/* Copyright (c) 2001, Matej Pfajfar. * Copyright (c) 2001-2004, Roger Dingledine. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. * Copyright (c) 2007-2016, The Tor Project, Inc. */ /* See LICENSE for licensing information */ /** * \file crypto.c * \brief Wrapper functions to present a consistent interface to * public-key and symmetric cryptography operations from OpenSSL and * other places. **/ #include "orconfig.h" #ifdef _WIN32 #include #include #include /* Windows defines this; so does OpenSSL 0.9.8h and later. We don't actually * use either definition. */ #undef OCSP_RESPONSE #endif #define CRYPTO_PRIVATE #include "crypto.h" #include "compat_openssl.h" #include "crypto_curve25519.h" #include "crypto_ed25519.h" #include "crypto_format.h" #ifdef __GNUC__ #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) #endif #if __GNUC__ && GCC_VERSION >= 402 #if GCC_VERSION >= 406 #pragma GCC diagnostic push #endif /* Some versions of OpenSSL declare X509_STORE_CTX_set_verify_cb twice. * Suppress the GCC warning so we can build with -Wredundant-decl. */ #pragma GCC diagnostic ignored "-Wredundant-decls" #endif #include #include #include #include #include #include #include #include #include #include #if __GNUC__ && GCC_VERSION >= 402 #if GCC_VERSION >= 406 #pragma GCC diagnostic pop #else #pragma GCC diagnostic warning "-Wredundant-decls" #endif #endif #ifdef HAVE_CTYPE_H #include #endif #ifdef HAVE_UNISTD_H #define _GNU_SOURCE #include #endif #ifdef HAVE_FCNTL_H #include #endif #ifdef HAVE_SYS_FCNTL_H #include #endif #ifdef HAVE_SYS_SYSCALL_H #include #endif #include "torlog.h" #include "aes.h" #include "util.h" #include "container.h" #include "compat.h" #include "sandbox.h" #include "util_format.h" #include "keccak-tiny/keccak-tiny.h" #ifdef __APPLE__ /* Apple messed up their getentropy definitions in Sierra. It's not insecure * or anything (as far as I know) but it makes compatible builds hard. 0.2.9 * contains the necessary tricks to do it right: in 0.2.8, we're just using * this blunt instrument. */ #undef HAVE_GETENTROPY #endif #ifdef ANDROID /* Android's OpenSSL seems to have removed all of its Engine support. */ #define DISABLE_ENGINES #endif #if OPENSSL_VERSION_NUMBER >= OPENSSL_VER(1,1,0,0,5) && \ !defined(LIBRESSL_VERSION_NUMBER) /* OpenSSL as of 1.1.0pre4 has an "new" thread API, which doesn't require * seting up various callbacks. * * OpenSSL 1.1.0pre4 has a messed up `ERR_remove_thread_state()` prototype, * while the previous one was restored in pre5, and the function made a no-op * (along with a deprecated annotation, which produces a compiler warning). * * While it is possible to support all three versions of the thread API, * a version that existed only for one snapshot pre-release is kind of * pointless, so let's not. */ #define NEW_THREAD_API #endif /** Longest recognized */ #define MAX_DNS_LABEL_SIZE 63 /** Largest strong entropy request */ #define MAX_STRONGEST_RAND_SIZE 256 #ifndef NEW_THREAD_API /** A number of preallocated mutexes for use by OpenSSL. */ static tor_mutex_t **openssl_mutexes_ = NULL; /** How many mutexes have we allocated for use by OpenSSL? */ static int n_openssl_mutexes_ = 0; #endif /** A public key, or a public/private key-pair. */ struct crypto_pk_t { int refs; /**< reference count, so we don't have to copy keys */ RSA *key; /**< The key itself */ }; /** Key and stream information for a stream cipher. */ struct crypto_cipher_t { char key[CIPHER_KEY_LEN]; /**< The raw key. */ char iv[CIPHER_IV_LEN]; /**< The initial IV. */ aes_cnt_cipher_t *cipher; /**< The key in format usable for counter-mode AES * encryption */ }; /** A structure to hold the first half (x, g^x) of a Diffie-Hellman handshake * while we're waiting for the second.*/ struct crypto_dh_t { DH *dh; /**< The openssl DH object */ }; static int setup_openssl_threading(void); static int tor_check_dh_key(int severity, const BIGNUM *bn); /** Return the number of bytes added by padding method padding. */ static inline int crypto_get_rsa_padding_overhead(int padding) { switch (padding) { case RSA_PKCS1_OAEP_PADDING: return PKCS1_OAEP_PADDING_OVERHEAD; default: tor_assert(0); return -1; } } /** Given a padding method padding, return the correct OpenSSL constant. */ static inline int crypto_get_rsa_padding(int padding) { switch (padding) { case PK_PKCS1_OAEP_PADDING: return RSA_PKCS1_OAEP_PADDING; default: tor_assert(0); return -1; } } /** Boolean: has OpenSSL's crypto been initialized? */ static int crypto_early_initialized_ = 0; /** Boolean: has OpenSSL's crypto been initialized? */ static int crypto_global_initialized_ = 0; /** Log all pending crypto errors at level severity. Use * doing to describe our current activities. */ static void crypto_log_errors(int severity, const char *doing) { unsigned long err; const char *msg, *lib, *func; while ((err = ERR_get_error()) != 0) { msg = (const char*)ERR_reason_error_string(err); lib = (const char*)ERR_lib_error_string(err); func = (const char*)ERR_func_error_string(err); if (!msg) msg = "(null)"; if (!lib) lib = "(null)"; if (!func) func = "(null)"; if (doing) { tor_log(severity, LD_CRYPTO, "crypto error while %s: %s (in %s:%s)", doing, msg, lib, func); } else { tor_log(severity, LD_CRYPTO, "crypto error: %s (in %s:%s)", msg, lib, func); } } } #ifndef DISABLE_ENGINES /** Log any OpenSSL engines we're using at NOTICE. */ static void log_engine(const char *fn, ENGINE *e) { if (e) { const char *name, *id; name = ENGINE_get_name(e); id = ENGINE_get_id(e); log_notice(LD_CRYPTO, "Default OpenSSL engine for %s is %s [%s]", fn, name?name:"?", id?id:"?"); } else { log_info(LD_CRYPTO, "Using default implementation for %s", fn); } } #endif #ifndef DISABLE_ENGINES /** Try to load an engine in a shared library via fully qualified path. */ static ENGINE * try_load_engine(const char *path, const char *engine) { ENGINE *e = ENGINE_by_id("dynamic"); if (e) { if (!ENGINE_ctrl_cmd_string(e, "ID", engine, 0) || !ENGINE_ctrl_cmd_string(e, "DIR_LOAD", "2", 0) || !ENGINE_ctrl_cmd_string(e, "DIR_ADD", path, 0) || !ENGINE_ctrl_cmd_string(e, "LOAD", NULL, 0)) { ENGINE_free(e); e = NULL; } } return e; } #endif /* Returns a trimmed and human-readable version of an openssl version string * raw_version. They are usually in the form of 'OpenSSL 1.0.0b 10 * May 2012' and this will parse them into a form similar to '1.0.0b' */ static char * parse_openssl_version_str(const char *raw_version) { const char *end_of_version = NULL; /* The output should be something like "OpenSSL 1.0.0b 10 May 2012. Let's trim that down. */ if (!strcmpstart(raw_version, "OpenSSL ")) { raw_version += strlen("OpenSSL "); end_of_version = strchr(raw_version, ' '); } if (end_of_version) return tor_strndup(raw_version, end_of_version-raw_version); else return tor_strdup(raw_version); } static char *crypto_openssl_version_str = NULL; /* Return a human-readable version of the run-time openssl version number. */ const char * crypto_openssl_get_version_str(void) { if (crypto_openssl_version_str == NULL) { const char *raw_version = OpenSSL_version(OPENSSL_VERSION); crypto_openssl_version_str = parse_openssl_version_str(raw_version); } return crypto_openssl_version_str; } static char *crypto_openssl_header_version_str = NULL; /* Return a human-readable version of the compile-time openssl version * number. */ const char * crypto_openssl_get_header_version_str(void) { if (crypto_openssl_header_version_str == NULL) { crypto_openssl_header_version_str = parse_openssl_version_str(OPENSSL_VERSION_TEXT); } return crypto_openssl_header_version_str; } /** Make sure that openssl is using its default PRNG. Return 1 if we had to * adjust it; 0 otherwise. */ STATIC int crypto_force_rand_ssleay(void) { RAND_METHOD *default_method; default_method = RAND_OpenSSL(); if (RAND_get_rand_method() != default_method) { log_notice(LD_CRYPTO, "It appears that one of our engines has provided " "a replacement the OpenSSL RNG. Resetting it to the default " "implementation."); RAND_set_rand_method(default_method); return 1; } return 0; } /** Set up the siphash key if we haven't already done so. */ int crypto_init_siphash_key(void) { static int have_seeded_siphash = 0; struct sipkey key; if (have_seeded_siphash) return 0; crypto_rand((char*) &key, sizeof(key)); siphash_set_global_key(&key); have_seeded_siphash = 1; return 0; } /** Initialize the crypto library. Return 0 on success, -1 on failure. */ int crypto_early_init(void) { if (!crypto_early_initialized_) { crypto_early_initialized_ = 1; ERR_load_crypto_strings(); OpenSSL_add_all_algorithms(); setup_openssl_threading(); unsigned long version_num = OpenSSL_version_num(); const char *version_str = OpenSSL_version(OPENSSL_VERSION); if (version_num == OPENSSL_VERSION_NUMBER && !strcmp(version_str, OPENSSL_VERSION_TEXT)) { log_info(LD_CRYPTO, "OpenSSL version matches version from headers " "(%lx: %s).", version_num, version_str); } else { log_warn(LD_CRYPTO, "OpenSSL version from headers does not match the " "version we're running with. If you get weird crashes, that " "might be why. (Compiled with %lx: %s; running with %lx: %s).", (unsigned long)OPENSSL_VERSION_NUMBER, OPENSSL_VERSION_TEXT, version_num, version_str); } crypto_force_rand_ssleay(); if (crypto_seed_rng() < 0) return -1; if (crypto_init_siphash_key() < 0) return -1; curve25519_init(); ed25519_init(); } return 0; } /** Initialize the crypto library. Return 0 on success, -1 on failure. */ int crypto_global_init(int useAccel, const char *accelName, const char *accelDir) { if (!crypto_global_initialized_) { if (crypto_early_init() < 0) return -1; crypto_global_initialized_ = 1; if (useAccel > 0) { #ifdef DISABLE_ENGINES (void)accelName; (void)accelDir; log_warn(LD_CRYPTO, "No OpenSSL hardware acceleration support enabled."); #else ENGINE *e = NULL; log_info(LD_CRYPTO, "Initializing OpenSSL engine support."); ENGINE_load_builtin_engines(); ENGINE_register_all_complete(); if (accelName) { if (accelDir) { log_info(LD_CRYPTO, "Trying to load dynamic OpenSSL engine \"%s\"" " via path \"%s\".", accelName, accelDir); e = try_load_engine(accelName, accelDir); } else { log_info(LD_CRYPTO, "Initializing dynamic OpenSSL engine \"%s\"" " acceleration support.", accelName); e = ENGINE_by_id(accelName); } if (!e) { log_warn(LD_CRYPTO, "Unable to load dynamic OpenSSL engine \"%s\".", accelName); } else { log_info(LD_CRYPTO, "Loaded dynamic OpenSSL engine \"%s\".", accelName); } } if (e) { log_info(LD_CRYPTO, "Loaded OpenSSL hardware acceleration engine," " setting