seconds, or not-yet-valid give or take * future_tolerance seconds. Return 0 for valid, -1 for failure. * * NOTE: you should call tor_tls_verify before tor_tls_check_lifetime. */ int tor_tls_check_lifetime(int severity, tor_tls_t *tls, int past_tolerance, int future_tolerance) { X509 *cert; int r = -1; if (!(cert = SSL_get_peer_certificate(tls->ssl))) goto done; if (check_cert_lifetime_internal(severity, cert, past_tolerance, future_tolerance) < 0) goto done; r = 0; done: if (cert) X509_free(cert); /* Not expected to get invoked */ tls_log_errors(tls, LOG_WARN, LD_NET, "checking certificate lifetime"); return r; } /** Helper: check whether cert is expired give or take * past_tolerance seconds, or not-yet-valid give or take * future_tolerance seconds. If it is live, return 0. If it is not * live, log a message and return -1. */ static int check_cert_lifetime_internal(int severity, const X509 *cert, int past_tolerance, int future_tolerance) { time_t now, t; now = time(NULL); t = now + future_tolerance; if (X509_cmp_time(X509_get_notBefore_const(cert), &t) > 0) { log_cert_lifetime(severity, cert, "not yet valid"); return -1; } t = now - past_tolerance; if (X509_cmp_time(X509_get_notAfter_const(cert), &t) < 0) { log_cert_lifetime(severity, cert, "already expired"); return -1; } return 0; } /** Return the number of bytes available for reading from tls. */ int tor_tls_get_pending_bytes(tor_tls_t *tls) { tor_assert(tls); return SSL_pending(tls->ssl); } /** If tls requires that the next write be of a particular size, * return that size. Otherwise, return 0. */ size_t tor_tls_get_forced_write_size(tor_tls_t *tls) { return tls->wantwrite_n; } /** Sets n_read and n_written to the number of bytes read and written, * respectively, on the raw socket used by tls since the last time this * function was called on tls. */ void tor_tls_get_n_raw_bytes(tor_tls_t *tls, size_t *n_read, size_t *n_written) { BIO *wbio, *tmpbio; unsigned long r, w; r = BIO_number_read(SSL_get_rbio(tls->ssl)); /* We want the number of bytes actually for real written. Unfortunately, * sometimes OpenSSL replaces the wbio on tls->ssl with a buffering bio, * which makes the answer turn out wrong. Let's cope with that. Note * that this approach will fail if we ever replace tls->ssl's BIOs with * buffering bios for reasons of our own. As an alternative, we could * save the original BIO for tls->ssl in the tor_tls_t structure, but * that would be tempting fate. */ wbio = SSL_get_wbio(tls->ssl); if (wbio->method == BIO_f_buffer() && (tmpbio = BIO_next(wbio)) != NULL) wbio = tmpbio; w = BIO_number_written(wbio); /* We are ok with letting these unsigned ints go "negative" here: * If we wrapped around, this should still give us the right answer, unless * we wrapped around by more than ULONG_MAX since the last time we called * this function. */ *n_read = (size_t)(r - tls->last_read_count); *n_written = (size_t)(w - tls->last_write_count); if (*n_read > INT_MAX || *n_written > INT_MAX) { log_warn(LD_BUG, "Preposterously large value in tor_tls_get_n_raw_bytes. " "r=%lu, last_read=%lu, w=%lu, last_written=%lu", r, tls->last_read_count, w, tls->last_write_count); } total_bytes_written_by_tls += *n_written; tls->last_read_count = r; tls->last_write_count = w; } /** Return a ratio of the bytes that TLS has sent to the bytes that we've told * it to send. Used to track whether our TLS records are getting too tiny. */ MOCK_IMPL(double, tls_get_write_overhead_ratio,(void)) { if (total_bytes_written_over_tls == 0) return 1.0; return U64_TO_DBL(total_bytes_written_by_tls) / U64_TO_DBL(total_bytes_written_over_tls); } /** Implement check_no_tls_errors: If there are any pending OpenSSL * errors, log an error