/* Copyright (c) 2003, Roger Dingledine. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. * Copyright (c) 2007-2016, The Tor Project, Inc. */ /* See LICENSE for licensing information */ /** * \file tortls.c * \brief Wrapper functions to present a consistent interface to * TLS, SSL, and X.509 functions from OpenSSL. **/ /* (Unlike other tor functions, these * are prefixed with tor_ in order to avoid conflicting with OpenSSL * functions and variables.) */ #include "orconfig.h" #define TORTLS_PRIVATE #include #ifdef _WIN32 /*wrkard for dtls1.h >= 0.9.8m of "#include "*/ #include #include #endif #include "compat.h" /* Some versions of OpenSSL declare SSL_get_selected_srtp_profile twice in * srtp.h. Suppress the GCC warning so we can build with -Wredundant-decl. */ DISABLE_GCC_WARNING(redundant-decls) #include #include "crypto.h" #ifdef OPENSSL_NO_EC #error "We require OpenSSL with ECC support" #endif #include #include #include #include #include #include #include #include ENABLE_GCC_WARNING(redundant-decls) #define TORTLS_PRIVATE #include "tortls.h" #include "util.h" #include "torlog.h" #include "container.h" #include #define X509_get_notBefore_const(cert) \ ((const ASN1_TIME*) X509_get_notBefore((X509 *)cert)) #define X509_get_notAfter_const(cert) \ ((const ASN1_TIME*) X509_get_notAfter((X509 *)cert)) /* Copied from or.h */ #define LEGAL_NICKNAME_CHARACTERS \ "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789" /** How long do identity certificates live? (sec) */ #define IDENTITY_CERT_LIFETIME (365*24*60*60) #define ADDR(tls) (((tls) && (tls)->address) ? tls->address : "peer") #if OPENSSL_VERSION_NUMBER < OPENSSL_V(1,0,0,'f') /* This is a version of OpenSSL before 1.0.0f. It does not have * the CVE-2011-4576 fix, and as such it can't use RELEASE_BUFFERS and * SSL3 safely at the same time. */ #define DISABLE_SSL3_HANDSHAKE #endif /* We redefine these so that we can run correctly even if the vendor gives us * a version of OpenSSL that does not match its header files. (Apple: I am * looking at you.) */ #ifndef SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION #define SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION 0x00040000L #endif #ifndef SSL3_FLAGS_ALLOW_UNSAFE_LEGACY_RENEGOTIATION #define SSL3_FLAGS_ALLOW_UNSAFE_LEGACY_RENEGOTIATION 0x0010 #endif /** Return values for tor_tls_classify_client_ciphers. * * @{ */ /** An error occurred when examining the client ciphers */ #define CIPHERS_ERR -1 /** The client cipher list indicates that a v1 handshake was in use. */ #define CIPHERS_V1 1 /** The client cipher list indicates that the client is using the v2 or the * v3 handshake, but that it is (probably!) lying about what ciphers it * supports */ #define CIPHERS_V2 2 /** The client cipher list indicates that the client is using the v2 or the * v3 handshake, and that it is telling the truth about what ciphers it * supports */ #define CIPHERS_UNRESTRICTED 3 /** @} */ /** The ex_data index in which we store a pointer to an SSL object's * corresponding tor_tls_t object. */ STATIC int tor_tls_object_ex_data_index = -1; /** Helper: Allocate tor_tls_object_ex_data_index. */ STATIC void tor_tls_allocate_tor_tls_object_ex_data_index(void) { if (tor_tls_object_ex_data_index == -1) { tor_tls_object_ex_data_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, NULL); tor_assert(tor_tls_object_ex_data_index != -1); } } /** Helper: given a SSL* pointer, return the tor_tls_t object using that * pointer. */ STATIC tor_tls_t * tor_tls_get_by_ssl(const SSL *ssl) { tor_tls_t *result = SSL_get_ex_data(ssl, tor_tls_object_ex_data_index); if (result) tor_assert(result->magic == TOR_TLS_MAGIC); return result; } static void tor_tls_context_decref(tor_tls_context_t *ctx); static void tor_tls_context_incref(tor_tls_context_t *ctx); static int check_cert_lifetime_internal(int severity, const X509 *cert, int past_tolerance, int future_tolerance); /** Global TLS contexts. We keep them here because nobody else needs * to touch them. * * @{ */ STATIC tor_tls_context_t *server_tls_context = NULL; STATIC tor_tls_context_t *client_tls_context = NULL; /**@}*/ /** True iff tor_tls_init() has been called. */ static int tls_library_is_initialized = 0; /* Module-internal error codes. */ #define TOR_TLS_SYSCALL_ (MIN_TOR_TLS_ERROR_VAL_ - 2) #define TOR_TLS_ZERORETURN_ (MIN_TOR_TLS_ERROR_VAL_ - 1) /** Write a description of the current state of tls into the * sz-byte buffer at buf. */ void tor_tls_get_state_description(tor_tls_t *tls, char *buf, size_t sz) { const char *ssl_state; const char *tortls_state; if (PREDICT_UNLIKELY(!tls || !tls->ssl)) { strlcpy(buf, "(No SSL object)", sz); return; } ssl_state = SSL_state_string_long(tls->ssl); switch (tls->state) { #define CASE(st) case TOR_TLS_ST_##st: tortls_state = " in "#st ; break CASE(HANDSHAKE); CASE(OPEN); CASE(GOTCLOSE); CASE(SENTCLOSE); CASE(CLOSED); CASE(RENEGOTIATE); #undef CASE case TOR_TLS_ST_BUFFEREVENT: tortls_state = ""; break; default: tortls_state = " in unknown TLS state"; break; } tor_snprintf(buf, sz, "%s%s", ssl_state, tortls_state); } /** Log a single error err as returned by ERR_get_error(), which was * received while performing an operation doing on tls. Log * the message at severity, in log domain domain. */ void tor_tls_log_one_error(tor_tls_t *tls, unsigned long err, int severity, int domain, const char *doing) { const char *state = NULL, *addr; const char *msg, *lib, *func; state = (tls && tls->ssl)?SSL_state_string_long(tls->ssl):"---"; addr = tls ? tls->address : NULL; /* Some errors are known-benign, meaning they are the fault of the other * side of the connection. The caller doesn't know this, so override the * priority for those cases. */ switch (ERR_GET_REASON(err)) { case SSL_R_HTTP_REQUEST: case SSL_R_HTTPS_PROXY_REQUEST: case SSL_R_RECORD_LENGTH_MISMATCH: #ifndef OPENSSL_1_1_API case SSL_R_RECORD_TOO_LARGE: #endif case SSL_R_UNKNOWN_PROTOCOL: case SSL_R_UNSUPPORTED_PROTOCOL: severity = LOG_INFO; break; default: break; } msg = (const char*)ERR_reason_error_string(err); lib = (const char*)ERR_lib_error_string(err); func = (const char*)ERR_func_error_string(err); if (!msg) msg = "(null)"; if (!lib) lib = "(null)"; if (!func) func = "(null)"; if (doing) { tor_log(severity, domain, "TLS error while %s%s%s: %s (in %s:%s:%s)", doing, addr?" with ":"", addr?addr:"", msg, lib, func, state); } else { tor_log(severity, domain, "TLS error%s%s: %s (in %s:%s:%s)", addr?" with ":"", addr?addr:"", msg, lib, func, state); } } /** Log all pending tls errors at level severity in log domain * domain. Use doing to describe our current activities. */ STATIC void tls_log_errors(tor_tls_t *tls, int severity, int domain, const char *doing) { unsigned long err; while ((err = ERR_get_error()) != 0) { tor_tls_log_one_error(tls, err, severity, domain, doing); } } /** Convert an errno (or a WSAerrno on windows) into a TOR_TLS_* error * code. */ STATIC int tor_errno_to_tls_error(int e) { switch (e) { case SOCK_ERRNO(ECONNRESET): // most common return TOR_TLS_ERROR_CONNRESET; case SOCK_ERRNO(ETIMEDOUT): return TOR_TLS_ERROR_TIMEOUT; case SOCK_ERRNO(EHOSTUNREACH): case SOCK_ERRNO(ENETUNREACH): return TOR_TLS_ERROR_NO_ROUTE; case SOCK_ERRNO(ECONNREFUSED): return TOR_TLS_ERROR_CONNREFUSED; // least common default: return TOR_TLS_ERROR_MISC; } } /** Given a TOR_TLS_* error code, return a string equivalent. */ const char * tor_tls_err_to_string(int err) { if (err >= 0) return "[Not an error.]"; switch (err) { case TOR_TLS_ERROR_MISC: return "misc error"; case TOR_TLS_ERROR_IO: return "unexpected close"; case TOR_TLS_ERROR_CONNREFUSED: return "connection refused"; case TOR_TLS_ERROR_CONNRESET: return "connection reset"; case TOR_TLS_ERROR_NO_ROUTE: return "host unreachable"; case TOR_TLS_ERROR_TIMEOUT: return "connection timed out"; case TOR_TLS_CLOSE: return "closed"; case TOR_TLS_WANTREAD: return "want to read"; case TOR_TLS_WANTWRITE: return "want to write"; default: return "(unknown error code)"; } } #define CATCH_SYSCALL 1 #define CATCH_ZERO 2 /** Given a TLS object and the result of an SSL_* call, use * SSL_get_error to determine whether an error has occurred, and if so * which one. Return one of TOR_TLS_{DONE|WANTREAD|WANTWRITE|ERROR}. * If extra&CATCH_SYSCALL is true, return TOR_TLS_SYSCALL_ instead of * reporting syscall errors. If extra&CATCH_ZERO is true, return * TOR_TLS_ZERORETURN_ instead of reporting zero-return errors. * * If an error has occurred, log it at level severity and describe the * current action as doing. */ STATIC int tor_tls_get_error(tor_tls_t *tls, int r, int extra, const char *doing, int severity, int domain) { int err = SSL_get_error(tls->ssl, r); int tor_error = TOR_TLS_ERROR_MISC; switch (err) { case SSL_ERROR_NONE: return TOR_TLS_DONE; case SSL_ERROR_WANT_READ: return TOR_TLS_WANTREAD; case SSL_ERROR_WANT_WRITE: return TOR_TLS_WANTWRITE; case