default ciphers."); ENGINE_set_default(e, ENGINE_METHOD_ALL); } /* Log, if available, the intersection of the set of algorithms used by Tor and the set of algorithms available in the engine */ log_engine("RSA", ENGINE_get_default_RSA()); log_engine("DH", ENGINE_get_default_DH()); #ifdef OPENSSL_1_1_API log_engine("EC", ENGINE_get_default_EC()); #else log_engine("ECDH", ENGINE_get_default_ECDH()); log_engine("ECDSA", ENGINE_get_default_ECDSA()); #endif log_engine("RAND", ENGINE_get_default_RAND()); log_engine("RAND (which we will not use)", ENGINE_get_default_RAND()); log_engine("SHA1", ENGINE_get_digest_engine(NID_sha1)); log_engine("3DES-CBC", ENGINE_get_cipher_engine(NID_des_ede3_cbc)); log_engine("AES-128-ECB", ENGINE_get_cipher_engine(NID_aes_128_ecb)); log_engine("AES-128-CBC", ENGINE_get_cipher_engine(NID_aes_128_cbc)); #ifdef NID_aes_128_ctr log_engine("AES-128-CTR", ENGINE_get_cipher_engine(NID_aes_128_ctr)); #endif #ifdef NID_aes_128_gcm log_engine("AES-128-GCM", ENGINE_get_cipher_engine(NID_aes_128_gcm)); #endif log_engine("AES-256-CBC", ENGINE_get_cipher_engine(NID_aes_256_cbc)); #ifdef NID_aes_256_gcm log_engine("AES-256-GCM", ENGINE_get_cipher_engine(NID_aes_256_gcm)); #endif #endif } else { log_info(LD_CRYPTO, "NOT using OpenSSL engine support."); } if (crypto_force_rand_ssleay()) { if (crypto_seed_rng() < 0) return -1; } evaluate_evp_for_aes(-1); evaluate_ctr_for_aes(); } return 0; } /** Free crypto resources held by this thread. */ void crypto_thread_cleanup(void) { #ifndef NEW_THREAD_API ERR_remove_thread_state(NULL); #endif } /** used internally: quicly validate a crypto_pk_t object as a private key. * Return 1 iff the public key is valid, 0 if obviously invalid. */ static int crypto_pk_private_ok(const crypto_pk_t *k) { #ifdef OPENSSL_1_1_API if (!k || !k->key) return 0; const BIGNUM *p, *q; RSA_get0_factors(k->key, &p, &q); return p != NULL; /* XXX/yawning: Should we check q? */ #else return k && k->key && k->key->p; #endif } /** used by tortls.c: wrap an RSA* in a crypto_pk_t. */ crypto_pk_t * crypto_new_pk_from_rsa_(RSA *rsa) { crypto_pk_t *env; tor_assert(rsa); env = tor_malloc(sizeof(crypto_pk_t)); env->refs = 1; env->key = rsa; return env; } /** Helper, used by tor-checkkey.c and tor-gencert.c. Return the RSA from a * crypto_pk_t. */ RSA * crypto_pk_get_rsa_(crypto_pk_t *env) { return env->key; } /** used by tortls.c: get an equivalent EVP_PKEY* for a crypto_pk_t. Iff * private is set, include the private-key portion of the key. Return a valid * pointer on success, and NULL on failure. */ MOCK_IMPL(EVP_PKEY *, crypto_pk_get_evp_pkey_,(crypto_pk_t *env, int private)) { RSA *key = NULL; EVP_PKEY *pkey = NULL; tor_assert(env->key); if (private) { if (!(key = RSAPrivateKey_dup(env->key))) goto error; } else { if (!(key = RSAPublicKey_dup(env->key))) goto error; } if (!(pkey = EVP_PKEY_new())) goto error; if (!(EVP_PKEY_assign_RSA(pkey, key))) goto error; return pkey; error: if (pkey) EVP_PKEY_free(pkey); if (key) RSA_free(key); return NULL; } /** Used by tortls.c: Get the DH* from a crypto_dh_t. */ DH * crypto_dh_get_dh_(crypto_dh_t *dh) { return dh->dh; } /** Allocate and return storage for a public key. The key itself will not yet * be set. */ MOCK_IMPL(crypto_pk_t *, crypto_pk_new,(void)) { RSA *rsa; rsa = RSA_new(); tor_assert(rsa); return crypto_new_pk_from_rsa_(rsa); } /** Release a reference to an asymmetric key; when all the references * are released, free the key. */ void crypto_pk_free(crypto_pk_t *env) { if (!env) return; if (--env->refs > 0) return; tor_assert(env->refs == 0); if (env->key) RSA_free(env->key); tor_free(env); } /** Allocate and return a new symmetric cipher using the provided key and iv. * The key is CIPHER_KEY_LEN bytes; the IV is CIPHER_IV_LEN bytes. If you * provide NULL in place of either one, it is generated at random. */ crypto_cipher_t * crypto_cipher_new_with_iv(const char *key, const char *iv) { crypto_cipher_t *env; env = tor_malloc_zero(sizeof(crypto_cipher_t)); if (key == NULL) crypto_rand(env->key, CIPHER_KEY_LEN); else memcpy(env->key, key, CIPHER_KEY_LEN); if (iv == NULL) crypto_rand(env->iv, CIPHER_IV_LEN); else memcpy(env->iv, iv, CIPHER_IV_LEN); env->cipher = aes_new_cipher(env->key, env->iv); return env; } /** Return a new crypto_cipher_t with the provided key and an IV of all * zero bytes. */ crypto_cipher_t * crypto_cipher_new(const char *key) { char zeroiv[CIPHER_IV_LEN]; memset(zeroiv, 0, sizeof(zeroiv)); return crypto_cipher_new_with_iv(key, zeroiv); } /** Free a symmetric cipher. */ void crypto_cipher_free(crypto_cipher_t *env) { if (!env) return; tor_assert(env->cipher); aes_cipher_free(env->cipher); memwipe(env, 0, sizeof(crypto_cipher_t)); tor_free(env); } /* public key crypto */ /** Generate a bits-bit new public/private keypair in env. * Return 0 on success, -1 on failure. */ MOCK_IMPL(int, crypto_pk_generate_key_with_bits,(crypto_pk_t *env, int bits)) { tor_assert(env); if (env->key) { RSA_free(env->key); env->key = NULL; } { BIGNUM *e = BN_new(); RSA *r = NULL; if (!e) goto done; if (! BN_set_word(e, 65537)) goto done; r = RSA_new(); if (!r) goto done; if (RSA_generate_key_ex(r, bits, e, NULL) == -1) goto done; env->key = r; r = NULL; done: if (e) BN_clear_free(e); if (r) RSA_free(r); } if (!env->key) { crypto_log_errors(LOG_WARN, "generating RSA key"); return -1; } return 0; } /** Read a PEM-encoded private key from the len-byte string s * into env. Return 0 on success, -1 on failure. If len is -1, * the string is nul-terminated. */ /* Used here, and used for testing. */ int crypto_pk_read_private_key_from_string(crypto_pk_t *env, const char *s, ssize_t len) { BIO *b; tor_assert(env); tor_assert(s); tor_assert(len < INT_MAX && len < SSIZE_T_CEILING); /* Create a read-only memory BIO, backed by the string 's' */ b = BIO_new_mem_buf((char*)s, (int)len); if (!b) return -1; if (env->key) RSA_free(env->key); env->key = PEM_read_bio_RSAPrivateKey(b,NULL,NULL,NULL); BIO_free(b); if (!env->key) { crypto_log_errors(LOG_WARN, "Error parsing private key"); return -1; } return 0; } /** Read a PEM-encoded private key from the file named by * keyfile into env. Return 0 on success, -1 on failure. */ int crypto_pk_read_private_key_from_filename(crypto_pk_t *env, const char *keyfile) { char *contents; int r; /* Read the file into a string. */ contents = read_file_to_str(keyfile, 0, NULL); if (!contents) { log_warn(LD_CRYPTO, "Error reading private key from \"%s\"", keyfile); return -1; } /* Try to parse it. */ r = crypto_pk_read_private_key_from_string(env, contents, -1); memwipe(contents, 0, strlen(contents)); tor_free(contents); if (r) return -1; /* read_private_key_from_string already warned, so we don't.*/ /* Make sure it's valid. */ if (crypto_pk_check_key(env) <= 0) return -1; return 0; } /** Helper function to implement crypto_pk_write_*_key_to_string. Return 0 on * success, -1 on failure. */ static int crypto_pk_write_key_to_string_impl(crypto_pk_t *env, char **dest, size_t *len, int is_public) { BUF_MEM *buf; BIO *b; int r; tor_assert(env); tor_assert(env->key); tor_assert(dest); b = BIO_new(BIO_s_mem()); /* Create a memory BIO */ if (!b) return -1; /* Now you can treat b as if it were a file. Just use the * PEM_*_bio_* functions instead of the non-bio variants. */ if (is_public) r = PEM_write_bio_RSAPublicKey(b, env->key); else r = PEM_write_bio_RSAPrivateKey(b, env->key, NULL,NULL,0,NULL,NULL); if (!r) { crypto_log_errors(LOG_WARN, "writing RSA key to string"); BIO_free(b); return -1; } BIO_get_mem_ptr(b, &buf); *dest = tor_malloc(buf->length+1); memcpy(*dest, buf->data, buf->length); (*dest)[buf->length] = 0; /* nul terminate it */ *len = buf->length; BIO_free(b); return 0; } /** PEM-encode the public key portion of env and write it to a * newly allocated string. On success, set *dest to the new * string, *len to the string's length, and return 0. On * failure, return -1. */ int crypto_pk_write_public_key_to_string(crypto_pk_t *env, char **dest, size_t *len) { return crypto_pk_write_key_to_string_impl(env, dest, len, 1); } /** PEM-encode the private key portion of env and write it to a * newly allocated string. On success, set *dest to the new * string, *len to the string's length, and return 0. On * failure, return -1. */ int crypto_pk_write_private_key_to_string(crypto_pk_t *env, char **dest, size_t *len) { return crypto_pk_write_key_to_string_impl(env, dest, len, 0); } /** Read a PEM-encoded public key from the first len characters of * src, and store the result in env. Return 0 on success, -1 on * failure. */ int crypto_pk_read_public_key_from_string(crypto_pk_t *env, const char *src, size_t len) { BIO *b; tor_assert(env); tor_assert(src); tor_assert(lenkey) RSA_free(env->key); env->key = PEM_read_bio_RSAPublicKey(b, NULL, NULL, NULL); BIO_free(b); if (!env->key) { crypto_log_errors(LOG_WARN, "reading public key from string"); return -1; } return 0; } /** Write the private key from env into the file named by fname, * PEM-encoded. Return 0 on success, -1 on failure. */ int crypto_pk_write_private_key_to_filename(crypto_pk_t *env, const char *fname) { BIO *bio; char *cp; long len; char *s; int r; tor_assert(crypto_pk_private_ok(env)); if (!