message. */ void check_no_tls_errors_(const char *fname, int line) { if (ERR_peek_error() == 0) return; log_warn(LD_CRYPTO, "Unhandled OpenSSL errors found at %s:%d: ", tor_fix_source_file(fname), line); tls_log_errors(NULL, LOG_WARN, LD_NET, NULL); } /** Return true iff the initial TLS connection at tls did not use a v2 * TLS handshake. Output is undefined if the handshake isn't finished. */ int tor_tls_used_v1_handshake(tor_tls_t *tls) { return ! tls->wasV2Handshake; } /** Return the number of server handshakes that we've noticed doing on * tls. */ int tor_tls_get_num_server_handshakes(tor_tls_t *tls) { return tls->server_handshake_count; } /** Return true iff the server TLS connection tls got the renegotiation * request it was waiting for. */ int tor_tls_server_got_renegotiate(tor_tls_t *tls) { return tls->got_renegotiate; } #ifndef HAVE_SSL_GET_CLIENT_RANDOM static size_t SSL_get_client_random(SSL *s, uint8_t *out, size_t len) { if (len == 0) return SSL3_RANDOM_SIZE; tor_assert(len == SSL3_RANDOM_SIZE); tor_assert(s->s3); memcpy(out, s->s3->client_random, len); return len; } #endif #ifndef HAVE_SSL_GET_SERVER_RANDOM static size_t SSL_get_server_random(SSL *s, uint8_t *out, size_t len) { if (len == 0) return SSL3_RANDOM_SIZE; tor_assert(len == SSL3_RANDOM_SIZE); tor_assert(s->s3); memcpy(out, s->s3->server_random, len); return len; } #endif #ifndef HAVE_SSL_SESSION_GET_MASTER_KEY STATIC size_t SSL_SESSION_get_master_key(SSL_SESSION *s, uint8_t *out, size_t len) { tor_assert(s); if (len == 0) return s->master_key_length; tor_assert(len == (size_t)s->master_key_length); tor_assert(out); memcpy(out, s->master_key, len); return len; } #endif /** Set the DIGEST256_LEN buffer at secrets_out to the value used in * the v3 handshake to prove that the client knows the TLS secrets for the * connection tls. Return 0 on success, -1 on failure. */ MOCK_IMPL(int, tor_tls_get_tlssecrets,(tor_tls_t *tls, uint8_t *secrets_out)) { #define TLSSECRET_MAGIC "Tor V3 handshake TLS cross-certification" uint8_t buf[128]; size_t len; tor_assert(tls); SSL *const ssl = tls->ssl; SSL_SESSION *const session = SSL_get_session(ssl); tor_assert(ssl); tor_assert(session); const size_t server_random_len = SSL_get_server_random(ssl, NULL, 0); const size_t client_random_len = SSL_get_client_random(ssl, NULL, 0); const size_t master_key_len = SSL_SESSION_get_master_key(session, NULL, 0); tor_assert(server_random_len); tor_assert(client_random_len); tor_assert(master_key_len); len = client_random_len + server_random_len + strlen(TLSSECRET_MAGIC) + 1; tor_assert(len <= sizeof(buf)); { size_t r = SSL_get_client_random(ssl, buf, client_random_len); tor_assert(r == client_random_len); } { size_t r = SSL_get_server_random(ssl, buf+client_random_len, server_random_len); tor_assert(r == server_random_len); } uint8_t *master_key = tor_malloc_zero(master_key_len); { size_t r = SSL_SESSION_get_master_key(session, master_key, master_key_len); tor_assert(r == master_key_len); } uint8_t *nextbuf = buf + client_random_len + server_random_len; memcpy(nextbuf, TLSSECRET_MAGIC, strlen(TLSSECRET_MAGIC) + 1); /* The value is an HMAC, using the TLS master key as the HMAC key, of client_random | server_random | TLSSECRET_MAGIC */ crypto_hmac_sha256((char*)secrets_out, (char*)master_key, master_key_len, (char*)buf, len); memwipe(buf, 0, sizeof(buf)); memwipe(master_key, 0, master_key_len); tor_free(master_key); return 0; } /** Examine the amount of memory used and available for buffers in tls. * Set *rbuf_capacity to the amount of storage allocated for the read * buffer and *rbuf_bytes to the amount actually used. * Set *wbuf_capacity to the amount of storage allocated for the write * buffer and *wbuf_bytes to the amount actually used. * * Return 0 on success, -1 on failure.