SSL_ERROR_SYSCALL: if (extra&CATCH_SYSCALL) return TOR_TLS_SYSCALL_; if (r == 0) { tor_log(severity, LD_NET, "TLS error: unexpected close while %s (%s)", doing, SSL_state_string_long(tls->ssl)); tor_error = TOR_TLS_ERROR_IO; } else { int e = tor_socket_errno(tls->socket); tor_log(severity, LD_NET, "TLS error: (errno=%d: %s; state=%s)", doing, e, tor_socket_strerror(e), SSL_state_string_long(tls->ssl)); tor_error = tor_errno_to_tls_error(e); } tls_log_errors(tls, severity, domain, doing); return tor_error; case SSL_ERROR_ZERO_RETURN: if (extra&CATCH_ZERO) return TOR_TLS_ZERORETURN_; tor_log(severity, LD_NET, "TLS connection closed while %s in state %s", doing, SSL_state_string_long(tls->ssl)); tls_log_errors(tls, severity, domain, doing); return TOR_TLS_CLOSE; default: tls_log_errors(tls, severity, domain, doing); return TOR_TLS_ERROR_MISC; } } /** Initialize OpenSSL, unless it has already been initialized. */ static void tor_tls_init(void) { check_no_tls_errors(); if (!tls_library_is_initialized) { SSL_library_init(); SSL_load_error_strings(); #if (SIZEOF_VOID_P >= 8 && \ OPENSSL_VERSION_NUMBER >= OPENSSL_V_SERIES(1,0,1)) long version = OpenSSL_version_num(); /* LCOV_EXCL_START : we can't test these lines on the same machine */ if (version >= OPENSSL_V_SERIES(1,0,1)) { /* Warn if we could *almost* be running with much faster ECDH. If we're built for a 64-bit target, using OpenSSL 1.0.1, but we don't have one of the built-in __uint128-based speedups, we are just one build operation away from an accelerated handshake. (We could be looking at OPENSSL_NO_EC_NISTP_64_GCC_128 instead of doing this test, but that gives compile-time options, not runtime behavior.) */ EC_KEY *key = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1); const EC_GROUP *g = key ? EC_KEY_get0_group(key) : NULL; const EC_METHOD *m = g ? EC_GROUP_method_of(g) : NULL; const int warn = (m == EC_GFp_simple_method() || m == EC_GFp_mont_method() || m == EC_GFp_nist_method()); EC_KEY_free(key); if (warn) log_notice(LD_GENERAL, "We were built to run on a 64-bit CPU, with " "OpenSSL 1.0.1 or later, but with a version of OpenSSL " "that apparently lacks accelerated support for the NIST " "P-224 and P-256 groups. Building openssl with such " "support (using the enable-ec_nistp_64_gcc_128 option " "when configuring it) would make ECDH much faster."); } /* LCOV_EXCL_STOP */ #endif tor_tls_allocate_tor_tls_object_ex_data_index(); tls_library_is_initialized = 1; } } /** Free all global TLS structures. */ void tor_tls_free_all(void) { check_no_tls_errors(); if (server_tls_context) { tor_tls_context_t *ctx = server_tls_context; server_tls_context = NULL; tor_tls_context_decref(ctx); } if (client_tls_context) { tor_tls_context_t *ctx = client_tls_context; client_tls_context = NULL; tor_tls_context_decref(ctx); } } /** We need to give OpenSSL a callback to verify certificates. This is * it: We always accept peer certs and complete the handshake. We * don't validate them until later. */ STATIC int always_accept_verify_cb(int preverify_ok, X509_STORE_CTX *x509_ctx) { (void) preverify_ok; (void) x509_ctx; return 1; } /** Return a newly allocated X509 name with commonName cname. */ static X509_NAME * tor_x509_name_new(const char *cname) { int nid; X509_NAME *name; /* LCOV_EXCL_BR_START : these branches will only fail on OOM errors */ if (!(name = X509_NAME_new())) return NULL; if ((nid = OBJ_txt2nid("commonName")) == NID_undef) goto error; if (!(X509_NAME_add_entry_by_NID(name, nid, MBSTRING_ASC, (unsigned char*)cname, -1, -1, 0))) goto error; /* LCOV_EXCL_BR_STOP */ return name; error: /* LCOV_EXCL_START : these lines will only execute on out of memory errors*/ X509_NAME_free(name); return NULL; /* LCOV_EXCL_STOP */ } /** Generate and sign an X509 certificate with the public key rsa, * signed by the private key rsa_sign. The commonName of the * certificate will be cname; the commonName of the issuer will be * cname_sign. The cert will be valid for cert_lifetime * seconds, starting from some time in the past. * * Return a certificate on success, NULL on failure. */ MOCK_IMPL(STATIC X509 *, tor_tls_create_certificate,(crypto_pk_t *rsa, crypto_pk_t *rsa_sign, const char *cname, const char *cname_sign, unsigned int cert_lifetime)) { /* OpenSSL generates self-signed certificates with random 64-bit serial * numbers, so let's do that too. */ #define SERIAL_NUMBER_SIZE 8 time_t start_time, end_time; BIGNUM *serial_number = NULL; unsigned char serial_tmp[SERIAL_NUMBER_SIZE]; EVP_PKEY *sign_pkey = NULL, *pkey=NULL; X509 *x509 = NULL; X509_NAME *name = NULL, *name_issuer=NULL; tor_tls_init(); /* Make sure we're part-way through the certificate lifetime, rather * than having it start right now. Don't choose quite uniformly, since * then we might pick a time where we're about to expire. Lastly, be * sure to start on a day boundary. */ time_t now = time(NULL); start_time = crypto_rand_time_range(now - cert_lifetime, now) + 2*24*3600; start_time -= start_time % (24*3600); tor_assert(rsa); tor_assert(cname); tor_assert(rsa_sign); tor_assert(cname_sign); if (!(sign_pkey = crypto_pk_get_evp_pkey_(rsa_sign,1))) goto error; if (!(pkey = crypto_pk_get_evp_pkey_(rsa,0))) goto error; if (!(x509 = X509_new())) goto error; if (!(X509_set_version(x509, 2))) goto error; { /* our serial number is 8 random bytes. */ crypto_rand((char *)serial_tmp, sizeof(serial_tmp)); if (!(serial_number = BN_bin2bn(serial_tmp, sizeof(serial_tmp), NULL))) goto error; if (!(BN_to_ASN1_INTEGER(serial_number, X509_get_serialNumber(x509)))) goto error; } if (!(name = tor_x509_name_new(cname))) goto error; if (!(X509_set_subject_name(x509, name))) goto error; if (!(name_issuer = tor_x509_name_new(cname_sign))) goto error; if (!(X509_set_issuer_name(x509, name_issuer))) goto error; if (!X509_time_adj(X509_get_notBefore(x509),0,&start_time)) goto error; end_time = start_time + cert_lifetime; if (!X509_time_adj(X509_get_notAfter(x509),0,&end_time)) goto error; if (!X509_set_pubkey(x509, pkey)) goto error; if (!X509_sign(x509, sign_pkey, EVP_sha1())) goto error; goto done; error: if (x509) { X509_free(x509); x509 = NULL; } done: tls_log_errors(NULL, LOG_WARN, LD_NET, "generating certificate"); if (sign_pkey) EVP_PKEY_free(sign_pkey); if (pkey) EVP_PKEY_free(pkey); if (serial_number) BN_clear_free(serial_number); if (name) X509_NAME_free(name); if (name_issuer) X509_NAME_free(name_issuer); return x509; #undef SERIAL_NUMBER_SIZE } /** List of ciphers that servers should select from when the client might be * claiming extra unsupported ciphers in order to avoid fingerprinting. */ static const char SERVER_CIPHER_LIST[] = #ifdef TLS1_3_TXT_AES_128_GCM_SHA256 /* This one can never actually get selected, since if the client lists it, * we will assume that the client is honest, and not use this list. * Nonetheless we list it if it's available, so that the server doesn't * conclude that it has no valid ciphers if it's running with TLS1.3. */ TLS1_3_TXT_AES_128_GCM_SHA256 ":" #endif TLS1_TXT_DHE_RSA_WITH_AES_256_SHA ":" TLS1_TXT_DHE_RSA_WITH_AES_128_SHA; /** List of ciphers that servers should select from when we actually have * our choice of what cipher to use. */ static const char UNRESTRICTED_SERVER_CIPHER_LIST[] = /* Here are the TLS 1.3 ciphers we like, in the order we prefer. */ #ifdef TLS1_3_TXT_AES_256_GCM_SHA384 TLS1_3_TXT_AES_256_GCM_SHA384 ":" #endif #ifdef TLS1_3_TXT_CHACHA20_POLY1305_SHA256 TLS1_3_TXT_CHACHA20_POLY1305_SHA256 ":" #endif #ifdef TLS1_3_TXT_AES_128_GCM_SHA256 TLS1_3_TXT_AES_128_GCM_SHA256 ":" #endif #ifdef TLS1_3_TXT_AES_128_CCM_SHA256 TLS1_3_TXT_AES_128_CCM_SHA256 ":" #endif /* This list is autogenerated with the gen_server_ciphers.py script; * don't hand-edit it. */ #ifdef TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384 TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384 ":" #endif #ifdef TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256 TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256 ":" #endif #ifdef TLS1_TXT_ECDHE_RSA_WITH_AES_256_SHA384 TLS1_TXT_ECDHE_RSA_WITH_AES_256_SHA384 ":" #endif #ifdef TLS1_TXT_ECDHE_RSA_WITH_AES_128_SHA256 TLS1_TXT_ECDHE_RSA_WITH_AES_128_SHA256 ":" #endif #ifdef TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA ":" #endif #ifdef TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA ":" #endif #ifdef TLS1_TXT_DHE_RSA_WITH_AES_256_GCM_SHA384 TLS1_TXT_DHE_RSA_WITH_AES_256_GCM_SHA384 ":" #endif #ifdef TLS1_TXT_DHE_RSA_WITH_AES_128_GCM_SHA256 TLS1_TXT_DHE_RSA_WITH_AES_128_GCM_SHA256 ":" #endif #ifdef TLS1_TXT_DHE_RSA_WITH_AES_256_SHA256 TLS1_TXT_DHE_RSA_WITH_AES_256_SHA256 ":" #endif #ifdef TLS1_TXT_DHE_RSA_WITH_AES_128_SHA256 TLS1_TXT_DHE_RSA_WITH_AES_128_SHA256 ":" #endif /* Required */ TLS1_TXT_DHE_RSA_WITH_AES_256_SHA ":" /* Required */ TLS1_TXT_DHE_RSA_WITH_AES_128_SHA ; /* Note: to set up your own private testing network with link crypto * disabled, set your Tors' cipher list to * (SSL3_TXT_RSA_NULL_SHA). If you do this, you won't be able to communicate * with any of the "real" Tors, though. */ #define CIPHER(id, name) name ":" #define XCIPHER(id, name) /** List of ciphers that clients should advertise, omitting items that * our OpenSSL doesn't know about. */ static const char CLIENT_CIPHER_LIST[] = #include "ciphers.inc" /* Tell it not to use SSLv2 ciphers, so that it can select an SSLv3 version * of any cipher we say. */ "!SSLv2" ; #undef CIPHER #undef XCIPHER /** Free all storage held in cert */ void tor_x509_cert_free(tor_x509_cert_t *cert) { if (! cert) return; if (cert->cert) X509_free(cert->cert); tor_free(cert->encoded); memwipe(cert, 0x03, sizeof(*cert)); /* LCOV_EXCL_BR_START since cert will never be NULL here */ tor_free(cert); /* LCOV_EXCL_BR_STOP */ } /** * Allocate a new tor_x509_cert_t to hold the certificate "x509_cert". * * Steals a reference to x509_cert. */ MOCK_IMPL(STATIC tor_x509_cert_t *, tor_x509_cert_new,(X509 *x509_cert)) { tor_x509_cert_t *cert; EVP_PKEY *pkey; RSA *rsa; int length; unsigned char *buf = NULL; if (!x509_cert) return NULL; length = i2d_X509(x509_cert, &buf); cert = tor_malloc_zero(sizeof(tor_x509_cert_t)); if (length <= 0 || buf == NULL) { /* LCOV_EXCL_START for the same reason as the exclusion above */ tor_free(cert); log_err(LD_CRYPTO, "Couldn't get length of encoded x509 certificate"); X509_free(x509_cert); return NULL; /* LCOV_EXCL_STOP */ } cert->encoded_len = (size_t) length; cert->encoded = tor_malloc(length); memcpy(cert->encoded, buf, length); OPENSSL_free(buf); cert->cert = x509_cert; crypto_common_digests(&cert->cert_digests, (char*)cert->encoded, cert->encoded_len); if ((pkey = X509_get_pubkey(x509_cert)) && (rsa = EVP_PKEY_get1_RSA(pkey))) { crypto_pk_t *pk = crypto_new_pk_from_rsa_(rsa); crypto_pk_get_common_digests(pk, &cert->pkey_digests); cert->pkey_digests_set = 1; crypto_pk_free(pk); EVP_PKEY_free(pkey); } return cert; } /** Return a new copy of cert. */ tor_x509_cert_t * tor_x509_cert_dup(const tor_x509_cert_t *cert) { tor_assert(cert); X509 *x509 = cert->cert; return tor_x509_cert_new(X509_dup(x509)); } /** Read a DER-encoded X509 cert, of length exactly certificate_len, * from a certificate. Return a newly allocated tor_x509_cert_t on * success and NULL on failure. */ tor_x509_cert_t * tor_x509_cert_decode(const uint8_t *certificate, size_t certificate_len) { X509 *x509; const unsigned char *cp = (const unsigned char *)certificate; tor_x509_cert_t *newcert; tor_assert(certificate); check_no_tls_errors(); if (certificate_len > INT_MAX) goto err; x509 = d2i_X509(NULL, &cp, (int)certificate_len); if (!x509) goto err; /* Couldn't decode */ if (cp - certificate != (int)certificate_len) { X509_free(x509); goto err; /* Didn't use all the bytes */ } newcert = tor_x509_cert_new(x509); if (!newcert) { goto err; } if (newcert->encoded_len != certificate_len || fast_memneq(newcert->encoded, certificate, certificate_len)) { /* Cert wasn't in DER */ tor_x509_cert_free(newcert); goto err; } return newcert; err: tls_log_errors(NULL, LOG_INFO, LD_CRYPTO, "decoding a certificate"); return NULL; } /** Set *encoded_out and *size_out to cert's encoded DER * representation and length, respectively. */ void tor_x509_cert_get_der(const tor_x509_cert_t *cert, const uint8_t **encoded_out, size_t *size_out) { tor_assert(cert); tor_assert(encoded_out); tor_assert(size_out); *encoded_out = cert->encoded; *size_out = cert->encoded_len; } /** Return a set of digests for the public key in cert, or NULL if this * cert's public key is not one we know how to take the digest of. */ const common_digests_t * tor_x509_cert_get_id_digests(const tor_x509_cert_t *cert) { if (cert->pkey_digests_set) return &cert->pkey_digests; else return NULL; } /** Return a set of digests for the public key in cert. */ const common_digests_t * tor_x509_cert_get_cert_digests(const tor_x509_cert_t *cert) { return &cert->cert_digests; } /** Remove a reference to ctx, and free it if it has no more * references. */ static void tor_tls_context_decref(tor_tls_context_t *ctx) { tor_assert(ctx); if (--ctx->refcnt == 0) { SSL_CTX_free(ctx->ctx); tor_x509_cert_free(ctx->my_link_cert); tor_x509_cert_free(ctx->my_id_cert); tor_x509_cert_free(ctx->my_auth_cert); crypto_pk_free(ctx->link_key); crypto_pk_free(ctx->auth_key); /* LCOV_EXCL_BR_START since ctx will never be NULL here */ tor_free(ctx); /* LCOV_EXCL_BR_STOP */ } } /** Set *link_cert_out and *id_cert_out to the link certificate * and ID certificate that we're currently using for our V3 in-protocol * handshake's certificate chain. If server is true, provide the certs * that we use in server mode; otherwise, provide the certs that we use in * client mode. */ int tor_tls_get_my_certs(int server, const tor_x509_cert_t **link_cert_out, const tor_x509_cert_t **id_cert_out) { tor_tls_context_t *ctx = server ? server_tls_context : client_tls_context; if (! ctx) return -1; if (link_cert_out) *link_cert_out = server ? ctx->my_link_cert : ctx->my_auth_cert; if (id_cert_out) *id_cert_out = ctx->my_id_cert; return 0; } /** * Return the authentication key that we use to authenticate ourselves as a * client in the V3 in-protocol handshake. */ crypto_pk_t * tor_tls_get_my_client_auth_key(void) { if (! client_tls_context) return NULL; return client_tls_context->auth_key; } /** * Return a newly allocated copy of the public key that a certificate * certifies. Return NULL if the cert's key is not RSA. */ crypto_pk_t * tor_tls_cert_get_key(tor_x509_cert_t *cert) { crypto_pk_t *result = NULL; EVP_PKEY *pkey = X509_get_pubkey(cert->cert); RSA *rsa; if (!pkey) return NULL; rsa = EVP_PKEY_get1_RSA(pkey); if (!rsa) { EVP_PKEY_free(pkey); return NULL; } result = crypto_new_pk_from_rsa_(rsa); EVP_PKEY_free(pkey); return result; } /** Return true iff the other side of tls has authenticated to us, and * the key certified in cert is the same as the key they used to do it. */ MOCK_IMPL(int, tor_tls_cert_matches_key,(const tor_tls_t *tls, const tor_x509_cert_t *cert)) { tor_x509_cert_t *peer = tor_tls_get_peer_cert((tor_tls_t *)tls); if (!peer) return 0; X509 *peercert = peer->cert; EVP_PKEY *link_key = NULL, *cert_key = NULL; int result; link_key = X509_get_pubkey(peercert); cert_key = X509_get_pubkey(cert->cert); result = link_key && cert_key && EVP_PKEY_cmp(cert_key, link_key) == 1; tor_x509_cert_free(peer); if (link_key) EVP_PKEY_free(link_key); if (cert_key) EVP_PKEY_free(cert_key); return result; } /** Check whether cert is well-formed, currently live, and correctly * signed by the public key in signing_cert. If check_rsa_1024, * make sure that it has an RSA key with 1024 bits; otherwise, just check that * the key is long enough. Return 1 if the cert is good, and 0 if it's bad or * we couldn't check it. */ int tor_tls_cert_is_valid(int severity, const tor_x509_cert_t *cert, const tor_x509_cert_t *signing_cert, int check_rsa_1024) { check_no_tls_errors(); EVP_PKEY *cert_key; int r, key_ok = 0; if (!signing_cert || !cert) goto bad; EVP_PKEY *signing_key = X509_get_pubkey(signing_cert->cert); if (!signing_key) goto bad; r = X509_verify(cert->cert, signing_key); EVP_PKEY_free(signing_key); if (r <= 0) goto bad; /* okay, the signature checked out right. Now let's check the check the * lifetime. */ if (check_cert_lifetime_internal(severity, cert->cert, 48*60*60, 30*24*60*60) < 0) goto bad; cert_key = X509_get_pubkey(cert->cert); if (check_rsa_1024 && cert_key) { RSA *rsa = EVP_PKEY_get1_RSA(cert_key); #ifdef OPENSSL_1_1_API if (rsa && RSA_bits(rsa) == 1024) #else if (rsa && BN_num_bits(rsa->n) == 1024) #endif key_ok = 1; if (rsa) RSA_free(rsa); } else if (cert_key) { int min_bits = 1024; #ifdef EVP_PKEY_EC if (EVP_PKEY_base_id(cert_key) == EVP_PKEY_EC) min_bits = 128; #endif if (EVP_PKEY_bits(cert_key) >= min_bits) key_ok = 1; } EVP_PKEY_free(cert_key); if (!key_ok) goto bad; /* XXXX compare DNs or anything? */ return 1; bad: tls_log_errors(NULL, LOG_INFO, LD_CRYPTO, "checking a certificate"); return 0; } /** Increase the reference count of ctx. */ static void tor_tls_context_incref(tor_tls_context_t *ctx) { ++ctx->refcnt; } /** Create new global client and server TLS contexts. * * If server_identity is NULL, this will not generate a server * TLS context. If TOR_TLS_CTX_IS_PUBLIC_SERVER is set in flags, use * the same TLS context for incoming and outgoing connections, and * ignore client_identity. If one of TOR_TLS_CTX_USE_ECDHE_P{224,256} * is set in flags, use that ECDHE group if possible; otherwise use * the default ECDHE group. */ int tor_tls_context_init(unsigned flags, crypto_pk_t *client_identity, crypto_pk_t *server_identity, unsigned int key_lifetime) { int rv1 = 0; int rv2 = 0; const int is_public_server = flags & TOR_TLS_CTX_IS_PUBLIC_SERVER; check_no_tls_errors(); if (is_public_server) { tor_tls_context_t *new_ctx; tor_tls_context_t *old_ctx; tor_assert(server_identity != NULL); rv1 = tor_tls_context_init_one(&server_tls_context, server_identity, key_lifetime, flags, 0); if (rv1 >= 0) { new_ctx = server_tls_context; tor_tls_context_incref(new_ctx); old_ctx = client_tls_context; client_tls_context = new_ctx; if (old_ctx != NULL) { tor_tls_context_decref(old_ctx); } } } else { if (server_identity != NULL) { rv1 = tor_tls_context_init_one(&server_tls_context, server_identity, key_lifetime, flags, 0); } else { tor_tls_context_t *old_ctx = server_tls_context; server_tls_context = NULL; if (old_ctx != NULL) { tor_tls_context_decref(old_ctx); } } rv2 = tor_tls_context_init_one(&client_tls_context, client_identity, key_lifetime, flags, 1); } tls_log_errors(NULL, LOG_WARN, LD_CRYPTO, "constructing a TLS context"); return MIN(rv1, rv2); } /** Create a new global TLS context. * * You can call this function multiple times. Each time you call it, * it generates new certificates; all new connections will use * the new SSL context. */ STATIC int tor_tls_context_init_one(tor_tls_context_t **ppcontext, crypto_pk_t *identity, unsigned int key_lifetime, unsigned int flags, int is_client) { tor_tls_context_t *new_ctx = tor_tls_context_new(identity, key_lifetime, flags, is_client); tor_tls_context_t *old_ctx = *ppcontext; if (new_ctx != NULL) { *ppcontext = new_ctx; /* Free the old context if one existed. */ if (old_ctx != NULL) { /* This is safe even if there are open connections: we reference- * count tor_tls_context_t objects. */ tor_tls_context_decref(old_ctx); } } return ((new_ctx != NULL) ? 0 : -1); } /** The group we should use for ecdhe when none was selected. */ #define NID_tor_default_ecdhe_group NID_X9_62_prime256v1 /** Create a new TLS context for use with Tor TLS handshakes. * identity should be set to the identity key used to sign the * certificate. */ STATIC tor_tls_context_t * tor_tls_context_new(crypto_pk_t *identity, unsigned int key_lifetime, unsigned flags, int is_client) { crypto_pk_t *rsa = NULL, *rsa_auth = NULL; EVP_PKEY *pkey = NULL; tor_tls_context_t *result = NULL; X509 *cert = NULL, *idcert = NULL, *authcert = NULL; char *nickname = NULL, *nn2 = NULL; tor_tls_init(); nickname = crypto_random_hostname(8, 20, "www.", ".net"); #ifdef DISABLE_V3_LINKPROTO_SERVERSIDE nn2 = crypto_random_hostname(8, 20, "www.", ".net"); #else nn2 = crypto_random_hostname(8, 20, "www.", ".com"); #endif /* Generate short-term RSA key for use with TLS. */ if (!(rsa = crypto_pk_new())) goto error; if (crypto_pk_generate_key(rsa)<0) goto error; if (!is_client) { /* Generate short-term RSA key for use in the in-protocol ("v3") * authentication handshake. */ if (!(rsa_auth = crypto_pk_new())) goto error; if (crypto_pk_generate_key(rsa_auth)<0) goto error; /* Create a link certificate signed by identity key. */ cert = tor_tls_create_certificate(rsa, identity, nickname, nn2, key_lifetime); /* Create self-signed certificate for identity key. */ idcert = tor_tls_create_certificate(identity, identity, nn2, nn2, IDENTITY_CERT_LIFETIME); /* Create an authentication certificate signed by identity key. */ authcert = tor_tls_create_certificate(rsa_auth, identity, nickname, nn2, key_lifetime); if (!cert || !idcert || !authcert) { log_warn(LD_CRYPTO, "Error creating certificate"); goto error; } } result = tor_malloc_zero(sizeof(tor_tls_context_t)); result->refcnt = 1; if (!is_client) { result->my_link_cert = tor_x509_cert_new(X509_dup(cert)); result->my_id_cert = tor_x509_cert_new(X509_dup(idcert)); result->my_auth_cert = tor_x509_cert_new(X509_dup(authcert)); if (!result->my_link_cert || !result->my_id_cert || !result->my_auth_cert) goto error; result->link_key = crypto_pk_dup_key(rsa); result->auth_key = crypto_pk_dup_key(rsa_auth); } #if 0 /* Tell OpenSSL to only use TLS1. This may have subtly different results * from SSLv23_method() with SSLv2 and SSLv3 disabled, so we need to do some * investigation before we consider adjusting it. It should be compatible * with existing Tors. */ if (!(result->ctx = SSL_CTX_new(TLSv1_method()))) goto error; #endif /* Tell OpenSSL to use TLS 1.0 or later but not SSL2 or SSL3. */ #ifdef HAVE_TLS_METHOD if (!(result->ctx = SSL_CTX_new(TLS_method()))) goto error; #else if (!(result->ctx = SSL_CTX_new(SSLv23_method()))) goto error; #endif #ifdef HAVE_SSL_CTX_SET_SECURITY_LEVEL /* Level 1 re-enables RSA1024 and DH1024 for compatibility with old tors */ SSL_CTX_set_security_level(result->ctx, 1); #endif SSL_CTX_set_options(result->ctx, SSL_OP_NO_SSLv2); SSL_CTX_set_options(result->ctx, SSL_OP_NO_SSLv3); /* Prefer the server's ordering of ciphers: the client's ordering has * historically been chosen for fingerprinting resistance. */ SSL_CTX_set_options(result->ctx, SSL_OP_CIPHER_SERVER_PREFERENCE); /* Disable TLS tickets if they're supported. We never want to use them; * using them can make our perfect forward secrecy a little worse, *and* * create an opportunity to fingerprint us (since it's unusual to use them * with TLS sessions turned off). * * In 0.2.4, clients advertise support for them though, to avoid a TLS * distinguishability vector. This can give us worse PFS, though, if we * get a server that doesn't set SSL_OP_NO_TICKET. With luck, there will * be few such servers by the time 0.2.4 is more stable. */ #ifdef SSL_OP_NO_TICKET if (! is_client) { SSL_CTX_set_options(result->ctx, SSL_OP_NO_TICKET); } #endif SSL_CTX_set_options(result->ctx, SSL_OP_SINGLE_DH_USE); SSL_CTX_set_options(result->ctx, SSL_OP_SINGLE_ECDH_USE); #ifdef SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION SSL_CTX_set_options(result->ctx, SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION); #endif /* Yes, we know what we are doing here. No, we do not treat a renegotiation * as authenticating any earlier-received data. */ { SSL_CTX_set_options(result->ctx, SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION); } #ifdef SSL_OP_NO_COMPRESSION SSL_CTX_set_options(result->ctx, SSL_OP_NO_COMPRESSION); #endif #if OPENSSL_VERSION_NUMBER < OPENSSL_V_SERIES(1,1,0) #ifndef OPENSSL_NO_COMP /* Don't actually allow compression; it uses ram and time, but the data * we transmit is all encrypted anyway. */ if (result->ctx->comp_methods) result->ctx->comp_methods = NULL; #endif #endif #ifdef SSL_MODE_RELEASE_BUFFERS SSL_CTX_set_mode(result->ctx, SSL_MODE_RELEASE_BUFFERS); #endif if (! is_client) { if (cert && !SSL_CTX_use_certificate(result->ctx,cert)) goto error; X509_free(cert); /* We just added a reference to cert. */ cert=NULL; if (idcert) { X509_STORE *s = SSL_CTX_get_cert_store(result->ctx); tor_assert(s); X509_STORE_add_cert(s, idcert); X509_free(idcert); /* The context now owns the reference to idcert */ idcert = NULL; } } SSL_CTX_set_session_cache_mode(result->ctx, SSL_SESS_CACHE_OFF); if (!is_client) { tor_assert(rsa); if (!(pkey = crypto_pk_get_evp_pkey_(rsa,1))) goto error; if (!SSL_CTX_use_PrivateKey(result->ctx, pkey)) goto error; EVP_PKEY_free(pkey); pkey = NULL; if (!SSL_CTX_check_private_key(result->ctx)) goto error; } { crypto_dh_t *dh = crypto_dh_new(DH_TYPE_TLS); tor_assert(dh); SSL_CTX_set_tmp_dh(result->ctx, crypto_dh_get_dh_(dh)); crypto_dh_free(dh); } if (! is_client) { int nid; EC_KEY *ec_key; if (flags & TOR_TLS_CTX_USE_ECDHE_P224) nid = NID_secp224r1; else if (flags & TOR_TLS_CTX_USE_ECDHE_P256) nid = NID_X9_62_prime256v1; else nid = NID_tor_default_ecdhe_group; /* Use P-256 for ECDHE. */ ec_key = EC_KEY_new_by_curve_name(nid); if (ec_key != NULL) /*XXXX Handle errors? */ SSL_CTX_set_tmp_ecdh(result->ctx, ec_key); EC_KEY_free(ec_key); } SSL_CTX_set_verify(result->ctx, SSL_VERIFY_PEER, always_accept_verify_cb); /* let us realloc bufs that we're writing from */ SSL_CTX_set_mode(result->ctx, SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER); if (rsa) crypto_pk_free(rsa); if (rsa_auth) crypto_pk_free(rsa_auth); X509_free(authcert); tor_free(nickname); tor_free(nn2); return result; error: tls_log_errors(NULL, LOG_WARN, LD_NET, "creating TLS context"); tor_free(nickname); tor_free(nn2); if (pkey) EVP_PKEY_free(pkey); if (rsa) crypto_pk_free(rsa); if (rsa_auth) crypto_pk_free(rsa_auth); if (result) tor_tls_context_decref(result); if (cert) X509_free(cert); if (idcert) X509_free(idcert); if (authcert) X509_free(authcert); return NULL; } /** Invoked when a TLS state changes: log the change at severity 'debug' */ STATIC void tor_tls_debug_state_callback(const SSL *ssl, int type, int val) { /* LCOV_EXCL_START since this depends on whether debug is captured or not */ log_debug(LD_HANDSHAKE, "SSL %p is now in state %s [type=%d,val=%d].", ssl, SSL_state_string_long(ssl), type, val); /* LCOV_EXCL_STOP */ } /* Return the name of the negotiated ciphersuite in use on tls */ const char * tor_tls_get_ciphersuite_name(tor_tls_t *tls) { return SSL_get_cipher(tls->ssl); } /* Here's the old V2 cipher list we sent from 0.2.1.1-alpha up