(bio = BIO_new(BIO_s_mem()))) return -1; if (PEM_write_bio_RSAPrivateKey(bio, env->key, NULL,NULL,0,NULL,NULL) == 0) { crypto_log_errors(LOG_WARN, "writing private key"); BIO_free(bio); return -1; } len = BIO_get_mem_data(bio, &cp); tor_assert(len >= 0); s = tor_malloc(len+1); memcpy(s, cp, len); s[len]='\0'; r = write_str_to_file(fname, s, 0); BIO_free(bio); memwipe(s, 0, strlen(s)); tor_free(s); return r; } /** Return true iff env has a valid key. */ int crypto_pk_check_key(crypto_pk_t *env) { int r; tor_assert(env); r = RSA_check_key(env->key); if (r <= 0) crypto_log_errors(LOG_WARN,"checking RSA key"); return r; } /** Return true iff key contains the private-key portion of the RSA * key. */ int crypto_pk_key_is_private(const crypto_pk_t *key) { tor_assert(key); return crypto_pk_private_ok(key); } /** Return true iff env contains a public key whose public exponent * equals 65537. */ int crypto_pk_public_exponent_ok(crypto_pk_t *env) { tor_assert(env); tor_assert(env->key); const BIGNUM *e; #ifdef OPENSSL_1_1_API const BIGNUM *n, *d; RSA_get0_key(env->key, &n, &e, &d); #else e = env->key->e; #endif return BN_is_word(e, 65537); } /** Compare the public-key components of a and b. Return less than 0 * if a\b. A NULL key is * considered to be less than all non-NULL keys, and equal to itself. * * Note that this may leak information about the keys through timing. */ int crypto_pk_cmp_keys(const crypto_pk_t *a, const crypto_pk_t *b) { int result; char a_is_non_null = (a != NULL) && (a->key != NULL); char b_is_non_null = (b != NULL) && (b->key != NULL); char an_argument_is_null = !a_is_non_null | !b_is_non_null; result = tor_memcmp(&a_is_non_null, &b_is_non_null, sizeof(a_is_non_null)); if (an_argument_is_null) return result; const BIGNUM *a_n, *a_e; const BIGNUM *b_n, *b_e; #ifdef OPENSSL_1_1_API const BIGNUM *a_d, *b_d; RSA_get0_key(a->key, &a_n, &a_e, &a_d); RSA_get0_key(b->key, &b_n, &b_e, &b_d); #else a_n = a->key->n; a_e = a->key->e; b_n = b->key->n; b_e = b->key->e; #endif tor_assert(a_n != NULL && a_e != NULL); tor_assert(b_n != NULL && b_e != NULL); result = BN_cmp(a_n, b_n); if (result) return result; return BN_cmp(a_e, b_e); } /** Compare the public-key components of a and b. Return non-zero iff * a==b. A NULL key is considered to be distinct from all non-NULL * keys, and equal to itself. * * Note that this may leak information about the keys through timing. */ int crypto_pk_eq_keys(const crypto_pk_t *a, const crypto_pk_t *b) { return (crypto_pk_cmp_keys(a, b) == 0); } /** Return the size of the public key modulus in env, in bytes. */ size_t crypto_pk_keysize(const crypto_pk_t *env) { tor_assert(env); tor_assert(env->key); return (size_t) RSA_size((RSA*)env->key); } /** Return the size of the public key modulus of env, in bits. */ int crypto_pk_num_bits(crypto_pk_t *env) { tor_assert(env); tor_assert(env->key); #ifdef OPENSSL_1_1_API /* It's so stupid that there's no other way to check that n is valid * before calling RSA_bits(). */ const BIGNUM *n, *e, *d; RSA_get0_key(env->key, &n, &e, &d); tor_assert(n != NULL); return RSA_bits(env->key); #else tor_assert(env->key->n); return BN_num_bits(env->key->n); #endif } /** Increase the reference count of env, and return it. */ crypto_pk_t * crypto_pk_dup_key(crypto_pk_t *env) { tor_assert(env); tor_assert(env->key); env->refs++; return env; } /** Make a real honest-to-goodness copy of env, and return it. * Returns NULL on failure. */ crypto_pk_t * crypto_pk_copy_full(crypto_pk_t *env) { RSA *new_key; int privatekey = 0; tor_assert(env); tor_assert(env->key); if (crypto_pk_private_ok(env)) { new_key = RSAPrivateKey_dup(env->key); privatekey = 1; } else { new_key = RSAPublicKey_dup(env->key); } if (!new_key) { log_err(LD_CRYPTO, "Unable to duplicate a %s key: openssl failed.", privatekey?"private":"public"); crypto_log_errors(LOG_ERR, privatekey ? "Duplicating a private key" : "Duplicating a public key"); tor_fragile_assert(); return NULL; } return crypto_new_pk_from_rsa_(new_key); } /** Encrypt fromlen bytes from from with the public key * in env, using the padding method padding. On success, * write the result to to, and return the number of bytes * written. On failure, return -1. * * tolen is the number of writable bytes in to, and must be * at least the length of the modulus of env. */ int crypto_pk_public_encrypt(crypto_pk_t *env, char *to, size_t tolen, const char *from, size_t fromlen, int padding) { int r; tor_assert(env); tor_assert(from); tor_assert(to); tor_assert(fromlen= crypto_pk_keysize(env)); r = RSA_public_encrypt((int)fromlen, (unsigned char*)from, (unsigned char*)to, env->key, crypto_get_rsa_padding(padding)); if (r<0) { crypto_log_errors(LOG_WARN, "performing RSA encryption"); return -1; } return r; } /** Decrypt fromlen bytes from from with the private key * in env, using the padding method padding. On success, * write the result to to, and return the number of bytes * written. On failure, return -1. * * tolen is the number of writable bytes in to, and must be * at least the length of the modulus of env. */ int crypto_pk_private_decrypt(crypto_pk_t *env, char *to, size_t tolen, const char *from, size_t fromlen, int padding, int warnOnFailure) { int r; tor_assert(env); tor_assert(from); tor_assert(to); tor_assert(env->key); tor_assert(fromlen= crypto_pk_keysize(env)); if (!crypto_pk_key_is_private(env)) /* Not a private key */ return -1; r = RSA_private_decrypt((int)fromlen, (unsigned char*)from, (unsigned char*)to, env->key, crypto_get_rsa_padding(padding)); if (r<0) { crypto_log_errors(warnOnFailure?LOG_WARN:LOG_DEBUG, "performing RSA decryption"); return -1; } return r; } /** Check the signature in from (fromlen bytes long) with the * public key in env, using PKCS1 padding. On success, write the * signed data to to, and return the number of bytes written. * On failure, return -1. * * tolen is the number of writable bytes in to, and must be * at least the length of the modulus of env. */ int crypto_pk_public_checksig(const crypto_pk_t *env, char *to, size_t tolen, const char *from, size_t fromlen) { int r; tor_assert(env); tor_assert(from); tor_assert(to); tor_assert(fromlen < INT_MAX); tor_assert(tolen >= crypto_pk_keysize(env)); r = RSA_public_decrypt((int)fromlen, (unsigned char*)from, (unsigned char*)to, env->key, RSA_PKCS1_PADDING); if (r<0) { crypto_log_errors(LOG_INFO, "checking RSA signature"); return -1; } return r; } /** Check a siglen-byte long signature at sig against * datalen bytes of data at data, using the public key * in env. Return 0 if sig is a correct signature for * SHA1(data). Else return -1. */ int crypto_pk_public_checksig_digest(crypto_pk_t *env, const char *data, size_t datalen, const char *sig, size_t siglen) { char digest[DIGEST_LEN]; char *buf; size_t buflen; int r; tor_assert(env); tor_assert(data); tor_assert(sig); tor_assert(datalen < SIZE_T_CEILING); tor_assert(siglen < SIZE_T_CEILING); if (crypto_digest(digest,data,datalen)<0) { log_warn(LD_BUG, "couldn't compute digest"); return -1; } buflen = crypto_pk_keysize(env); buf = tor_malloc(buflen); r = crypto_pk_public_checksig(env,buf,buflen,sig,siglen); if (r != DIGEST_LEN) { log_warn(LD_CRYPTO, "Invalid signature"); tor_free(buf); return -1; } if (tor_memneq(buf, digest, DIGEST_LEN)) { log_warn(LD_CRYPTO, "Signature mismatched with digest."); tor_free(buf); return -1; } tor_free(buf); return 0; } /** Sign fromlen bytes of data from from with the private key in * env, using PKCS1 padding. On success, write the signature to * to, and return the number of bytes written. On failure, return * -1. * * tolen is the number of writable bytes in to, and must be * at least the length of the modulus of env. */ int crypto_pk_private_sign(const crypto_pk_t *env, char *to, size_t tolen, const char *from, size_t fromlen) { int r; tor_assert(env); tor_assert(from); tor_assert(to); tor_assert(fromlen < INT_MAX); tor_assert(tolen >= crypto_pk_keysize(env)); if (!crypto_pk_key_is_private(env)) /* Not a private key */ return -1; r = RSA_private_encrypt((int)fromlen, (unsigned char*)from, (unsigned char*)to, (RSA*)env->key, RSA_PKCS1_PADDING); if (r<0) { crypto_log_errors(LOG_WARN, "generating RSA signature"); return -1; } return r; } /** Compute a SHA1 digest of fromlen bytes of data stored at * from; sign the data with the private key in env, and * store it in to. Return the number of bytes written on * success, and -1 on failure. * * tolen is the number of writable bytes in to, and must be * at least the length of the modulus of env. */ int crypto_pk_private_sign_digest(crypto_pk_t *env, char *to, size_t tolen, const char *from, size_t fromlen) { int r; char digest[DIGEST_LEN]; if (crypto_digest(digest,from,fromlen)<0) return -1; r = crypto_pk_private_sign(env,to,tolen,digest,DIGEST_LEN); memwipe(digest, 0, sizeof(digest)); return r; } /** Perform a hybrid (public/secret) encryption on fromlen * bytes of data from from, with padding type 'padding', * storing the results on to. * * Returns the number of bytes written on success, -1 on failure. * * The encrypted data consists of: * - The source data, padded and encrypted with the public key, if the * padded source data is no longer than the public key, and force * is false, OR * - The beginning of the source data prefixed with a 16-byte symmetric key, * padded and encrypted with the public key; followed by the rest of * the source data encrypted in AES-CTR mode with the symmetric key. */ int crypto_pk_public_hybrid_encrypt(crypto_pk_t *env, char *to, size_t tolen, const char *from, size_t fromlen, int padding, int force) { int overhead, outlen, r; size_t pkeylen, symlen; crypto_cipher_t *cipher = NULL; char *buf = NULL; tor_assert(env); tor_assert(from); tor_assert(to); tor_assert(fromlen < SIZE_T_CEILING); overhead = crypto_get_rsa_padding_overhead(crypto_get_rsa_padding(padding)); pkeylen = crypto_pk_keysize(env); if (!force && fromlen+overhead <= pkeylen) { /* It all fits in a single encrypt. */ return crypto_pk_public_encrypt(env,to, tolen, from,fromlen,padding); } tor_assert(tolen >= fromlen + overhead + CIPHER_KEY_LEN); tor_assert(tolen >= pkeylen); cipher = crypto_cipher_new(NULL); /* generate a new key. */ buf = tor_malloc(pkeylen+1); memcpy(buf, cipher->key, CIPHER_KEY_LEN); memcpy(buf+CIPHER_KEY_LEN, from, pkeylen-overhead-CIPHER_KEY_LEN); /* Length of symmetrically encrypted data. */ symlen = fromlen-(pkeylen-overhead-CIPHER_KEY_LEN); outlen = crypto_pk_public_encrypt(env,to,tolen,buf,pkeylen-overhead,padding); if (outlen!