/* Copyright 2003-2004 Roger Dingledine; Copyright 2004 Nick Mathewson */ /* See LICENSE for licensing information */ /* $Id$ */ const char container_c_id[] = "$Id$"; #include "compat.h" #include "util.h" #include "log.h" #include "../or/tree.h" #include "container.h" #ifdef HAVE_CTYPE_H #include #endif #include #include #include /* ===== * smartlist_t: a simple resizeable array abstraction. * ===== */ /* All newly allocated smartlists have this capacity. */ #define SMARTLIST_DEFAULT_CAPACITY 32 #ifndef FAST_SMARTLIST struct smartlist_t { /** list has enough capacity to store exactly capacity elements * before it needs to be resized. Only the first num_used (\<= * capacity) elements point to valid data. */ void **list; int num_used; int capacity; }; #endif /** Allocate and return an empty smartlist. */ smartlist_t *smartlist_create() { smartlist_t *sl = tor_malloc(sizeof(smartlist_t)); sl->num_used = 0; sl->capacity = SMARTLIST_DEFAULT_CAPACITY; sl->list = tor_malloc(sizeof(void *) * sl->capacity); return sl; } /** Deallocate a smartlist. Does not release storage associated with the * list's elements. */ void smartlist_free(smartlist_t *sl) { free(sl->list); free(sl); } /** Change the capacity of the smartlist to n, so that we can grow * the list up to n elements with no further reallocation or wasted * space. If n is less than or equal to the number of elements * currently in the list, reduce the list's capacity as much as * possible without losing elements. */ void smartlist_set_capacity(smartlist_t *sl, int n) { if (n < sl->num_used) n = sl->num_used; if (sl->capacity != n) { sl->capacity = n; sl->list = tor_realloc(sl->list, sizeof(void*)*sl->capacity); } } /** Remove all elements from the list. */ void smartlist_clear(smartlist_t *sl) { sl->num_used = 0; } /** Set the list's new length to len (which must be \<= the list's * current size). Remove the last smartlist_len(sl)-len elements from the * list. */ void smartlist_truncate(smartlist_t *sl, int len) { tor_assert(len <= sl->num_used); sl->num_used = len; } /** Append element to the end of the list. */ void smartlist_add(smartlist_t *sl, void *element) { if (sl->num_used >= sl->capacity) { int higher = sl->capacity * 2; tor_assert(higher > sl->capacity); /* detect overflow */ sl->capacity = higher; sl->list = tor_realloc(sl->list, sizeof(void*)*sl->capacity); } sl->list[sl->num_used++] = element; } /** Append each element from S2 to the end of S1. */ void smartlist_add_all(smartlist_t *sl, const smartlist_t *s2) { SMARTLIST_FOREACH(s2, void *, element, smartlist_add(sl, element)); } /** Remove all elements E from sl such that E==element. Preserve * the order of any elements before E, but elements after E can be * rearranged. */ void smartlist_remove(smartlist_t *sl, void *element) { int i; if (element == NULL) return; for (i=0; i < sl->num_used; i++) if (sl->list[i] == element) { sl->list[i] = sl->list[--sl->num_used]; /* swap with the end */ i--; /* so we process the new i'th element */ } } /** Return true iff some element E of sl has E==element. */ int smartlist_isin(const smartlist_t *sl, void *element) { int i; for (i=0; i < sl->num_used; i++) if (sl->list[i] == element) return 1; return 0; } int smartlist_string_isin(const smartlist_t *sl, const char *element) { int i; for (i=0; i < sl->num_used; i++) if (strcmp((const char*)sl->list[i],element)==0) return 1; return 0; } int smartlist_string_num_isin(const smartlist_t *sl, int num) { char buf[16]; tor_snprintf(buf,sizeof(buf),"%d", num); return smartlist_string_isin(sl, buf); } /** Return true iff some element E of sl2 has