to * 0.2.3.17-beta. If a client is using this list, we can't believe the ciphers * that it claims to support. We'll prune this list to remove the ciphers * *we* don't recognize. */ STATIC uint16_t v2_cipher_list[] = { 0xc00a, /* TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA */ 0xc014, /* TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA */ 0x0039, /* TLS1_TXT_DHE_RSA_WITH_AES_256_SHA */ 0x0038, /* TLS1_TXT_DHE_DSS_WITH_AES_256_SHA */ 0xc00f, /* TLS1_TXT_ECDH_RSA_WITH_AES_256_CBC_SHA */ 0xc005, /* TLS1_TXT_ECDH_ECDSA_WITH_AES_256_CBC_SHA */ 0x0035, /* TLS1_TXT_RSA_WITH_AES_256_SHA */ 0xc007, /* TLS1_TXT_ECDHE_ECDSA_WITH_RC4_128_SHA */ 0xc009, /* TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA */ 0xc011, /* TLS1_TXT_ECDHE_RSA_WITH_RC4_128_SHA */ 0xc013, /* TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA */ 0x0033, /* TLS1_TXT_DHE_RSA_WITH_AES_128_SHA */ 0x0032, /* TLS1_TXT_DHE_DSS_WITH_AES_128_SHA */ 0xc00c, /* TLS1_TXT_ECDH_RSA_WITH_RC4_128_SHA */ 0xc00e, /* TLS1_TXT_ECDH_RSA_WITH_AES_128_CBC_SHA */ 0xc002, /* TLS1_TXT_ECDH_ECDSA_WITH_RC4_128_SHA */ 0xc004, /* TLS1_TXT_ECDH_ECDSA_WITH_AES_128_CBC_SHA */ 0x0004, /* SSL3_TXT_RSA_RC4_128_MD5 */ 0x0005, /* SSL3_TXT_RSA_RC4_128_SHA */ 0x002f, /* TLS1_TXT_RSA_WITH_AES_128_SHA */ 0xc008, /* TLS1_TXT_ECDHE_ECDSA_WITH_DES_192_CBC3_SHA */ 0xc012, /* TLS1_TXT_ECDHE_RSA_WITH_DES_192_CBC3_SHA */ 0x0016, /* SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA */ 0x0013, /* SSL3_TXT_EDH_DSS_DES_192_CBC3_SHA */ 0xc00d, /* TLS1_TXT_ECDH_RSA_WITH_DES_192_CBC3_SHA */ 0xc003, /* TLS1_TXT_ECDH_ECDSA_WITH_DES_192_CBC3_SHA */ 0xfeff, /* SSL3_TXT_RSA_FIPS_WITH_3DES_EDE_CBC_SHA */ 0x000a, /* SSL3_TXT_RSA_DES_192_CBC3_SHA */ 0 }; /** Have we removed the unrecognized ciphers from v2_cipher_list yet? */ static int v2_cipher_list_pruned = 0; /** Return 0 if m does not support the cipher with ID cipher; * return 1 if it does support it, or if we have no way to tell. */ STATIC int find_cipher_by_id(const SSL *ssl, const SSL_METHOD *m, uint16_t cipher) { const SSL_CIPHER *c; #ifdef HAVE_SSL_CIPHER_FIND (void) m; { unsigned char cipherid[3]; tor_assert(ssl); set_uint16(cipherid, htons(cipher)); cipherid[2] = 0; /* If ssl23_get_cipher_by_char finds no cipher starting * with a two-byte 'cipherid', it may look for a v2 * cipher with the appropriate 3 bytes. */ c = SSL_CIPHER_find((SSL*)ssl, cipherid); if (c) tor_assert((SSL_CIPHER_get_id(c) & 0xffff) == cipher); return c != NULL; } #else # if defined(HAVE_STRUCT_SSL_METHOD_ST_GET_CIPHER_BY_CHAR) if (m && m->get_cipher_by_char) { unsigned char cipherid[3]; set_uint16(cipherid, htons(cipher)); cipherid[2] = 0; /* If ssl23_get_cipher_by_char finds no cipher starting * with a two-byte 'cipherid', it may look for a v2 * cipher with the appropriate 3 bytes. */ c = m->get_cipher_by_char(cipherid); if (c) tor_assert((c->id & 0xffff) == cipher); return c != NULL; } # endif # ifndef OPENSSL_1_1_API if (m && m->get_cipher && m->num_ciphers) { /* It would seem that some of the "let's-clean-up-openssl" forks have * removed the get_cipher_by_char function. Okay, so now you get a * quadratic search. */ int i; for (i = 0; i < m->num_ciphers(); ++i) { c = m->get_cipher(i); if (c && (c->id & 0xffff) == cipher) { return 1; } } return 0; } # endif (void) ssl; (void) m; (void) cipher; return 1; /* No way to search */ #endif } /** Remove from v2_cipher_list every cipher that we don't support, so that * comparing v2_cipher_list to a client's cipher list will give a sensible * result. */ static void prune_v2_cipher_list(const SSL *ssl) { uint16_t *inp, *outp; #ifdef HAVE_TLS_METHOD const SSL_METHOD *m = TLS_method(); #else const SSL_METHOD *m = SSLv23_method(); #endif inp = outp = v2_cipher_list; while (*inp) { if (find_cipher_by_id(ssl, m, *inp)) { *outp++ = *inp++; } else { inp++; } } *outp = 0; v2_cipher_list_pruned = 1; } /** Examine the client cipher list in ssl, and determine what kind of * client it is. Return one of CIPHERS_ERR, CIPHERS_V1, CIPHERS_V2, * CIPHERS_UNRESTRICTED. **/ STATIC int tor_tls_classify_client_ciphers(const SSL *ssl, STACK_OF(SSL_CIPHER) *peer_ciphers) { int i, res; tor_tls_t *tor_tls; if (PREDICT_UNLIKELY(!v2_cipher_list_pruned)) prune_v2_cipher_list(ssl); tor_tls = tor_tls_get_by_ssl(ssl); if (tor_tls && tor_tls->client_cipher_list_type) return tor_tls->client_cipher_list_type; /* If we reached this point, we just got a client hello. See if there is * a cipher list. */ if (!peer_ciphers) { log_info(LD_NET, "No ciphers on session"); res = CIPHERS_ERR; goto done; } /* Now we need to see if there are any ciphers whose presence means we're * dealing with an updated Tor. */ for (i = 0; i < sk_SSL_CIPHER_num(peer_ciphers); ++i) { const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(peer_ciphers, i); const char *ciphername = SSL_CIPHER_get_name(cipher); if (strcmp(ciphername, TLS1_TXT_DHE_RSA_WITH_AES_128_SHA) && strcmp(ciphername, TLS1_TXT_DHE_RSA_WITH_AES_256_SHA) && strcmp(ciphername, SSL3_TXT_EDH_RSA_DES_192_CBC3_SHA) && strcmp(ciphername, "(NONE)")) { log_debug(LD_NET, "Got a non-version-1 cipher called '%s'", ciphername); // return 1; goto v2_or_higher; } } res = CIPHERS_V1; goto done; v2_or_higher: { const uint16_t *v2_cipher = v2_cipher_list; for (i = 0; i < sk_SSL_CIPHER_num(peer_ciphers); ++i) { const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(peer_ciphers, i); uint16_t id = SSL_CIPHER_get_id(cipher) & 0xffff; if (id == 0x00ff) /* extended renegotiation indicator. */ continue; if (!id || id != *v2_cipher) { res = CIPHERS_UNRESTRICTED; goto dump_ciphers; } ++v2_cipher; } if (*v2_cipher != 0) { res = CIPHERS_UNRESTRICTED; goto dump_ciphers; } res = CIPHERS_V2; } dump_ciphers: { smartlist_t *elts = smartlist_new(); char *s; for (i = 0; i < sk_SSL_CIPHER_num(peer_ciphers); ++i) { const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(peer_ciphers, i); const char *ciphername = SSL_CIPHER_get_name(cipher); smartlist_add(elts, (char*)ciphername); } s = smartlist_join_strings(elts, ":", 0, NULL); log_debug(LD_NET, "Got a %s V2/V3 cipher list from %s. It is: '%s'", (res == CIPHERS_V2) ? "fictitious" : "real", ADDR(tor_tls), s); tor_free(s); smartlist_free(elts); } done: if (tor_tls) return tor_tls->client_cipher_list_type = res; return res; } /** Return true iff the cipher list suggested by the client for ssl is * a list that indicates that the client knows how to do the v2 TLS connection * handshake. */ STATIC int tor_tls_client_is_using_v2_ciphers(const SSL *ssl) { STACK_OF(SSL_CIPHER) *ciphers; #ifdef HAVE_SSL_GET_CLIENT_CIPHERS ciphers = SSL_get_client_ciphers(ssl); #else SSL_SESSION *session; if (!(session = SSL_get_session((SSL *)ssl))) { log_info(LD_NET, "No session on TLS?"); return CIPHERS_ERR; } ciphers = session->ciphers; #endif return tor_tls_classify_client_ciphers(ssl, ciphers) >= CIPHERS_V2; } /** Invoked when we're accepting a connection on ssl, and the connection * changes state. We use this: *
  • To alter the state of the handshake partway through, so we * do not send or request extra certificates in v2 handshakes.
  • *
  • To detect renegotiation
*/ STATIC void tor_tls_server_info_callback(const SSL *ssl, int type, int val) { tor_tls_t *tls; (void) val; IF_BUG_ONCE(ssl == NULL) { return; // LCOV_EXCL_LINE } tor_tls_debug_state_callback(ssl, type, val); if (type != SSL_CB_ACCEPT_LOOP) return; OSSL_HANDSHAKE_STATE ssl_state = SSL_get_state(ssl); if (! STATE_IS_SW_SERVER_HELLO(ssl_state)) return; tls = tor_tls_get_by_ssl(ssl); if (tls) { /* Check whether we're watching for renegotiates. If so, this is one! */ if (tls->negotiated_callback) tls->got_renegotiate = 1; if (tls->server_handshake_count < 127) /*avoid any overflow possibility*/ ++tls->server_handshake_count; } else { log_warn(LD_BUG, "Couldn't look up the tls for an SSL*. How odd!"); return; } /* Now check the cipher list. */ if (tor_tls_client_is_using_v2_ciphers(ssl)) { if (tls->wasV2Handshake) return; /* We already turned this stuff off for the first handshake; * This is a renegotiation. */ /* Yes, we're casting away the const from ssl. This is very naughty of us. * Let's hope openssl doesn't notice! */ /* Set SSL_MODE_NO_AUTO_CHAIN to keep from sending back any extra certs. */ SSL_set_mode((SSL*) ssl, SSL_MODE_NO_AUTO_CHAIN); /* Don't send a hello request. */ SSL_set_verify((SSL*) ssl, SSL_VERIFY_NONE, NULL); if (tls) { tls->wasV2Handshake = 1; } else { /* LCOV_EXCL_START this line is not reachable */ log_warn(LD_BUG, "Couldn't look up the tls for an SSL*. How odd!"); /* LCOV_EXCL_STOP */ } } } /** Callback to get invoked on a server after we've read the list of ciphers * the client supports, but before we pick our own ciphersuite. * * We can't abuse an info_cb for this, since by the time one of the * client_hello info_cbs is called, we've already picked which ciphersuite to * use. * * Technically, this function is an abuse of this callback, since the point of * a session_secret_cb is to try to set up and/or verify a shared-secret for * authentication on the fly. But as long as we return 0, we won't actually be * setting up a shared secret, and all will be fine. */ STATIC int tor_tls_session_secret_cb(SSL *ssl, void *secret, int *secret_len, STACK_OF(SSL_CIPHER) *peer_ciphers, CONST_IF_OPENSSL_1_1_API SSL_CIPHER **cipher, void *arg) { (void) secret; (void) secret_len; (void) peer_ciphers; (void) cipher; (void) arg; if (tor_tls_classify_client_ciphers(ssl, peer_ciphers) == CIPHERS_UNRESTRICTED) { SSL_set_cipher_list(ssl, UNRESTRICTED_SERVER_CIPHER_LIST); } SSL_set_session_secret_cb(ssl, NULL, NULL); return 0; } static void tor_tls_setup_session_secret_cb(tor_tls_t *tls) { SSL_set_session_secret_cb(tls->ssl, tor_tls_session_secret_cb, NULL); } /** Create a new TLS object from a file descriptor, and a flag to * determine whether it is functioning as a server. */ tor_tls_t * tor_tls_new(int sock, int isServer) { BIO *bio = NULL; tor_tls_t *result = tor_malloc_zero(sizeof(tor_tls_t)); tor_tls_context_t *context = isServer ? server_tls_context : client_tls_context; result->magic = TOR_TLS_MAGIC; check_no_tls_errors(); tor_assert(context); /* make sure somebody made it first */ if (!