=(int)pkeylen) { goto err; } r = crypto_cipher_encrypt(cipher, to+outlen, from+pkeylen-overhead-CIPHER_KEY_LEN, symlen); if (r<0) goto err; memwipe(buf, 0, pkeylen); tor_free(buf); crypto_cipher_free(cipher); tor_assert(outlen+symlen < INT_MAX); return (int)(outlen + symlen); err: memwipe(buf, 0, pkeylen); tor_free(buf); crypto_cipher_free(cipher); return -1; } /** Invert crypto_pk_public_hybrid_encrypt. Returns the number of bytes * written on success, -1 on failure. */ int crypto_pk_private_hybrid_decrypt(crypto_pk_t *env, char *to, size_t tolen, const char *from, size_t fromlen, int padding, int warnOnFailure) { int outlen, r; size_t pkeylen; crypto_cipher_t *cipher = NULL; char *buf = NULL; tor_assert(fromlen < SIZE_T_CEILING); pkeylen = crypto_pk_keysize(env); if (fromlen <= pkeylen) { return crypto_pk_private_decrypt(env,to,tolen,from,fromlen,padding, warnOnFailure); } buf = tor_malloc(pkeylen); outlen = crypto_pk_private_decrypt(env,buf,pkeylen,from,pkeylen,padding, warnOnFailure); if (outlen<0) { log_fn(warnOnFailure?LOG_WARN:LOG_DEBUG, LD_CRYPTO, "Error decrypting public-key data"); goto err; } if (outlen < CIPHER_KEY_LEN) { log_fn(warnOnFailure?LOG_WARN:LOG_INFO, LD_CRYPTO, "No room for a symmetric key"); goto err; } cipher = crypto_cipher_new(buf); if (!cipher) { goto err; } memcpy(to,buf+CIPHER_KEY_LEN,outlen-CIPHER_KEY_LEN); outlen -= CIPHER_KEY_LEN; tor_assert(tolen - outlen >= fromlen - pkeylen); r = crypto_cipher_decrypt(cipher, to+outlen, from+pkeylen, fromlen-pkeylen); if (r<0) goto err; memwipe(buf,0,pkeylen); tor_free(buf); crypto_cipher_free(cipher); tor_assert(outlen + fromlen < INT_MAX); return (int)(outlen + (fromlen-pkeylen)); err: memwipe(buf,0,pkeylen); tor_free(buf); crypto_cipher_free(cipher); return -1; } /** ASN.1-encode the public portion of pk into dest. * Return -1 on error, or the number of characters used on success. */ int crypto_pk_asn1_encode(crypto_pk_t *pk, char *dest, size_t dest_len) { int len; unsigned char *buf = NULL; len = i2d_RSAPublicKey(pk->key, &buf); if (len < 0 || buf == NULL) return -1; if ((size_t)len > dest_len || dest_len > SIZE_T_CEILING) { OPENSSL_free(buf); return -1; } /* We don't encode directly into 'dest', because that would be illegal * type-punning. (C99 is smarter than me, C99 is smarter than me...) */ memcpy(dest,buf,len); OPENSSL_free(buf); return len; } /** Decode an ASN.1-encoded public key from str; return the result on * success and NULL on failure. */ crypto_pk_t * crypto_pk_asn1_decode(const char *str, size_t len) { RSA *rsa; unsigned char *buf; const unsigned char *cp; cp = buf = tor_malloc(len); memcpy(buf,str,len); rsa = d2i_RSAPublicKey(NULL, &cp, len); tor_free(buf); if (!rsa) { crypto_log_errors(LOG_WARN,"decoding public key"); return NULL; } return crypto_new_pk_from_rsa_(rsa); } /** Given a private or public key pk, put a SHA1 hash of the * public key into digest_out (must have DIGEST_LEN bytes of space). * Return 0 on success, -1 on failure. */ int crypto_pk_get_digest(const crypto_pk_t *pk, char *digest_out) { unsigned char *buf = NULL; int len; len = i2d_RSAPublicKey((RSA*)pk->key, &buf); if (len < 0 || buf == NULL) return -1; if (crypto_digest(digest_out, (char*)buf, len) < 0) { OPENSSL_free(buf); return -1; } OPENSSL_free(buf); return 0; } /** Compute all digests of the DER encoding of pk, and store them * in digests_out. Return 0 on success, -1 on failure. */ int crypto_pk_get_common_digests(crypto_pk_t *pk, common_digests_t *digests_out) { unsigned char *buf = NULL; int len; len = i2d_RSAPublicKey(pk->key, &buf); if (len < 0 || buf == NULL) return -1; if (crypto_common_digests(digests_out, (char*)buf, len) < 0) { OPENSSL_free(buf); return -1; } OPENSSL_free(buf); return 0; } /** Copy in to the outlen-byte buffer out, adding spaces * every four characters. */ void crypto_add_spaces_to_fp(char *out, size_t outlen, const char *in) { int n = 0; char *end = out+outlen; tor_assert(outlen < SIZE_T_CEILING); while (*in && outpk, put a fingerprint of the * public key into fp_out (must have at least FINGERPRINT_LEN+1 bytes of * space). Return 0 on success, -1 on failure. * * Fingerprints are computed as the SHA1 digest of the ASN.1 encoding * of the public key, converted to hexadecimal, in upper case, with a * space after every four digits. * * If add_space is false, omit the spaces. */ int crypto_pk_get_fingerprint(crypto_pk_t *pk, char *fp_out, int add_space) { char digest[DIGEST_LEN]; char hexdigest[HEX_DIGEST_LEN+1]; if (crypto_pk_get_digest(pk, digest)) { return -1; } base16_encode(hexdigest,sizeof(hexdigest),digest,DIGEST_LEN); if (add_space) { crypto_add_spaces_to_fp(fp_out, FINGERPRINT_LEN+1, hexdigest); } else { strncpy(fp_out, hexdigest, HEX_DIGEST_LEN+1); } return 0; } /** Given a private or public key pk, put a hashed fingerprint of * the public key into fp_out (must have at least FINGERPRINT_LEN+1 * bytes of space). Return 0 on success, -1 on failure. * * Hashed fingerprints are computed as the SHA1 digest of the SHA1 digest * of the ASN.1 encoding of the public key, converted to hexadecimal, in * upper case. */ int crypto_pk_get_hashed_fingerprint(crypto_pk_t *pk, char *fp_out) { char digest[DIGEST_LEN], hashed_digest[DIGEST_LEN]; if (crypto_pk_get_digest(pk, digest)) { return -1; } if (crypto_digest(hashed_digest, digest, DIGEST_LEN)) { return -1; } base16_encode(fp_out, FINGERPRINT_LEN + 1, hashed_digest, DIGEST_LEN); return 0; } /** Given a crypto_pk_t pk, allocate a new buffer containing the * Base64 encoding of the DER representation of the private key as a NUL * terminated string, and return it via priv_out. Return 0 on * sucess, -1 on failure. * * It is the caller's responsibility to sanitize and free the resulting buffer. */ int crypto_pk_base64_encode(const crypto_pk_t *pk, char **priv_out) { unsigned char *der = NULL; int der_len; int ret = -1; *priv_out = NULL; der_len = i2d_RSAPrivateKey(pk->key, &der); if (der_len < 0 || der == NULL) return ret; size_t priv_len = base64_encode_size(der_len, 0) + 1; char *priv = tor_malloc_zero(priv_len); if (base64_encode(priv, priv_len, (char *)der, der_len, 0) >= 0) { *priv_out = priv; ret = 0; } else { tor_free(priv); } memwipe(der, 0, der_len); OPENSSL_free(der); return ret; } /** Given a string containing the Base64 encoded DER representation of the * private key str, decode and return the result on success, or NULL * on failure. */ crypto_pk_t * crypto_pk_base64_decode(const char *str, size_t len) { crypto_pk_t *pk = NULL; char *der = tor_malloc_zero(len + 1); int der_len = base64_decode(der, len, str, len); if (der_len <= 0) { log_warn(LD_CRYPTO, "Stored RSA private key seems corrupted (base64)."); goto out; } const unsigned char *dp = (unsigned char*)der; /* Shut the compiler up. */ RSA *rsa = d2i_RSAPrivateKey(NULL, &dp, der_len); if (!rsa) { crypto_log_errors(LOG_WARN, "decoding private key"); goto out; } pk = crypto_new_pk_from_rsa_(rsa); /* Make sure it's valid. */ if (crypto_pk_check_key(pk) <= 0) { crypto_pk_free(pk); pk = NULL; goto out; } out: memwipe(der, 0, len + 1); tor_free(der); return pk; } /* symmetric crypto */ /** Return a pointer to the key set for the cipher in env. */ const char * crypto_cipher_get_key(crypto_cipher_t *env) { return env->key; } /** Encrypt fromlen bytes from from using the cipher * env; on success, store the result to to and return 0. * Does not check for failure. */ int crypto_cipher_encrypt(crypto_cipher_t *env, char *to, const char *from, size_t fromlen) { tor_assert(env); tor_assert(env->cipher); tor_assert(from); tor_assert(fromlen); tor_assert(to); tor_assert(fromlen < SIZE_T_CEILING); memcpy(to, from, fromlen); aes_crypt_inplace(env->cipher, to, fromlen); return 0; } /** Decrypt fromlen bytes from from using the cipher * env; on success, store the result to to and return 0. * Does not check for failure. */ int crypto_cipher_decrypt(crypto_cipher_t *env, char *to, const char *from, size_t fromlen) { tor_assert(env); tor_assert(from); tor_assert(to); tor_assert(fromlen < SIZE_T_CEILING); memcpy(to, from, fromlen); aes_crypt_inplace(env->cipher, to, fromlen); return 0; } /** Encrypt len bytes on from using the cipher in env; * on success. Does not check for failure. */ void crypto_cipher_crypt_inplace(crypto_cipher_t *env, char *buf, size_t len) { tor_assert(len < SIZE_T_CEILING); aes_crypt_inplace(env->cipher, buf, len); } /** Encrypt fromlen bytes (at least 1) from from with the key in * key to the buffer in to of length * tolen. tolen must be at least fromlen plus * CIPHER_IV_LEN bytes for the initialization vector. On success, return the * number of bytes written, on failure, return -1. */ int crypto_cipher_encrypt_with_iv(const char *key, char *to, size_t tolen, const char *from, size_t fromlen) { crypto_cipher_t *cipher; tor_assert(from); tor_assert(to); tor_assert(fromlen < INT_MAX); if (fromlen < 1) return -1; if (tolen < fromlen + CIPHER_IV_LEN) return -1; cipher = crypto_cipher_new_with_iv(key, NULL); memcpy(to, cipher->iv, CIPHER_IV_LEN); crypto_cipher_encrypt(cipher, to+CIPHER_IV_LEN, from, fromlen); crypto_cipher_free(cipher); return (int)(fromlen + CIPHER_IV_LEN); } /** Decrypt fromlen bytes (at least 1+CIPHER_IV_LEN) from from * with the key in key to the buffer in to of length * tolen. tolen must be at least fromlen minus * CIPHER_IV_LEN bytes for the initialization vector. On success, return the * number of bytes written, on failure, return -1. */ int crypto_cipher_decrypt_with_iv(const char *key, char *to, size_t tolen, const char *from, size_t fromlen) { crypto_cipher_t *cipher; tor_assert(key); tor_assert(from); tor_assert(to); tor_assert(fromlen < INT_MAX); if (fromlen <= CIPHER_IV_LEN) return -1; if (tolen < fromlen - CIPHER_IV_LEN) return -1; cipher = crypto_cipher_new_with_iv(key, from); crypto_cipher_encrypt(cipher, to, from+CIPHER_IV_LEN, fromlen-CIPHER_IV_LEN); crypto_cipher_free(cipher); return (int)(fromlen - CIPHER_IV_LEN); } /* SHA-1 */ /** Compute the SHA1 digest of the len bytes on data stored in * m. Write the DIGEST_LEN byte result into digest. * Return 0 on success, 1 on failure. */ int crypto_digest(char *digest, const char *m, size_t len) { tor_assert(m); tor_assert(digest); return (SHA1((const unsigned char*)m,len,(unsigned char*)digest) == NULL); } /** Compute a 256-bit digest of len bytes in data stored in m, * using the algorithm algorithm. Write the DIGEST_LEN256-byte result * into digest. Return 0 on success, 1 on failure. */ int crypto_digest256(char *digest, const char *m, size_t len, digest_algorithm_t algorithm) { tor_assert(m); tor_assert(digest); tor_assert(algorithm == DIGEST_SHA256 || algorithm == DIGEST_SHA3_256); if (algorithm == DIGEST_SHA256) return (SHA256((const uint8_t*)m,len,(uint8_t*)digest) == NULL); else return (sha3_256((uint8_t *)digest, DIGEST256_LEN,(const uint8_t *)m, len) == -1); } /** Compute a 512-bit digest of len bytes in data stored in m, * using the algorithm algorithm. Write the DIGEST_LEN512-byte result * into digest. Return 0 on success, 1 on failure. */ int crypto_digest512(char *digest, const char *m, size_t len, digest_algorithm_t algorithm) { tor_assert(m); tor_assert(digest); tor_assert(algorithm == DIGEST_SHA512 || algorithm == DIGEST_SHA3_512); if (algorithm == DIGEST_SHA512) return (SHA512((const unsigned char*)m,len,(unsigned char*)digest) == NULL); else return (sha3_512((uint8_t*)digest, DIGEST512_LEN, (const uint8_t*)m, len) == -1); } /** Set the common_digests_t in ds_out to contain every digest on the * len bytes in m that we know how to compute. Return 0 on * success, -1 on failure. */ int crypto_common_digests(common_digests_t *ds_out, const char *m, size_t len) { tor_assert(ds_out); memset(ds_out, 0, sizeof(*ds_out)); if (crypto_digest(ds_out->d[DIGEST_SHA1], m, len) < 0) return -1; if (crypto_digest256(ds_out->d[DIGEST_SHA256], m, len, DIGEST_SHA256) < 0) return -1; return 0; } /** Return the name of an algorithm, as used in directory documents. */ const char * crypto_digest_algorithm_get_name(digest_algorithm_t alg) { switch (alg) { case DIGEST_SHA1: return "sha1"; case DIGEST_SHA256: return "sha256"; case DIGEST_SHA512: return "sha512"; case DIGEST_SHA3_256: return "sha3-256"; case DIGEST_SHA3_512: return "sha3-512"; default: tor_fragile_assert(); return "??unknown_digest??"; } } /** Given the name of a digest algorithm, return its integer value, or -1 if * the name is not recognized. */ int crypto_digest_algorithm_parse_name(const char *name) { if (!strcmp(name, "sha1")) return DIGEST_SHA1; else if (!strcmp(name, "sha256")) return DIGEST_SHA256; else if (!strcmp(name, "sha512")) return DIGEST_SHA512; else if (!strcmp(name, "sha3-256")) return DIGEST_SHA3_256; else if (!strcmp(name, "sha3-512")) return DIGEST_SHA3_512; else return -1; } /** Given an algorithm, return the digest length in bytes. */ static inline size_t crypto_digest_algorithm_get_length(digest_algorithm_t alg) { switch (alg) { case DIGEST_SHA1: return DIGEST_LEN; case DIGEST_SHA256: return DIGEST256_LEN; case DIGEST_SHA512: return DIGEST512_LEN; case DIGEST_SHA3_256: return DIGEST256_LEN; case DIGEST_SHA3_512: return DIGEST512_LEN; default: tor_assert(0); return 0; /* Unreachable */ } } /** Intermediate information about the digest of a stream of data. */ struct crypto_digest_t { digest_algorithm_t algorithm; /**< Which algorithm is in use? */ /** State for the digest we're using. Only one member of the * union is usable, depending on the value of algorithm. Note also * that space for other members might not even be allocated! */ union { SHA_CTX sha1; /**< state for SHA1 */ SHA256_CTX sha2; /**< state for SHA256 */ SHA512_CTX sha512; /**< state for SHA512 */ keccak_state sha3; /**< state for SHA3-[256,512] */ } d; }; /** * Return the number of bytes we need to malloc in order to get a * crypto_digest_t for alg, or the number of bytes we need to wipe * when we free one. */ static size_t crypto_digest_alloc_bytes(digest_algorithm_t alg) { /* Helper: returns the number of bytes in the 'f' field of 'st' */ #define STRUCT_FIELD_SIZE(st, f) (sizeof( ((st*)0)->f )) /* Gives the length of crypto_digest_t through the end of the field 'd' */ #define END_OF_FIELD(f) (STRUCT_OFFSET(crypto_digest_t, f) + \ STRUCT_FIELD_SIZE(crypto_digest_t, f)) switch (alg) { case DIGEST_SHA1: return END_OF_FIELD(d.sha1); case DIGEST_SHA256: return END_OF_FIELD(d.sha2); case DIGEST_SHA512: return END_OF_FIELD(d.sha512); case DIGEST_SHA3_256: case DIGEST_SHA3_512: return END_OF_FIELD(d.sha3); default: tor_assert(0); return 0; } #undef END_OF_FIELD #undef STRUCT_FIELD_SIZE } /** Allocate and return a new digest object to compute SHA1 digests. */ crypto_digest_t * crypto_digest_new(void) { crypto_digest_t *r; r = tor_malloc(crypto_digest_alloc_bytes(DIGEST_SHA1)); SHA1_Init(&r->d.sha1); r->algorithm = DIGEST_SHA1; return r; } /** Allocate and return a new digest object to compute 256-bit digests * using algorithm. */ crypto_digest_t * crypto_digest256_new(digest_algorithm_t algorithm) { crypto_digest_t *r; tor_assert(algorithm == DIGEST_SHA256 || algorithm == DIGEST_SHA3_256); r = tor_malloc(crypto_digest_alloc_bytes(algorithm)); if (algorithm == DIGEST_SHA256) SHA256_Init(&r->d.sha2); else keccak_digest_init(&r->d.sha3, 256); r->algorithm = algorithm; return r; } /** Allocate and return a new digest object to compute 512-bit digests * using algorithm. */ crypto_digest_t * crypto_digest512_new(digest_algorithm_t algorithm) { crypto_digest_t *r; tor_assert(algorithm == DIGEST_SHA512 || algorithm == DIGEST_SHA3_512); r = tor_malloc(crypto_digest_alloc_bytes(algorithm)); if (algorithm == DIGEST_SHA512) SHA512_Init(&r->d.sha512); else keccak_digest_init(&r->d.sha3, 512); r->algorithm = algorithm; return r; } /** Deallocate a digest object. */ void crypto_digest_free(crypto_digest_t *digest) { if (!digest) return; size_t bytes = crypto_digest_alloc_bytes(digest->algorithm); memwipe(digest, 0, bytes); tor_free(digest); } /** Add len bytes from data to the digest object. */ void crypto_digest_add_bytes(crypto_digest_t *digest, const char *data, size_t len) { tor_assert(digest); tor_assert(data); /* Using the SHA*_*() calls directly means we don't support doing * SHA in hardware. But so far the delay of getting the question * to the hardware, and hearing the answer, is likely higher than * just doing it ourselves. Hashes are fast. */ switch (digest->algorithm) { case DIGEST_SHA1: SHA1_Update(&digest->d.sha1, (void*)data, len); break; case DIGEST_SHA256: SHA256_Update(&digest->d.sha2, (void*)data, len); break; case DIGEST_SHA512: SHA512_Update(&digest->d.sha512, (void*)data, len); break; case DIGEST_SHA3_256: /* FALLSTHROUGH */ case DIGEST_SHA3_512: keccak_digest_update(&digest->d.sha3, (const uint8_t *)data, len); break; default: tor_fragile_assert(); break; } } /** Compute the hash of the data that has been passed to the digest * object; write the first out_len bytes of the result to out. * out_len must be \<= DIGEST512_LEN. */ void crypto_digest_get_digest(crypto_digest_t *digest, char *out, size_t out_len) { unsigned char r[DIGEST512_LEN]; crypto_digest_t tmpenv; tor_assert(digest); tor_assert(out); tor_assert(out_len <= crypto_digest_algorithm_get_length(digest->algorithm)); /* The SHA-3 code handles copying into a temporary ctx, and also can handle * short output buffers by truncating appropriately. */ if (digest->algorithm == DIGEST_SHA3_256 || digest->algorithm == DIGEST_SHA3_512) { keccak_digest_sum(&digest->d.sha3, (uint8_t *)out, out_len); return; } const size_t alloc_bytes = crypto_digest_alloc_bytes(digest->algorithm); /* memcpy into a temporary ctx, since SHA*_Final clears the context */ memcpy(&tmpenv, digest, alloc_bytes); switch (digest->algorithm) { case DIGEST_SHA1: SHA1_Final(r, &tmpenv.d.sha1); break; case DIGEST_SHA256: SHA256_Final(r, &tmpenv.d.sha2); break; case DIGEST_SHA512: SHA512_Final(r, &tmpenv.d.sha512); break; case DIGEST_SHA3_256: /* FALLSTHROUGH */ case DIGEST_SHA3_512: log_warn(LD_BUG, "Handling unexpected algorithm %d", digest->algorithm); tor_assert(0); /* This is fatal, because it should never happen. */ default: tor_assert(0); /* Unreachable. */ break; } memcpy(out, r, out_len); memwipe(r, 0, sizeof(r)); } /** Allocate and return a new digest object with the same state as * digest */ crypto_digest_t * crypto_digest_dup(const crypto_digest_t *digest) { tor_assert(digest); const size_t alloc_bytes = crypto_digest_alloc_bytes(digest->algorithm); return tor_memdup(digest, alloc_bytes); } /** Replace the state of the digest object into with the state * of the digest object from. Requires that 'into' and 'from' * have the same digest type. */ void crypto_digest_assign(crypto_digest_t *into, const crypto_digest_t *from) { tor_assert(into); tor_assert(from); tor_assert(into->algorithm == from->algorithm); const size_t alloc_bytes = crypto_digest_alloc_bytes(from->algorithm); memcpy(into,from,alloc_bytes); } /** Given a list of strings in lst, set the len_out-byte digest * at digest_out to the hash of the concatenation of those strings, * plus the optional string append, computed with the algorithm * alg. * out_len must be \<= DIGEST512_LEN. */ void crypto_digest_smartlist(char *digest_out, size_t len_out, const smartlist_t *lst, const char *append, digest_algorithm_t alg) { crypto_digest_smartlist_prefix(digest_out, len_out, NULL, lst, append, alg); } /** Given a list of strings in lst, set the len_out-byte digest * at digest_out to the hash of the concatenation of: the * optional string prepend, those strings, * and the optional string append, computed with the algorithm * alg. * len_out must be \<= DIGEST512_LEN. */ void crypto_digest_smartlist_prefix(char *digest_out, size_t len_out, const char *prepend, const smartlist_t *lst, const char *append, digest_algorithm_t alg) { crypto_digest_t *d = NULL; switch (alg) { case DIGEST_SHA1: d = crypto_digest_new(); break; case DIGEST_SHA256: /* FALLSTHROUGH */ case DIGEST_SHA3_256: d = crypto_digest256_new(alg); break; case DIGEST_SHA512: /* FALLSTHROUGH */ case DIGEST_SHA3_512: d = crypto_digest512_new(alg); break; default: log_warn(LD_BUG, "Called with unknown algorithm %d", alg); /* If fragile_assert is not enabled, wipe output and return * without running any calculations */ memwipe(digest_out, 0xff, len_out); tor_fragile_assert(); goto free; } if (prepend) crypto_digest_add_bytes(d, prepend, strlen(prepend)); SMARTLIST_FOREACH(lst, const char *, cp, crypto_digest_add_bytes(d, cp, strlen(cp))); if (append) crypto_digest_add_bytes(d, append, strlen(append)); crypto_digest_get_digest(d, digest_out, len_out); free: crypto_digest_free(d); } /** Compute the HMAC-SHA-256 of the msg_len bytes in msg, using * the key of length key_len. Store the DIGEST256_LEN-byte * result in hmac_out. Asserts on failure. */ void crypto_hmac_sha256(char *hmac_out, const char *key, size_t key_len, const char *msg, size_t msg_len) { unsigned char *rv = NULL; /* If we've got OpenSSL >=0.9.8 we can use its hmac implementation. */ tor_assert(key_len < INT_MAX); tor_assert(msg_len < INT_MAX); tor_assert(hmac_out); rv = HMAC(EVP_sha256(), key, (int)key_len, (unsigned char*)msg, (int)msg_len, (unsigned char*)hmac_out, NULL); tor_assert(rv); } /** Internal state for a eXtendable-Output Function (XOF). */ struct crypto_xof_t { keccak_state s; }; /** Allocate a new XOF object backed by SHAKE-256. The security level * provided is a function of the length of the output used. Read and * understand FIPS-202 A.2 "Additional Consideration for Extendable-Output * Functions" before using this construct. */ crypto_xof_t * crypto_xof_new(void) { crypto_xof_t *xof; xof = tor_malloc(sizeof(crypto_xof_t)); keccak_xof_init(&xof->s, 256); return xof; } /** Absorb bytes into a XOF object. Must not be called after a call to * crypto_xof_squeeze_bytes() for the same instance, and will assert * if attempted. */ void crypto_xof_add_bytes(crypto_xof_t *xof, const uint8_t *data, size_t len) { int i = keccak_xof_absorb(&xof->s, data, len); tor_assert(i == 0); } /** Squeeze bytes out of a XOF object. Calling this routine will render * the XOF instance ineligible to absorb further data. */ void crypto_xof_squeeze_bytes(crypto_xof_t *xof, uint8_t *out, size_t len) { int i = keccak_xof_squeeze(&xof->s, out, len); tor_assert(i == 0); } /** Cleanse and deallocate a XOF object. */ void crypto_xof_free(crypto_xof_t *xof) { if (!xof) return; memwipe(xof, 0, sizeof(crypto_xof_t)); tor_free(xof); } /* DH */ /** Our DH 'g' parameter */ #define DH_GENERATOR 2 /** Shared P parameter for our circuit-crypto DH key exchanges. */ static BIGNUM *dh_param_p = NULL; /** Shared P parameter for our TLS DH key exchanges. */ static BIGNUM *dh_param_p_tls = NULL; /** Shared G parameter for our DH key exchanges. */ static BIGNUM *dh_param_g = NULL; /** Validate a given set of Diffie-Hellman parameters. This is moderately * computationally expensive (milliseconds), so should only be called when * the DH parameters change. Returns 0 on success, * -1 on failure. */ static int crypto_validate_dh_params(const BIGNUM *p, const BIGNUM *g) { DH *dh = NULL; int ret = -1; /* Copy into a temporary DH object, just so that DH_check() can be called. */ if (!