*/ int tor_tls_get_buffer_sizes(tor_tls_t *tls, size_t *rbuf_capacity, size_t *rbuf_bytes, size_t *wbuf_capacity, size_t *wbuf_bytes) { #if OPENSSL_VERSION_NUMBER >= OPENSSL_V_SERIES(1,1,0) (void)tls; (void)rbuf_capacity; (void)rbuf_bytes; (void)wbuf_capacity; (void)wbuf_bytes; return -1; #else if (tls->ssl->s3->rbuf.buf) *rbuf_capacity = tls->ssl->s3->rbuf.len; else *rbuf_capacity = 0; if (tls->ssl->s3->wbuf.buf) *wbuf_capacity = tls->ssl->s3->wbuf.len; else *wbuf_capacity = 0; *rbuf_bytes = tls->ssl->s3->rbuf.left; *wbuf_bytes = tls->ssl->s3->wbuf.left; return 0; #endif } #ifdef USE_BUFFEREVENTS /** Construct and return an TLS-encrypting bufferevent to send data over * socket, which must match the socket of the underlying bufferevent * bufev_in. The TLS object tls is used for encryption. * * This function will either create a filtering bufferevent that wraps around * bufev_in, or it will free bufev_in and return a new bufferevent that * uses the tls to talk to the network directly. Do not use * bufev_in after calling this function. * * The connection will start out doing a server handshake if receiving * is strue, and a client handshake otherwise. * * Returns NULL on failure. */ struct bufferevent * tor_tls_init_bufferevent(tor_tls_t *tls, struct bufferevent *bufev_in, evutil_socket_t socket, int receiving, int filter) { struct bufferevent *out; const enum bufferevent_ssl_state state = receiving ? BUFFEREVENT_SSL_ACCEPTING : BUFFEREVENT_SSL_CONNECTING; if (filter || tor_libevent_using_iocp_bufferevents()) { /* Grab an extra reference to the SSL, since BEV_OPT_CLOSE_ON_FREE means that the SSL will get freed too. This increment makes our SSL usage not-threadsafe, BTW. We should see if we're allowed to use CRYPTO_add from outside openssl. */ tls->ssl->references += 1; out = bufferevent_openssl_filter_new(tor_libevent_get_base(), bufev_in, tls->ssl, state, BEV_OPT_DEFER_CALLBACKS| BEV_OPT_CLOSE_ON_FREE); /* Tell the underlying bufferevent when to accept more data from the SSL filter (only when it's got less than 32K to write), and when to notify the SSL filter that it could write more (when it drops under 24K). */ bufferevent_setwatermark(bufev_in, EV_WRITE, 24*1024, 32*1024); } else { if (bufev_in) { evutil_socket_t s = bufferevent_getfd(bufev_in); tor_assert(s == -1 || s == socket); tor_assert(evbuffer_get_length(bufferevent_get_input(bufev_in)) == 0); tor_assert(evbuffer_get_length(bufferevent_get_output(bufev_in)) == 0); tor_assert(BIO_number_read(SSL_get_rbio(tls->ssl)) == 0); tor_assert(BIO_number_written(SSL_get_rbio(tls->ssl)) == 0); bufferevent_free(bufev_in); } /* Current versions (as of 2.0.x) of Libevent need to defer * bufferevent_openssl callbacks, or else our callback functions will * get called reentrantly, which is bad for us. */ out = bufferevent_openssl_socket_new(tor_libevent_get_base(), socket, tls->ssl, state, BEV_OPT_DEFER_CALLBACKS); } tls->state = TOR_TLS_ST_BUFFEREVENT; /* Unblock _after_ creating the bufferevent, since accept/connect tend to * clear flags. */ tor_tls_unblock_renegotiation(tls); return out; } #endif /** Check whether the ECC group requested is supported by the current OpenSSL * library instance. Return 1 if the group is supported, and 0 if not. */ int evaluate_ecgroup_for_tls(const char *ecgroup) { EC_KEY *ec_key; int nid; int ret; if (!ecgroup) nid = NID_tor_default_ecdhe_group; else if (!strcasecmp(ecgroup, "P256")) nid = NID_X9_62_prime256v1; else if (!strcasecmp(ecgroup, "P224")) nid = NID_secp224r1; else return 0; ec_key = EC_KEY_new_by_curve_name(nid); ret = (ec_key != NULL); EC_KEY_free(ec_key); return ret; }