(result->ssl = SSL_new(context->ctx))) { tls_log_errors(NULL, LOG_WARN, LD_NET, "creating SSL object"); tor_free(result); goto err; } #ifdef SSL_set_tlsext_host_name /* Browsers use the TLS hostname extension, so we should too. */ if (!isServer) { char *fake_hostname = crypto_random_hostname(4,25, "www.",".com"); SSL_set_tlsext_host_name(result->ssl, fake_hostname); tor_free(fake_hostname); } #endif if (!SSL_set_cipher_list(result->ssl, isServer ? SERVER_CIPHER_LIST : CLIENT_CIPHER_LIST)) { tls_log_errors(NULL, LOG_WARN, LD_NET, "setting ciphers"); #ifdef SSL_set_tlsext_host_name SSL_set_tlsext_host_name(result->ssl, NULL); #endif SSL_free(result->ssl); tor_free(result); goto err; } result->socket = sock; bio = BIO_new_socket(sock, BIO_NOCLOSE); if (! bio) { tls_log_errors(NULL, LOG_WARN, LD_NET, "opening BIO"); #ifdef SSL_set_tlsext_host_name SSL_set_tlsext_host_name(result->ssl, NULL); #endif SSL_free(result->ssl); tor_free(result); goto err; } { int set_worked = SSL_set_ex_data(result->ssl, tor_tls_object_ex_data_index, result); if (!set_worked) { log_warn(LD_BUG, "Couldn't set the tls for an SSL*; connection will fail"); } } SSL_set_bio(result->ssl, bio, bio); tor_tls_context_incref(context); result->context = context; result->state = TOR_TLS_ST_HANDSHAKE; result->isServer = isServer; result->wantwrite_n = 0; result->last_write_count = (unsigned long) BIO_number_written(bio); result->last_read_count = (unsigned long) BIO_number_read(bio); if (result->last_write_count || result->last_read_count) { log_warn(LD_NET, "Newly created BIO has read count %lu, write count %lu", result->last_read_count, result->last_write_count); } if (isServer) { SSL_set_info_callback(result->ssl, tor_tls_server_info_callback); } else { SSL_set_info_callback(result->ssl, tor_tls_debug_state_callback); } if (isServer) tor_tls_setup_session_secret_cb(result); goto done; err: result = NULL; done: /* Not expected to get called. */ tls_log_errors(NULL, LOG_WARN, LD_NET, "creating tor_tls_t object"); return result; } /** Make future log messages about tls display the address * address. */ void tor_tls_set_logged_address(tor_tls_t *tls, const char *address) { tor_assert(tls); tor_free(tls->address); tls->address = tor_strdup(address); } /** Set cb to be called with argument arg whenever tls * next gets a client-side renegotiate in the middle of a read. Do not * invoke this function until after initial handshaking is done! */ void tor_tls_set_renegotiate_callback(tor_tls_t *tls, void (*cb)(tor_tls_t *, void *arg), void *arg) { tls->negotiated_callback = cb; tls->callback_arg = arg; tls->got_renegotiate = 0; if (cb) { SSL_set_info_callback(tls->ssl, tor_tls_server_info_callback); } else { SSL_set_info_callback(tls->ssl, tor_tls_debug_state_callback); } } /** If this version of openssl requires it, turn on renegotiation on * tls. */ void tor_tls_unblock_renegotiation(tor_tls_t *tls) { /* Yes, we know what we are doing here. No, we do not treat a renegotiation * as authenticating any earlier-received data. */ SSL_set_options(tls->ssl, SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION); } /** If this version of openssl supports it, turn off renegotiation on * tls. (Our protocol never requires this for security, but it's nice * to use belt-and-suspenders here.) */ void tor_tls_block_renegotiation(tor_tls_t *tls) { #ifdef SUPPORT_UNSAFE_RENEGOTIATION_FLAG tls->ssl->s3->flags &= ~SSL3_FLAGS_ALLOW_UNSAFE_LEGACY_RENEGOTIATION; #else (void) tls; #endif } /** Assert that the flags that allow legacy renegotiation are still set */ void tor_tls_assert_renegotiation_unblocked(tor_tls_t *tls) { #if defined(SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION) && \ SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION != 0 long options = SSL_get_options(tls->ssl); tor_assert(0 != (options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)); #else (void) tls; #endif } /** Return whether this tls initiated the connect (client) or * received it (server). */ int tor_tls_is_server(tor_tls_t *tls) { tor_assert(tls); return tls->isServer; } /** Release resources associated with a TLS object. Does not close the * underlying file descriptor. */ void tor_tls_free(tor_tls_t *tls) { if (!tls) return; tor_assert(tls->ssl); { size_t r,w; tor_tls_get_n_raw_bytes(tls,&r,&w); /* ensure written_by_tls is updated */ } #ifdef SSL_set_tlsext_host_name SSL_set_tlsext_host_name(tls->ssl, NULL); #endif SSL_free(tls->ssl); tls->ssl = NULL; tls->negotiated_callback = NULL; if (tls->context) tor_tls_context_decref(tls->context); tor_free(tls->address); tls->magic = 0x99999999; tor_free(tls); } /** Underlying function for TLS reading. Reads up to len * characters from tls into cp. On success, returns the * number of characters read. On failure, returns TOR_TLS_ERROR, * TOR_TLS_CLOSE, TOR_TLS_WANTREAD, or TOR_TLS_WANTWRITE. */ MOCK_IMPL(int, tor_tls_read,(tor_tls_t *tls, char *cp, size_t len)) { int r, err; tor_assert(tls); tor_assert(tls->ssl); tor_assert(tls->state == TOR_TLS_ST_OPEN); tor_assert(lenssl, cp, (int)len); if (r > 0) { if (tls->got_renegotiate) { /* Renegotiation happened! */ log_info(LD_NET, "Got a TLS renegotiation from %s", ADDR(tls)); if (tls->negotiated_callback) tls->negotiated_callback(tls, tls->callback_arg); tls->got_renegotiate = 0; } return r; } err = tor_tls_get_error(tls, r, CATCH_ZERO, "reading", LOG_DEBUG, LD_NET); if (err == TOR_TLS_ZERORETURN_ || err == TOR_TLS_CLOSE) { log_debug(LD_NET,"read returned r=%d; TLS is closed",r); tls->state = TOR_TLS_ST_CLOSED; return TOR_TLS_CLOSE; } else { tor_assert(err != TOR_TLS_DONE); log_debug(LD_NET,"read returned r=%d, err=%d",r,err); return err; } } /** Total number of bytes that we've used TLS to send. Used to track TLS * overhead. */ STATIC uint64_t total_bytes_written_over_tls = 0; /** Total number of bytes that TLS has put on the network for us. Used to * track TLS overhead. */ STATIC uint64_t total_bytes_written_by_tls = 0; /** Underlying function for TLS writing. Write up to n * characters from cp onto tls. On success, returns the * number of characters written. On failure, returns TOR_TLS_ERROR, * TOR_TLS_WANTREAD, or TOR_TLS_WANTWRITE. */ int tor_tls_write(tor_tls_t *tls, const char *cp, size_t n) { int r, err; tor_assert(tls); tor_assert(tls->ssl); tor_assert(tls->state == TOR_TLS_ST_OPEN); tor_assert(n < INT_MAX); if (n == 0) return 0; if (tls->wantwrite_n) { /* if WANTWRITE last time, we must use the _same_ n as before */ tor_assert(n >= tls->wantwrite_n); log_debug(LD_NET,"resuming pending-write, (%d to flush, reusing %d)", (int)n, (int)tls->wantwrite_n); n = tls->wantwrite_n; tls->wantwrite_n = 0; } r = SSL_write(tls->ssl, cp, (int)n); err = tor_tls_get_error(tls, r, 0, "writing", LOG_INFO, LD_NET); if (err == TOR_TLS_DONE) { total_bytes_written_over_tls += r; return r; } if (err == TOR_TLS_WANTWRITE || err == TOR_TLS_WANTREAD) { tls->wantwrite_n = n; } return err; } /** Perform initial handshake on tls. When finished, returns * TOR_TLS_DONE. On failure, returns TOR_TLS_ERROR, TOR_TLS_WANTREAD, * or TOR_TLS_WANTWRITE. */ int tor_tls_handshake(tor_tls_t *tls) { int r; tor_assert(tls); tor_assert(tls->ssl); tor_assert(tls->state == TOR_TLS_ST_HANDSHAKE); check_no_tls_errors(); OSSL_HANDSHAKE_STATE oldstate = SSL_get_state(tls->ssl); if (tls->isServer) { log_debug(LD_HANDSHAKE, "About to call SSL_accept on %p (%s)", tls, SSL_state_string_long(tls->ssl)); r = SSL_accept(tls->ssl); } else { log_debug(LD_HANDSHAKE, "About to call SSL_connect on %p (%s)", tls, SSL_state_string_long(tls->ssl)); r = SSL_connect(tls->ssl); } OSSL_HANDSHAKE_STATE