(dh = DH_new())) goto out; #ifdef OPENSSL_1_1_API BIGNUM *dh_p, *dh_g; if (!(dh_p = BN_dup(p))) goto out; if (!(dh_g = BN_dup(g))) goto out; if (!DH_set0_pqg(dh, dh_p, NULL, dh_g)) goto out; #else if (!(dh->p = BN_dup(p))) goto out; if (!(dh->g = BN_dup(g))) goto out; #endif /* Perform the validation. */ int codes = 0; if (!DH_check(dh, &codes)) goto out; if (BN_is_word(g, DH_GENERATOR_2)) { /* Per https://wiki.openssl.org/index.php/Diffie-Hellman_parameters * * OpenSSL checks the prime is congruent to 11 when g = 2; while the * IETF's primes are congruent to 23 when g = 2. */ BN_ULONG residue = BN_mod_word(p, 24); if (residue == 11 || residue == 23) codes &= ~DH_NOT_SUITABLE_GENERATOR; } if (codes != 0) /* Specifics on why the params suck is irrelevant. */ goto out; /* Things are probably not evil. */ ret = 0; out: if (dh) DH_free(dh); return ret; } /** Set the global Diffie-Hellman generator, used for both TLS and internal * DH stuff. */ static void crypto_set_dh_generator(void) { BIGNUM *generator; int r; if (dh_param_g) return; generator = BN_new(); tor_assert(generator); r = BN_set_word(generator, DH_GENERATOR); tor_assert(r); dh_param_g = generator; } /** Set the global TLS Diffie-Hellman modulus. Use the Apache mod_ssl DH * modulus. */ void crypto_set_tls_dh_prime(void) { BIGNUM *tls_prime = NULL; int r; /* If the space is occupied, free the previous TLS DH prime */ if (dh_param_p_tls) { BN_clear_free(dh_param_p_tls); dh_param_p_tls = NULL; } tls_prime = BN_new(); tor_assert(tls_prime); /* This is the 1024-bit safe prime that Apache uses for its DH stuff; see * modules/ssl/ssl_engine_dh.c; Apache also uses a generator of 2 with this * prime. */ r = BN_hex2bn(&tls_prime, "D67DE440CBBBDC1936D693D34AFD0AD50C84D239A45F520BB88174CB98" "BCE951849F912E639C72FB13B4B4D7177E16D55AC179BA420B2A29FE324A" "467A635E81FF5901377BEDDCFD33168A461AAD3B72DAE8860078045B07A7" "DBCA7874087D1510EA9FCC9DDD330507DD62DB88AEAA747DE0F4D6E2BD68" "B0E7393E0F24218EB3"); tor_assert(r); tor_assert(tls_prime); dh_param_p_tls = tls_prime; crypto_set_dh_generator(); tor_assert(0 == crypto_validate_dh_params(dh_param_p_tls, dh_param_g)); } /** Initialize dh_param_p and dh_param_g if they are not already * set. */ static void init_dh_param(void) { BIGNUM *circuit_dh_prime; int r; if (dh_param_p && dh_param_g) return; circuit_dh_prime = BN_new(); tor_assert(circuit_dh_prime); /* This is from rfc2409, section 6.2. It's a safe prime, and supposedly it equals: 2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }. */ r = BN_hex2bn(&circuit_dh_prime, "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" "49286651ECE65381FFFFFFFFFFFFFFFF"); tor_assert(r); /* Set the new values as the global DH parameters. */ dh_param_p = circuit_dh_prime; crypto_set_dh_generator(); tor_assert(0 == crypto_validate_dh_params(dh_param_p, dh_param_g)); if (!dh_param_p_tls) { crypto_set_tls_dh_prime(); } } /** Number of bits to use when choosing the x or y value in a Diffie-Hellman * handshake. Since we exponentiate by this value, choosing a smaller one * lets our handhake go faster. */ #define DH_PRIVATE_KEY_BITS 320 /** Allocate and return a new DH object for a key exchange. Returns NULL on * failure. */ crypto_dh_t * crypto_dh_new(int dh_type) { crypto_dh_t *res = tor_malloc_zero(sizeof(crypto_dh_t)); tor_assert(dh_type == DH_TYPE_CIRCUIT || dh_type == DH_TYPE_TLS || dh_type == DH_TYPE_REND); if (!dh_param_p) init_dh_param(); if (!(res->dh = DH_new())) goto err; #ifdef OPENSSL_1_1_API BIGNUM *dh_p = NULL, *dh_g = NULL; if (dh_type == DH_TYPE_TLS) { dh_p = BN_dup(dh_param_p_tls); } else { dh_p = BN_dup(dh_param_p); } if (!dh_p) goto err; dh_g = BN_dup(dh_param_g); if (!dh_g) { BN_free(dh_p); goto err; } if (!DH_set0_pqg(res->dh, dh_p, NULL, dh_g)) { goto err; } if (!DH_set_length(res->dh, DH_PRIVATE_KEY_BITS)) goto err; #else if (dh_type == DH_TYPE_TLS) { if (!(res->dh->p = BN_dup(dh_param_p_tls))) goto err; } else { if (!(res->dh->p = BN_dup(dh_param_p))) goto err; } if (!(res->dh->g = BN_dup(dh_param_g))) goto err; res->dh->length = DH_PRIVATE_KEY_BITS; #endif return res; err: crypto_log_errors(LOG_WARN, "creating DH object"); if (res->dh) DH_free(res->dh); /* frees p and g too */ tor_free(res); return NULL; } /** Return a copy of dh, sharing its internal state. */ crypto_dh_t * crypto_dh_dup(const crypto_dh_t *dh) { crypto_dh_t *dh_new = tor_malloc_zero(sizeof(crypto_dh_t)); tor_assert(dh); tor_assert(dh->dh); dh_new->dh = dh->dh; DH_up_ref(dh->dh); return dh_new; } /** Return the length of the DH key in dh, in bytes. */ int crypto_dh_get_bytes(crypto_dh_t *dh) { tor_assert(dh); return DH_size(dh->dh); } /** Generate \ for our part of the key exchange. Return 0 on * success, -1 on failure. */ int crypto_dh_generate_public(crypto_dh_t *dh) { #ifndef OPENSSL_1_1_API again: #endif if (!DH_generate_key(dh->dh)) { crypto_log_errors(LOG_WARN, "generating DH key"); return -1; } #ifdef OPENSSL_1_1_API /* OpenSSL 1.1.x doesn't appear to let you regenerate a DH key, without * recreating the DH object. I have no idea what sort of aliasing madness * can occur here, so do the check, and just bail on failure. */ const BIGNUM *pub_key, *priv_key; DH_get0_key(dh->dh, &pub_key, &priv_key); if (tor_check_dh_key(LOG_WARN, pub_key)<0) { log_warn(LD_CRYPTO, "Weird! Our own DH key was invalid. I guess once-in-" "the-universe chances really do happen. Treating as a failure."); return -1; } #else if (tor_check_dh_key(LOG_WARN, dh->dh->pub_key)<0) { log_warn(LD_CRYPTO, "Weird! Our own DH key was invalid. I guess once-in-" "the-universe chances really do happen. Trying again."); /* Free and clear the keys, so OpenSSL will actually try again. */ BN_clear_free(dh->dh->pub_key); BN_clear_free(dh->dh->priv_key); dh->dh->pub_key = dh->dh->priv_key = NULL; goto again; } #endif return 0; } /** Generate g^x as necessary, and write the g^x for the key exchange * as a pubkey_len-byte value into pubkey. Return 0 on * success, -1 on failure. pubkey_len must be \>= DH_BYTES. */ int crypto_dh_get_public(crypto_dh_t *dh, char *pubkey, size_t pubkey_len) { int bytes; tor_assert(dh); const BIGNUM *dh_pub; #ifdef OPENSSL_1_1_API const BIGNUM *dh_priv; DH_get0_key(dh->dh, &dh_pub, &dh_priv); #else dh_pub = dh->dh->pub_key; #endif if (!dh_pub) { if (crypto_dh_generate_public(dh)<0) return -1; else { #ifdef OPENSSL_1_1_API DH_get0_key(dh->dh, &dh_pub, &dh_priv); #else dh_pub = dh->dh->pub_key; #endif } } tor_assert(dh_pub); bytes = BN_num_bytes(dh_pub); tor_assert(bytes >= 0); if (pubkey_len < (size_t)bytes) { log_warn(LD_CRYPTO, "Weird! pubkey_len (%d) was smaller than DH_BYTES (%d)", (int) pubkey_len, bytes); return -1; } memset(pubkey, 0, pubkey_len); BN_bn2bin(dh_pub, (unsigned char*)(pubkey+(pubkey_len-bytes))); return 0; } /** Check for bad Diffie-Hellman public keys (g^x). Return 0 if the key is * okay (in the subgroup [2,p-2]), or -1 if it's bad. * See http://www.cl.cam.ac.uk/ftp/users/rja14/psandqs.ps.gz for some tips. */ static int tor_check_dh_key(int severity, const BIGNUM *bn) { BIGNUM *x; char *s; tor_assert(bn); x = BN_new(); tor_assert(x); if (!dh_param_p) init_dh_param(); BN_set_word(x, 1); if (BN_cmp(bn,x)<=0) { log_fn(severity, LD_CRYPTO, "DH key must be at least 2."); goto err; } BN_copy(x,dh_param_p); BN_sub_word(x, 1); if (BN_cmp(bn,x)>=0) { log_fn(severity, LD_CRYPTO, "DH key must be at most p-2."); goto err; } BN_clear_free(x); return 0; err: BN_clear_free(x); s = BN_bn2hex(bn); log_fn(severity, LD_CRYPTO, "Rejecting insecure DH key [%s]", s); OPENSSL_free(s); return -1; } #undef MIN #define MIN(a,b) ((a)<(b)?(a):(b)) /** Given a DH key exchange object, and our peer's value of g^y (as a * pubkey_len-byte value in pubkey) generate * secret_bytes_out bytes of shared key material and write them * to secret_out. Return the number of bytes generated on success, * or -1 on failure. * * (We generate key material by computing * SHA1( g^xy || "\x00" ) || SHA1( g^xy || "\x01" ) || ... * where || is concatenation.) */ ssize_t crypto_dh_compute_secret(int severity, crypto_dh_t *dh, const char *pubkey, size_t pubkey_len, char *secret_out, size_t secret_bytes_out) { char *secret_tmp = NULL; BIGNUM *pubkey_bn = NULL; size_t secret_len=0, secret_tmp_len=0; int result=0; tor_assert(dh); tor_assert(secret_bytes_out/DIGEST_LEN <= 255); tor_assert(pubkey_len < INT_MAX); if (!(pubkey_bn = BN_bin2bn((const unsigned char*)pubkey, (int)pubkey_len, NULL))) goto error; if (tor_check_dh_key(severity, pubkey_bn)<0) { /* Check for invalid public keys. */ log_fn(severity, LD_CRYPTO,"Rejected invalid g^x"); goto error; } secret_tmp_len = crypto_dh_get_bytes(dh); secret_tmp = tor_malloc(secret_tmp_len); result = DH_compute_key((unsigned char*)secret_tmp, pubkey_bn, dh->dh); if (result < 0) { log_warn(LD_CRYPTO,"DH_compute_key() failed."); goto error; } secret_len = result; if (crypto_expand_key_material_TAP((uint8_t*)secret_tmp, secret_len, (uint8_t*)secret_out, secret_bytes_out)<0) goto error; secret_len = secret_bytes_out; goto done; error: result = -1; done: crypto_log_errors(LOG_WARN, "completing DH handshake"); if (pubkey_bn) BN_clear_free(pubkey_bn); if (secret_tmp) { memwipe(secret_tmp, 0, secret_tmp_len); tor_free(secret_tmp); } if (result < 0) return result; else return secret_len; } /** Given key_in_len bytes of negotiated randomness in key_in * ("K"), expand it into key_out_len bytes of negotiated key material in * key_out by taking the first key_out_len bytes of * H(K | [00]) | H(K | [01]) | .... * * This is the key expansion algorithm used in the "TAP" circuit extension * mechanism; it shouldn't be used for new protocols. * * Return 0 on success, -1 on failure. */ int crypto_expand_key_material_TAP(const uint8_t *key_in, size_t key_in_len, uint8_t *key_out, size_t key_out_len) { int i, r = -1; uint8_t *cp, *tmp = tor_malloc(key_in_len+1); uint8_t digest[DIGEST_LEN]; /* If we try to get more than this amount of key data, we'll repeat blocks.*/ tor_assert(key_out_len <= DIGEST_LEN*256); memcpy(tmp, key_in, key_in_len); for (cp = key_out, i=0; cp < key_out+key_out_len; ++i, cp += DIGEST_LEN) { tmp[key_in_len] = i; if (crypto_digest((char*)digest, (const char *)tmp, key_in_len+1)) goto exit; memcpy(cp, digest, MIN(DIGEST_LEN, key_out_len-(cp-key_out))); } r = 0; exit: memwipe(tmp, 0, key_in_len+1); tor_free(tmp); memwipe(digest, 0, sizeof(digest)); return r; } /** Expand some secret key material according to RFC5869, using SHA256 as the * underlying hash. The key_in_len bytes at key_in are the * secret key material; the salt_in_len bytes at salt_in and the * info_in_len bytes in info_in_len are the algorithm's "salt" * and "info" parameters respectively. On success, write key_out_len * bytes to key_out and return 0. Assert on failure. */ int crypto_expand_key_material_rfc5869_sha256( const uint8_t *key_in, size_t key_in_len, const uint8_t *salt_in, size_t salt_in_len, const uint8_t *info_in, size_t info_in_len, uint8_t *key_out, size_t key_out_len) { uint8_t prk[DIGEST256_LEN]; uint8_t tmp[DIGEST256_LEN + 128 + 1]; uint8_t mac[DIGEST256_LEN]; int i; uint8_t *outp; size_t tmp_len; crypto_hmac_sha256((char*)prk, (const char*)salt_in, salt_in_len, (const char*)key_in, key_in_len); /* If we try to get more than this amount of key data, we'll repeat blocks.*/ tor_assert(key_out_len <= DIGEST256_LEN * 256); tor_assert(info_in_len <= 128); memset(tmp, 0, sizeof(tmp)); outp = key_out; i = 1; while (key_out_len) { size_t n; if (i > 1) { memcpy(tmp, mac, DIGEST256_LEN); memcpy(tmp+DIGEST256_LEN, info_in, info_in_len); tmp[DIGEST256_LEN+info_in_len] = i; tmp_len = DIGEST256_LEN + info_in_len + 1; } else { memcpy(tmp, info_in, info_in_len); tmp[info_in_len] = i; tmp_len = info_in_len + 1; } crypto_hmac_sha256((char*)mac, (const char*)prk, DIGEST256_LEN, (const char*)tmp, tmp_len); n = key_out_len < DIGEST256_LEN ? key_out_len : DIGEST256_LEN; memcpy(outp, mac, n); key_out_len -= n; outp += n; ++i; } memwipe(tmp, 0, sizeof(tmp)); memwipe(mac, 0, sizeof(mac)); return 0; } /** Free a DH key exchange object. */ void crypto_dh_free(crypto_dh_t *dh) { if (!dh) return; tor_assert(dh->dh); DH_free(dh->dh); tor_free(dh); } /* random numbers */ /** How many bytes of entropy we add at once. * * This is how much entropy OpenSSL likes to add right now, so maybe it will * work for us too. */ #define ADD_ENTROPY 32 /** Set the seed of the weak RNG to a random value. */ void crypto_seed_weak_rng(tor_weak_rng_t *rng) { unsigned seed; crypto_rand((void*)&seed, sizeof(seed)); tor_init_weak_random(rng, seed); } /** Try to get out_len bytes of the strongest entropy we can generate, * via system calls, storing it into out. Return 0 on success, -1 on * failure. A maximum request size of 256 bytes is imposed. */ static int crypto_strongest_rand_syscall(uint8_t *out, size_t out_len) { tor_assert(out_len <= MAX_STRONGEST_RAND_SIZE); #if defined(_WIN32) static int provider_set = 0; static HCRYPTPROV provider; if (!provider_set) { if (!CryptAcquireContext(&provider, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) { log_warn(LD_CRYPTO, "Can't get CryptoAPI provider [1]"); return -1; } provider_set = 1; } if (!CryptGenRandom(provider, out_len, out)) { log_warn(LD_CRYPTO, "Can't get entropy from CryptoAPI."); return -1; } return 0; #elif defined(__linux__) && defined(SYS_getrandom) static int getrandom_works = 1; /* Be optimitic about our chances... */ /* getrandom() isn't as straight foward as getentropy(), and has * no glibc wrapper. * * As far as I can tell from getrandom(2) and the source code, the * requests we issue will always succeed (though it will block on the * call if /dev/urandom isn't seeded yet), since we are NOT specifying * GRND_NONBLOCK and the request is <= 256 bytes. * * The manpage is unclear on what happens if a signal interrupts the call * while the request is blocked due to lack of entropy.... * * We optimistically assume that getrandom() is available and functional * because it is the way of the future, and 2 branch mispredicts pale in * comparision to the overheads involved with failing to open * /dev/srandom followed by opening and reading from /dev/urandom. */ if (PREDICT_LIKELY(getrandom_works)) { long ret; /* A flag of '0' here means to read from '/dev/urandom', and to * block if insufficient entropy is available to service the * request. */ const unsigned int flags = 0; do { ret = syscall(SYS_getrandom, out, out_len, flags); } while (ret == -1 && ((errno == EINTR) ||(errno == EAGAIN))); if (PREDICT_UNLIKELY(ret == -1)) { tor_assert(errno != EAGAIN); tor_assert(errno != EINTR); /* Probably ENOSYS. */ log_warn(LD_CRYPTO, "Can't get entropy from getrandom()."); getrandom_works = 0; /* Don't bother trying again. */ return -1; } tor_assert(ret == (long)out_len); return 0; } return -1; /* getrandom() previously failed unexpectedly. */ #elif defined(HAVE_GETENTROPY) /* getentropy() is what Linux's getrandom() wants to be when it grows up. * the only gotcha is that requests are limited to 256 bytes. */ return getentropy(out, out_len); #else (void) out; #endif /* This platform doesn't have a supported syscall based random. */ return -1; } /** Try to get out_len bytes of the strongest entropy we can generate, * via the per-platform fallback mechanism, storing it into out. * Return 0 on success, -1 on failure. A maximum request size of 256 bytes * is imposed. */ static int crypto_strongest_rand_fallback(uint8_t *out, size_t out_len) { #ifdef _WIN32 /* Windows exclusively uses crypto_strongest_rand_syscall(). */ (void)out; (void)out_len; return -1; #else static const char *filenames[] = { "/dev/srandom", "/dev/urandom", "/dev/random", NULL }; int fd, i; size_t n; for (i = 0; filenames[i]; ++i) { log_debug(LD_FS, "Opening %s for entropy", filenames[i]); fd = open(sandbox_intern_string(filenames[i]), O_RDONLY, 0); if (fd<0) continue; log_info(LD_CRYPTO, "Reading entropy from \"%s\"", filenames[i]); n = read_all(fd, (char*)out, out_len, 0); close(fd); if (n != out_len) { log_warn(LD_CRYPTO, "Error reading from entropy source (read only %lu bytes).", (unsigned long)n); return -1; } return 0; } return -1; #endif } /** Try to get out_len bytes of the strongest entropy we can generate, * storing it into out. Return 0 on success, -1 on failure. A maximum * request size of 256 bytes is imposed. */ static int crypto_strongest_rand_raw(uint8_t *out, size_t out_len) { static const size_t sanity_min_size = 16; static const int max_attempts = 3; tor_assert(out_len <= MAX_STRONGEST_RAND_SIZE); /* For buffers >= 16 bytes (128 bits), we sanity check the output by * zero filling the buffer and ensuring that it actually was at least * partially modified. * * Checking that any individual byte is non-zero seems like it would * fail too often (p = out_len * 1/256) for comfort, but this is an * "adjust according to taste" sort of check. */ memwipe(out, 0, out_len); for (int i = 0; i < max_attempts; i++) { /* Try to use the syscall/OS favored mechanism to get strong entropy. */ if (crypto_strongest_rand_syscall(out, out_len) != 0) { /* Try to use the less-favored mechanism to get strong entropy. */ if (crypto_strongest_rand_fallback(out, out_len) != 0) { /* Welp, we tried. Hopefully the calling code terminates the process * since we're basically boned without good entropy. */ log_warn(LD_CRYPTO, "Cannot get strong entropy: no entropy source found."); return -1; } } if ((out_len < sanity_min_size) || !tor_mem_is_zero((char*)out, out_len)) return 0; } /* We tried max_attempts times to fill a buffer >= 128 bits long, * and each time it returned all '0's. Either the system entropy * source is busted, or the user should go out and buy a ticket to * every lottery on the planet. */ log_warn(LD_CRYPTO, "Strong OS entropy returned all zero buffer."); return -1; } /** Try to get out_len bytes of the strongest entropy we can generate, * storing it into out. */ void crypto_strongest_rand(uint8_t *out, size_t out_len) { #define DLEN SHA512_DIGEST_LENGTH /* We're going to hash DLEN bytes from the system RNG together with some * bytes from the openssl PRNG, in order to yield DLEN bytes. */ uint8_t inp[DLEN*2]; uint8_t tmp[DLEN]; tor_assert(out); while (out_len) { crypto_rand((char*) inp, DLEN); if (crypto_strongest_rand_raw(inp+DLEN, DLEN) < 0) { log_err(LD_CRYPTO, "Failed to load strong entropy when generating an " "important key. Exiting."); /* Die with an assertion so we get a stack trace. */ tor_assert(0); } if (out_len >= DLEN) { SHA512(inp, sizeof(inp), out); out += DLEN; out_len -= DLEN; } else { SHA512(inp, sizeof(inp), tmp); memcpy(out, tmp, out_len); break; } } memwipe(tmp, 0, sizeof(tmp)); memwipe(inp, 0, sizeof(inp)); #undef DLEN } /** Seed OpenSSL's random number generator with bytes from the operating * system. Return 0 on success, -1 on failure. */ int crypto_seed_rng(void) { int rand_poll_ok = 0, load_entropy_ok = 0; uint8_t buf[ADD_ENTROPY]; /* OpenSSL has a RAND_poll function that knows about more kinds of * entropy than we do. We'll try calling that, *and* calling our own entropy * functions. If one succeeds, we'll accept the RNG as seeded. */ rand_poll_ok = RAND_poll(); if (rand_poll_ok == 0) log_warn(LD_CRYPTO, "RAND_poll() failed."); load_entropy_ok = !crypto_strongest_rand_raw(buf, sizeof(buf)); if (load_entropy_ok) { RAND_seed(buf, sizeof(buf)); } memwipe(buf, 0, sizeof(buf)); if ((rand_poll_ok || load_entropy_ok) && RAND_status() == 1) return 0; else return -1; } /** Write n bytes of strong random data to to. Supports mocking * for unit tests. * * This function is not allowed to fail; if it would fail to generate strong * entropy, it must terminate the process instead. */ MOCK_IMPL(void, crypto_rand, (char *to, size_t n)) { crypto_rand_unmocked(to, n); } /** Write n bytes of strong random data to to. Most callers * will want crypto_rand instead. * * This function is not allowed to fail; if it would fail to generate strong * entropy, it must terminate the process instead. */ void crypto_rand_unmocked(char *to, size_t n) { int r; if (n == 0) return; tor_assert(n < INT_MAX); tor_assert(to); r = RAND_bytes((unsigned char*)to, (int)n); /* We consider a PRNG failure non-survivable. Let's assert so