newstate = SSL_get_state(tls->ssl); if (oldstate != newstate) log_debug(LD_HANDSHAKE, "After call, %p was in state %s", tls, SSL_state_string_long(tls->ssl)); /* We need to call this here and not earlier, since OpenSSL has a penchant * for clearing its flags when you say accept or connect. */ tor_tls_unblock_renegotiation(tls); r = tor_tls_get_error(tls,r,0, "handshaking", LOG_INFO, LD_HANDSHAKE); if (ERR_peek_error() != 0) { tls_log_errors(tls, tls->isServer ? LOG_INFO : LOG_WARN, LD_HANDSHAKE, "handshaking"); return TOR_TLS_ERROR_MISC; } if (r == TOR_TLS_DONE) { tls->state = TOR_TLS_ST_OPEN; return tor_tls_finish_handshake(tls); } return r; } /** Perform the final part of the intial TLS handshake on tls. This * should be called for the first handshake only: it determines whether the v1 * or the v2 handshake was used, and adjusts things for the renegotiation * handshake as appropriate. * * tor_tls_handshake() calls this on its own; you only need to call this if * bufferevent is doing the handshake for you. */ int tor_tls_finish_handshake(tor_tls_t *tls) { int r = TOR_TLS_DONE; check_no_tls_errors(); if (tls->isServer) { SSL_set_info_callback(tls->ssl, NULL); SSL_set_verify(tls->ssl, SSL_VERIFY_PEER, always_accept_verify_cb); SSL_clear_mode(tls->ssl, SSL_MODE_NO_AUTO_CHAIN); if (tor_tls_client_is_using_v2_ciphers(tls->ssl)) { /* This check is redundant, but back when we did it in the callback, * we might have not been able to look up the tor_tls_t if the code * was buggy. Fixing that. */ if (!tls->wasV2Handshake) { log_warn(LD_BUG, "For some reason, wasV2Handshake didn't" " get set. Fixing that."); } tls->wasV2Handshake = 1; log_debug(LD_HANDSHAKE, "Completed V2 TLS handshake with client; waiting" " for renegotiation."); } else { tls->wasV2Handshake = 0; } } else { /* Client-side */ tls->wasV2Handshake = 1; /* XXXX this can move, probably? -NM */ if (SSL_set_cipher_list(tls->ssl, SERVER_CIPHER_LIST) == 0) { tls_log_errors(NULL, LOG_WARN, LD_HANDSHAKE, "re-setting ciphers"); r = TOR_TLS_ERROR_MISC; } } tls_log_errors(NULL, LOG_WARN, LD_NET, "finishing the handshake"); return r; } /** Shut down an open tls connection tls. When finished, returns * TOR_TLS_DONE. On failure, returns TOR_TLS_ERROR, TOR_TLS_WANTREAD, * or TOR_TLS_WANTWRITE. */ int tor_tls_shutdown(tor_tls_t *tls) { int r, err; char buf[128]; tor_assert(tls); tor_assert(tls->ssl); check_no_tls_errors(); while (1) { if (tls->state == TOR_TLS_ST_SENTCLOSE) { /* If we've already called shutdown once to send a close message, * we read until the other side has closed too. */ do { r = SSL_read(tls->ssl, buf, 128); } while (r>0); err = tor_tls_get_error(tls, r, CATCH_ZERO, "reading to shut down", LOG_INFO, LD_NET); if (err == TOR_TLS_ZERORETURN_) { tls->state = TOR_TLS_ST_GOTCLOSE; /* fall through... */ } else { return err; } } r = SSL_shutdown(tls->ssl); if (r == 1) { /* If shutdown returns 1, the connection is entirely closed. */ tls->state = TOR_TLS_ST_CLOSED; return TOR_TLS_DONE; } err = tor_tls_get_error(tls, r, CATCH_SYSCALL|CATCH_ZERO, "shutting down", LOG_INFO, LD_NET); if (err == TOR_TLS_SYSCALL_) { /* The underlying TCP connection closed while we were shutting down. */ tls->state = TOR_TLS_ST_CLOSED; return TOR_TLS_DONE; } else if (err == TOR_TLS_ZERORETURN_) { /* The TLS connection says that it sent a shutdown record, but * isn't done shutting down yet. Make sure that this hasn't * happened before, then go back to the start of the function * and try to read. */ if (tls->state == TOR_TLS_ST_GOTCLOSE || tls->state == TOR_TLS_ST_SENTCLOSE) { log_warn(LD_NET, "TLS returned \"half-closed\" value while already half-closed"); return TOR_TLS_ERROR_MISC; } tls->state = TOR_TLS_ST_SENTCLOSE; /* fall through ... */ } else { return err; } } /* end loop */ } /** Return true iff this TLS connection is authenticated. */ int tor_tls_peer_has_cert(tor_tls_t *tls) { X509 *cert; cert = SSL_get_peer_certificate(tls->ssl); tls_log_errors(tls, LOG_WARN, LD_HANDSHAKE, "getting peer certificate"); if (!cert) return 0; X509_free(cert); return 1; } /** Return a newly allocated copy of the peer certificate, or NULL if there * isn't one. */ MOCK_IMPL(tor_x509_cert_t *, tor_tls_get_peer_cert,(tor_tls_t *tls)) { X509 *cert; cert = SSL_get_peer_certificate(tls->ssl); tls_log_errors(tls, LOG_WARN, LD_HANDSHAKE, "getting peer certificate"); if (!cert) return NULL; return tor_x509_cert_new(cert); } /** Return a newly allocated copy of the cerficate we used on the connection, * or NULL if somehow we didn't use one. */ MOCK_IMPL(tor_x509_cert_t *, tor_tls_get_own_cert,(tor_tls_t *tls)) { X509 *cert = SSL_get_certificate(tls->ssl); tls_log_errors(tls, LOG_WARN, LD_HANDSHAKE, "getting own-connection certificate"); if (!cert) return NULL; /* Fun inconsistency: SSL_get_peer_certificate increments the reference * count, but SSL_get_certificate does not. */ X509 *duplicate = X509_dup(cert); if (BUG(duplicate == NULL)) return NULL; return tor_x509_cert_new(duplicate); } /** Warn that a certificate lifetime extends through a certain range. */ static void log_cert_lifetime(int severity, const X509 *cert, const char *problem) { BIO *bio = NULL; BUF_MEM *buf; char *s1=NULL, *s2=NULL; char mytime[33]; time_t now = time(NULL); struct tm tm; size_t n; if (problem) tor_log(severity, LD_GENERAL, "Certificate %s. Either their clock is set wrong, or your clock " "is wrong.", problem); if (!(bio = BIO_new(BIO_s_mem()))) { log_warn(LD_GENERAL, "Couldn't allocate BIO!"); goto end; } if (!(ASN1_TIME_print(bio, X509_get_notBefore_const(cert)))) { tls_log_errors(NULL, LOG_WARN, LD_NET, "printing certificate lifetime"); goto end; } BIO_get_mem_ptr(bio, &buf); s1 = tor_strndup(buf->data, buf->length); (void)BIO_reset(bio); if (!(ASN1_TIME_print(bio, X509_get_notAfter_const(cert)))) { tls_log_errors(NULL, LOG_WARN, LD_NET, "printing certificate lifetime"); goto end; } BIO_get_mem_ptr(bio, &buf); s2 = tor_strndup(buf->data, buf->length); n = strftime(mytime, 32, "%b %d %H:%M:%S %Y UTC", tor_gmtime_r(&now, &tm)); if (n > 0) { tor_log(severity, LD_GENERAL, "(certificate lifetime runs from %s through %s. Your time is %s.)", s1,s2,mytime); } else { tor_log(severity, LD_GENERAL, "(certificate lifetime runs from %s through %s. " "Couldn't get your time.)", s1, s2); } end: /* Not expected to get invoked */ tls_log_errors(NULL, LOG_WARN, LD_NET, "getting certificate lifetime"); if (bio) BIO_free(bio); tor_free(s1); tor_free(s2); } /** Helper function: try to extract a link certificate and an identity * certificate from tls, and store them in *cert_out and * *id_cert_out respectively. Log all messages at level * severity. * * Note that a reference is added to cert_out, so it needs to be * freed. id_cert_out doesn't. */ MOCK_IMPL(STATIC void, try_to_extract_certs_from_tls,(int severity, tor_tls_t *tls, X509 **cert_out, X509 **id_cert_out)) { X509 *cert = NULL, *id_cert = NULL; STACK_OF(X509) *chain = NULL; int num_in_chain, i; *cert_out = *id_cert_out = NULL; if (!(cert = SSL_get_peer_certificate(tls->ssl))) return; *cert_out = cert; if (!(chain = SSL_get_peer_cert_chain(tls->ssl))) return; num_in_chain = sk_X509_num(chain); /* 1 means we're receiving (server-side), and it's just the id_cert. * 2 means we're connecting (client-side), and it's both the link * cert and the id_cert. */ if (num_in_chain < 1) { log_fn(severity,LD_PROTOCOL, "Unexpected number of certificates in chain (%d)", num_in_chain); return; } for (i=0; iidentity_key to the identity certificate's key and return * 0. Else, return -1 and log complaints with log-level severity. */ int tor_tls_verify(int severity, tor_tls_t *tls, crypto_pk_t **identity_key) { X509 *cert = NULL, *id_cert = NULL; EVP_PKEY *id_pkey = NULL; RSA *rsa; int r = -1; check_no_tls_errors(); *identity_key = NULL; try_to_extract_certs_from_tls(severity, tls, &cert, &id_cert); if (!cert) goto done; if (!id_cert) { log_fn(severity,LD_PROTOCOL,"No distinct identity certificate found"); goto done; } tls_log_errors(tls, severity, LD_HANDSHAKE, "before verifying certificate"); if (!(id_pkey = X509_get_pubkey(id_cert)) || X509_verify(cert, id_pkey) <= 0) { log_fn(severity,LD_PROTOCOL,"X509_verify on cert and pkey returned <= 0"); tls_log_errors(tls, severity, LD_HANDSHAKE, "verifying certificate"); goto done; } rsa = EVP_PKEY_get1_RSA(id_pkey); if (!rsa) goto done; *identity_key = crypto_new_pk_from_rsa_(rsa); r = 0; done: if (cert) X509_free(cert); if (id_pkey) EVP_PKEY_free(id_pkey); /* This should never get invoked, but let's make sure in case OpenSSL * acts unexpectedly. */ tls_log_errors(tls, LOG_WARN, LD_HANDSHAKE, "finishing tor_tls_verify"); return r; } /** Check whether the certificate set on the connection tls is expired * give or take past_tolerance seconds, or not-yet-valid give or take * future_tolerance seconds. Return 0 for valid, -1 for failure. * * NOTE: you should call tor_tls_verify before tor_tls_check_lifetime. */ int tor_tls_check_lifetime(int severity, tor_tls_t *tls, int past_tolerance, int future_tolerance) { X509 *cert; int r = -1; if (!