that we get a * stack trace about where it happened. */ tor_assert(r >= 0); } /** Return a pseudorandom integer, chosen uniformly from the values * between 0 and max-1 inclusive. max must be between 1 and * INT_MAX+1, inclusive. */ int crypto_rand_int(unsigned int max) { unsigned int val; unsigned int cutoff; tor_assert(max <= ((unsigned int)INT_MAX)+1); tor_assert(max > 0); /* don't div by 0 */ /* We ignore any values that are >= 'cutoff,' to avoid biasing the * distribution with clipping at the upper end of unsigned int's * range. */ cutoff = UINT_MAX - (UINT_MAX%max); while (1) { crypto_rand((char*)&val, sizeof(val)); if (val < cutoff) return val % max; } } /** Return a pseudorandom integer, chosen uniformly from the values i such * that min <= i < max. * * min MUST be in range [0, max). * max MUST be in range (min, INT_MAX]. */ int crypto_rand_int_range(unsigned int min, unsigned int max) { tor_assert(min < max); tor_assert(max <= INT_MAX); /* The overflow is avoided here because crypto_rand_int() returns a value * between 0 and (max - min) inclusive. */ return min + crypto_rand_int(max - min); } /** As crypto_rand_int_range, but supports uint64_t. */ uint64_t crypto_rand_uint64_range(uint64_t min, uint64_t max) { tor_assert(min < max); return min + crypto_rand_uint64(max - min); } /** As crypto_rand_int_range, but supports time_t. */ time_t crypto_rand_time_range(time_t min, time_t max) { tor_assert(min < max); return min + (time_t)crypto_rand_uint64(max - min); } /** Return a pseudorandom 64-bit integer, chosen uniformly from the values * between 0 and max-1 inclusive. */ uint64_t crypto_rand_uint64(uint64_t max) { uint64_t val; uint64_t cutoff; tor_assert(max < UINT64_MAX); tor_assert(max > 0); /* don't div by 0 */ /* We ignore any values that are >= 'cutoff,' to avoid biasing the * distribution with clipping at the upper end of unsigned int's * range. */ cutoff = UINT64_MAX - (UINT64_MAX%max); while (1) { crypto_rand((char*)&val, sizeof(val)); if (val < cutoff) return val % max; } } /** Return a pseudorandom double d, chosen uniformly from the range * 0.0 <= d < 1.0. */ double crypto_rand_double(void) { /* We just use an unsigned int here; we don't really care about getting * more than 32 bits of resolution */ unsigned int uint; crypto_rand((char*)&uint, sizeof(uint)); #if SIZEOF_INT == 4 #define UINT_MAX_AS_DOUBLE 4294967296.0 #elif SIZEOF_INT == 8 #define UINT_MAX_AS_DOUBLE 1.8446744073709552e+19 #else #error SIZEOF_INT is neither 4 nor 8 #endif return ((double)uint) / UINT_MAX_AS_DOUBLE; } /** Generate and return a new random hostname starting with prefix, * ending with suffix, and containing no fewer than * min_rand_len and no more than max_rand_len random base32 * characters. Does not check for failure. * * Clip max_rand_len to MAX_DNS_LABEL_SIZE. **/ char * crypto_random_hostname(int min_rand_len, int max_rand_len, const char *prefix, const char *suffix) { char *result, *rand_bytes; int randlen, rand_bytes_len; size_t resultlen, prefixlen; if (max_rand_len > MAX_DNS_LABEL_SIZE) max_rand_len = MAX_DNS_LABEL_SIZE; if (min_rand_len > max_rand_len) min_rand_len = max_rand_len; randlen = crypto_rand_int_range(min_rand_len, max_rand_len+1); prefixlen = strlen(prefix); resultlen = prefixlen + strlen(suffix) + randlen + 16; rand_bytes_len = ((randlen*5)+7)/8; if (rand_bytes_len % 5) rand_bytes_len += 5 - (rand_bytes_len%5); rand_bytes = tor_malloc(rand_bytes_len); crypto_rand(rand_bytes, rand_bytes_len); result = tor_malloc(resultlen); memcpy(result, prefix, prefixlen); base32_encode(result+prefixlen, resultlen-prefixlen, rand_bytes, rand_bytes_len); tor_free(rand_bytes); strlcpy(result+prefixlen+randlen, suffix, resultlen-(prefixlen+randlen)); return result; } /** Return a randomly chosen element of sl; or NULL if sl * is empty. */ void * smartlist_choose(const smartlist_t *sl) { int len = smartlist_len(sl); if (len) return smartlist_get(sl,crypto_rand_int(len)); return NULL; /* no elements to choose from */ } /** Scramble the elements of sl into a random order. */ void smartlist_shuffle(smartlist_t *sl) { int i; /* From the end of the list to the front, choose at random from the positions we haven't looked at yet, and swap that position into the current position. Remember to give "no swap" the same probability as any other swap. */ for (i = smartlist_len(sl)-1; i > 0; --i) { int j = crypto_rand_int(i+1); smartlist_swap(sl, i, j); } } /** * Destroy the sz bytes of data stored at mem, setting them to * the value byte. * If mem is NULL or sz is zero, nothing happens. * * This function is preferable to memset, since many compilers will happily * optimize out memset() when they can convince themselves that the data being * cleared will never be read. * * Right now, our convention is to use this function when we are wiping data * that's about to become inaccessible, such as stack buffers that are about * to go out of scope or structures that are about to get freed. (In * practice, it appears that the compilers we're currently using will optimize * out the memset()s for stack-allocated buffers, but not those for * about-to-be-freed structures. That could change, though, so we're being * wary.) If there are live reads for the data, then you can just use * memset(). */ void memwipe(void *mem, uint8_t byte, size_t sz) { if (sz == 0) { return; } /* If sz is nonzero, then mem must not be NULL. */ tor_assert(mem != NULL); /* Data this large is likely to be an underflow. */ tor_assert(sz < SIZE_T_CEILING); /* Because whole-program-optimization exists, we may not be able to just * have this function call "memset". A smart compiler could inline it, then * eliminate dead memsets, and declare itself to be clever. */ #if defined(SecureZeroMemory) || defined(HAVE_SECUREZEROMEMORY) /* Here's what you do on windows. */ SecureZeroMemory(mem,sz); #elif defined(HAVE_RTLSECUREZEROMEMORY) RtlSecureZeroMemory(mem,sz); #elif defined(HAVE_EXPLICIT_BZERO) /* The BSDs provide this. */ explicit_bzero(mem, sz); #elif defined(HAVE_MEMSET_S) /* This is in the C99 standard. */ memset_s(mem, sz, 0, sz); #else /* This is a slow and ugly function from OpenSSL that fills 'mem' with junk * based on the pointer value, then uses that junk to update a global * variable. It's an elaborate ruse to trick the compiler into not * optimizing out the "wipe this memory" code. Read it if you like zany * programming tricks! In later versions of Tor, we should look for better * not-optimized-out memory wiping stuff... * * ...or maybe not. In practice, there are pure-asm implementations of * OPENSSL_cleanse() on most platforms, which ought to do the job. **/ OPENSSL_cleanse(mem, sz); #endif /* Just in case some caller of memwipe() is relying on getting a buffer * filled with a particular value, fill the buffer. * * If this function gets inlined, this memset might get eliminated, but * that's okay: We only care about this particular memset in the case where * the caller should have been using memset(), and the memset() wouldn't get * eliminated. In other words, this is here so that we won't break anything * if somebody accidentally calls memwipe() instead of memset(). **/ memset(mem, byte, sz); } #ifndef OPENSSL_THREADS #error OpenSSL has been built without thread support. Tor requires an \ OpenSSL library with thread support enabled. #endif #ifndef NEW_THREAD_API /** Helper: OpenSSL uses this callback to manipulate mutexes. */ static void openssl_locking_cb_(int mode, int n, const char *file, int line) { (void)file; (void)line; if (!openssl_mutexes_) /* This is not a really good fix for the * "release-freed-lock-from-separate-thread-on-shutdown" problem, but * it can't hurt. */ return; if (mode & CRYPTO_LOCK) tor_mutex_acquire(openssl_mutexes_[n]); else tor_mutex_release(openssl_mutexes_[n]); } static void tor_set_openssl_thread_id(CRYPTO_THREADID *threadid) { CRYPTO_THREADID_set_numeric(threadid, tor_get_thread_id()); } #endif #if 0 /* This code is disabled, because OpenSSL never actually uses these callbacks. */ /** OpenSSL helper type: wraps a Tor mutex so that OpenSSL can use it * as a lock. */ struct CRYPTO_dynlock_value { tor_mutex_t *lock; }; /** OpenSSL callback function to allocate a lock: see CRYPTO_set_dynlock_* * documentation in OpenSSL's docs for more info. */ static struct CRYPTO_dynlock_value * openssl_dynlock_create_cb_(const char *file, int line) { struct CRYPTO_dynlock_value *v; (void)file; (void)line; v = tor_malloc(sizeof(struct CRYPTO_dynlock_value)); v->lock = tor_mutex_new(); return v; } /** OpenSSL callback function to acquire or release a lock: see * CRYPTO_set_dynlock_* documentation in OpenSSL's docs for more info. */ static void openssl_dynlock_lock_cb_(int mode, struct CRYPTO_dynlock_value *v, const char *file, int line) { (void)file; (void)line; if (mode & CRYPTO_LOCK) tor_mutex_acquire(v->lock); else tor_mutex_release(v->lock); } /** OpenSSL callback function to free a lock: see CRYPTO_set_dynlock_* * documentation in OpenSSL's docs for more info. */ static void openssl_dynlock_destroy_cb_(struct CRYPTO_dynlock_value *v, const char *file, int line) { (void)file; (void)line; tor_mutex_free(v->lock); tor_free(v); } #endif /** @{ */ /** Helper: Construct mutexes, and set callbacks to help OpenSSL handle being * multithreaded. Returns 0. */ static int setup_openssl_threading(void) { #ifndef NEW_THREAD_API int i; int n = CRYPTO_num_locks(); n_openssl_mutexes_ = n; openssl_mutexes_ = tor_calloc(n, sizeof(tor_mutex_t *)); for (i=0; i < n; ++i) openssl_mutexes_[i] = tor_mutex_new(); CRYPTO_set_locking_callback(openssl_locking_cb_); CRYPTO_THREADID_set_callback(tor_set_openssl_thread_id); #endif #if 0 CRYPTO_set_dynlock_create_callback(openssl_dynlock_create_cb_); CRYPTO_set_dynlock_lock_callback(openssl_dynlock_lock_cb_); CRYPTO_set_dynlock_destroy_callback(openssl_dynlock_destroy_cb_); #endif return 0; } /** Uninitialize the crypto library. Return 0 on success. Does not detect * failure. */ int crypto_global_cleanup(void) { EVP_cleanup(); #ifndef NEW_THREAD_API ERR_remove_thread_state(NULL); #endif ERR_free_strings(); if (dh_param_p) BN_clear_free(dh_param_p); if (dh_param_p_tls) BN_clear_free(dh_param_p_tls); if (dh_param_g) BN_clear_free(dh_param_g); #ifndef DISABLE_ENGINES ENGINE_cleanup(); #endif CONF_modules_unload(1); CRYPTO_cleanup_all_ex_data(); #ifndef NEW_THREAD_API if (n_openssl_mutexes_) { int n = n_openssl_mutexes_; tor_mutex_t **ms = openssl_mutexes_; int i; openssl_mutexes_ = NULL; n_openssl_mutexes_ = 0; for (i=0;i