(cert = SSL_get_peer_certificate(tls->ssl))) goto done; if (check_cert_lifetime_internal(severity, cert, past_tolerance, future_tolerance) < 0) goto done; r = 0; done: if (cert) X509_free(cert); /* Not expected to get invoked */ tls_log_errors(tls, LOG_WARN, LD_NET, "checking certificate lifetime"); return r; } /** Helper: check whether cert is expired give or take * past_tolerance seconds, or not-yet-valid give or take * future_tolerance seconds. If it is live, return 0. If it is not * live, log a message and return -1. */ static int check_cert_lifetime_internal(int severity, const X509 *cert, int past_tolerance, int future_tolerance) { time_t now, t; now = time(NULL); t = now + future_tolerance; if (X509_cmp_time(X509_get_notBefore_const(cert), &t) > 0) { log_cert_lifetime(severity, cert, "not yet valid"); return -1; } t = now - past_tolerance; if (X509_cmp_time(X509_get_notAfter_const(cert), &t) < 0) { log_cert_lifetime(severity, cert, "already expired"); return -1; } return 0; } /** Return the number of bytes available for reading from tls. */ int tor_tls_get_pending_bytes(tor_tls_t *tls) { tor_assert(tls); return SSL_pending(tls->ssl); } /** If tls requires that the next write be of a particular size, * return that size. Otherwise, return 0. */ size_t tor_tls_get_forced_write_size(tor_tls_t *tls) { return tls->wantwrite_n; } /** Sets n_read and n_written to the number of bytes read and written, * respectively, on the raw socket used by tls since the last time this * function was called on tls. */ void tor_tls_get_n_raw_bytes(tor_tls_t *tls, size_t *n_read, size_t *n_written) { BIO *wbio, *tmpbio; unsigned long r, w; r = (unsigned long) BIO_number_read(SSL_get_rbio(tls->ssl)); /* We want the number of bytes actually for real written. Unfortunately, * sometimes OpenSSL replaces the wbio on tls->ssl with a buffering bio, * which makes the answer turn out wrong. Let's cope with that. Note * that this approach will fail if we ever replace tls->ssl's BIOs with * buffering bios for reasons of our own. As an alternative, we could * save the original BIO for tls->ssl in the tor_tls_t structure, but * that would be tempting fate. */ wbio = SSL_get_wbio(tls->ssl); #if OPENSSL_VERSION_NUMBER >= OPENSSL_VER(1,1,0,0,5) /* BIO structure is opaque as of OpenSSL 1.1.0-pre5-dev. Again, not * supposed to use this form of the version macro, but the OpenSSL developers * introduced major API changes in the pre-release stage. */ if (BIO_method_type(wbio) == BIO_TYPE_BUFFER && (tmpbio = BIO_next(wbio)) != NULL) wbio = tmpbio; #else if (wbio->method == BIO_f_buffer() && (tmpbio = BIO_next(wbio)) != NULL) wbio = tmpbio; #endif w = (unsigned long) BIO_number_written(wbio); /* We are ok with letting these unsigned ints go "negative" here: * If we wrapped around, this should still give us the right answer, unless * we wrapped around by more than ULONG_MAX since the last time we called * this function. */ *n_read = (size_t)(r - tls->last_read_count); *n_written = (size_t)(w - tls->last_write_count); if (*n_read > INT_MAX || *n_written > INT_MAX) { log_warn(LD_BUG, "Preposterously large value in tor_tls_get_n_raw_bytes. " "r=%lu, last_read=%lu, w=%lu, last_written=%lu", r, tls->last_read_count, w, tls->last_write_count); } total_bytes_written_by_tls += *n_written; tls->last_read_count = r; tls->last_write_count = w; } /** Return a ratio of the bytes that TLS has sent to the bytes that we've told * it to send. Used to track whether our TLS records are getting too tiny. */ MOCK_IMPL(double, tls_get_write_overhead_ratio,(void)) { if (total_bytes_written_over_tls == 0) return 1.0; return U64_TO_DBL(total_bytes_written_by_tls) / U64_TO_DBL(total_bytes_written_over_tls); } /** Implement check_no_tls_errors: If there are any pending OpenSSL * errors, log an error message. */ void check_no_tls_errors_(const char *fname, int line) { if (ERR_peek_error() == 0) return; log_warn(LD_CRYPTO, "Unhandled OpenSSL errors found at %s:%d: ", tor_fix_source_file(fname), line); tls_log_errors(NULL, LOG_WARN, LD_NET, NULL); } /** Return true iff the initial TLS connection at tls did not use a v2 * TLS handshake. Output is undefined if the handshake isn't finished. */ int tor_tls_used_v1_handshake(tor_tls_t *tls) { return ! tls->wasV2Handshake; } /** Return the number of server handshakes that we've noticed doing on * tls. */ int tor_tls_get_num_server_handshakes(tor_tls_t *tls) { return tls->server_handshake_count; } /** Return true iff the server TLS connection tls got the renegotiation * request it was waiting for. */ int tor_tls_server_got_renegotiate(tor_tls_t *tls) { return tls->got_renegotiate; } #ifndef HAVE_SSL_GET_CLIENT_RANDOM static size_t SSL_get_client_random(SSL *s, uint8_t *out, size_t len) { if (len == 0) return SSL3_RANDOM_SIZE; tor_assert(len == SSL3_RANDOM_SIZE); tor_assert(s->s3); memcpy(out, s->s3->client_random, len); return len; } #endif #ifndef HAVE_SSL_GET_SERVER_RANDOM static size_t SSL_get_server_random(SSL *s, uint8_t *out, size_t len) { if (len == 0) return SSL3_RANDOM_SIZE; tor_assert(len == SSL3_RANDOM_SIZE); tor_assert(s->s3); memcpy(out, s->s3->server_random, len); return len; } #endif #ifndef HAVE_SSL_SESSION_GET_MASTER_KEY STATIC size_t SSL_SESSION_get_master_key(SSL_SESSION *s, uint8_t *out, size_t len) { tor_assert(s); if (len == 0) return s->master_key_length; tor_assert(len == (size_t)s->master_key_length); tor_assert(out); memcpy(out, s->master_key, len); return len; } #endif /** Set the DIGEST256_LEN buffer at secrets_out to the value used in * the v3 handshake to prove that the client knows the TLS secrets for the * connection tls. Return 0 on success, -1 on failure. */ MOCK_IMPL(int, tor_tls_get_tlssecrets,(tor_tls_t *tls, uint8_t *secrets_out)) { #define TLSSECRET_MAGIC "Tor V3 handshake TLS cross-certification" uint8_t buf[128]; size_t len; tor_assert(tls); SSL *const ssl = tls->ssl; SSL_SESSION *const session = SSL_get_session(ssl); tor_assert(ssl); tor_assert(session); const size_t server_random_len = SSL_get_server_random(ssl, NULL, 0); const size_t client_random_len = SSL_get_client_random(ssl, NULL, 0); const size_t master_key_len = SSL_SESSION_get_master_key(session, NULL, 0); tor_assert(server_random_len); tor_assert(client_random_len); tor_assert(master_key_len); len = client_random_len + server_random_len + strlen(TLSSECRET_MAGIC) + 1; tor_assert(len <= sizeof(buf)); { size_t r = SSL_get_client_random(ssl, buf, client_random_len); tor_assert(r == client_random_len); } { size_t r = SSL_get_server_random(ssl, buf+client_random_len, server_random_len); tor_assert(r == server_random_len); } uint8_t *master_key = tor_malloc_zero(master_key_len); { size_t r = SSL_SESSION_get_master_key(session, master_key, master_key_len); tor_assert(r == master_key_len); } uint8_t *nextbuf = buf + client_random_len + server_random_len; memcpy(nextbuf, TLSSECRET_MAGIC, strlen(TLSSECRET_MAGIC) + 1); /* The value is an HMAC, using the TLS master key as the HMAC key, of client_random | server_random | TLSSECRET_MAGIC */ crypto_hmac_sha256((char*)secrets_out, (char*)master_key, master_key_len, (char*)buf, len); memwipe(buf, 0, sizeof(buf)); memwipe(master_key, 0, master_key_len); tor_free(master_key); return 0; } /** Examine the amount of memory used and available for buffers in tls. * Set *rbuf_capacity to the amount of storage allocated for the read * buffer and *rbuf_bytes to the amount actually used. * Set *wbuf_capacity to the amount of storage allocated for the write * buffer and *wbuf_bytes to the amount actually used. * * Return 0 on success, -1 on failure.*/ int tor_tls_get_buffer_sizes(tor_tls_t *tls, size_t *rbuf_capacity, size_t *rbuf_bytes, size_t *wbuf_capacity, size_t *wbuf_bytes) { #if OPENSSL_VERSION_NUMBER >= OPENSSL_V_SERIES(1,1,0) (void)tls; (void)rbuf_capacity; (void)rbuf_bytes; (void)wbuf_capacity; (void)wbuf_bytes; return -1; #else if (tls->ssl->s3->rbuf.buf) *rbuf_capacity = tls->ssl->s3->rbuf.len; else *rbuf_capacity = 0; if (tls->ssl->s3->wbuf.buf) *wbuf_capacity = tls->ssl->s3->wbuf.len; else *wbuf_capacity = 0; *rbuf_bytes = tls->ssl->s3->rbuf.left; *wbuf_bytes = tls->ssl->s3->wbuf.left; return 0; #endif } /** Check whether the ECC group requested is supported by the current OpenSSL * library instance. Return 1 if the group is supported, and 0 if not. */ int evaluate_ecgroup_for_tls(const char *ecgroup) { EC_KEY *ec_key; int nid; int ret; if (!ecgroup) nid = NID_tor_default_ecdhe_group; else if (!strcasecmp(ecgroup, "P256")) nid = NID_X9_62_prime256v1; else if (!strcasecmp(ecgroup, "P224")) nid = NID_secp224r1; else return 0; ec_key = EC_KEY_new_by_curve_name(nid); ret = (ec_key != NULL); EC_KEY_free(ec_key); return ret; }