smartlist_isin(sl1,E). */ int smartlist_overlap(const smartlist_t *sl1, const smartlist_t *sl2) { int i; for (i=0; i < sl2->num_used; i++) if (smartlist_isin(sl1, sl2->list[i])) return 1; return 0; } /** Remove every element E of sl1 such that !smartlist_isin(sl2,E). * Does not preserve the order of sl1. */ void smartlist_intersect(smartlist_t *sl1, const smartlist_t *sl2) { int i; for (i=0; i < sl1->num_used; i++) if (!smartlist_isin(sl2, sl1->list[i])) { sl1->list[i] = sl1->list[--sl1->num_used]; /* swap with the end */ i--; /* so we process the new i'th element */ } } /** Remove every element E of sl1 such that smartlist_isin(sl2,E). * Does not preserve the order of sl1. */ void smartlist_subtract(smartlist_t *sl1, const smartlist_t *sl2) { int i; for (i=0; i < sl2->num_used; i++) smartlist_remove(sl1, sl2->list[i]); } #ifndef FAST_SMARTLIST /** Return the idxth element of sl. */ void *smartlist_get(const smartlist_t *sl, int idx) { tor_assert(sl); tor_assert(idx>=0); tor_assert(idx < sl->num_used); return sl->list[idx]; } /** Change the value of the idxth element of sl to val. */ void smartlist_set(smartlist_t *sl, int idx, void *val) { tor_assert(sl); tor_assert(idx>=0); tor_assert(idx < sl->num_used); sl->list[idx] = val; } /** Return the number of items in sl. */ int smartlist_len(const smartlist_t *sl) { return sl->num_used; } #endif /** Remove the idxth element of sl; if idx is not the last * element, swap the last element of sl into the idxth space. * Return the old value of the idxth element. */ void smartlist_del(smartlist_t *sl, int idx) { tor_assert(sl); tor_assert(idx>=0); tor_assert(idx < sl->num_used); sl->list[idx] = sl->list[--sl->num_used]; } /** Remove the idxth element of sl; if idx is not the last element, * moving all subsequent elements back one space. Return the old value * of the idxth element. */ void smartlist_del_keeporder(smartlist_t *sl, int idx) { tor_assert(sl); tor_assert(idx>=0); tor_assert(idx < sl->num_used); --sl->num_used; if (idx < sl->num_used) memmove(sl->list+idx, sl->list+idx+1, sizeof(void*)*(sl->num_used-idx)); } /** Insert the value val as the new idxth element of * sl, moving all items previously at idx or later * forward one space. */ void smartlist_insert(smartlist_t *sl, int idx, void *val) { tor_assert(sl); tor_assert(idx>=0); tor_assert(idx <= sl->num_used); if (idx == sl->num_used) { smartlist_add(sl, val); } else { /* Ensure sufficient capacity */ if (sl->num_used >= sl->capacity) { sl->capacity *= 2; sl->list = tor_realloc(sl->list, sizeof(void*)*sl->capacity); } /* Move other elements away */ if (idx < sl->num_used) memmove(sl->list + idx + 1, sl->list + idx, sizeof(void*)*(sl->num_used-idx)); sl->num_used++; sl->list[idx] = val; } } /** * Split a string str along all occurrences of sep, * adding the split strings, in order, to sl. If * flags&SPLIT_SKIP_SPACE is true, remove initial and * trailing space from each entry. If * flags&SPLIT_IGNORE_BLANK is true, remove any entries of * length 0. If max>0, divide the string into no more than max * pieces. If sep is NULL, split on any sequence of horizontal space. */ int smartlist_split_string(smartlist_t *sl, const char *str, const char *sep, int flags, int max) { const char *cp, *end, *next; int n = 0; tor_assert(sl); tor_assert(str); cp = str; while (1) { if (flags&SPLIT_SKIP_SPACE) { while (TOR_ISSPACE(*cp)) ++cp; } if (max>0 && n == max-1) { end = strchr(cp,'\0'); } else if (sep) { end = strstr(cp,sep); if (!end) end = strchr(cp,'\0'); } else { for (end = cp; *end && *end != '\t' && *end != ' '; ++end) ; } if (!*end) { next = NULL; } else if (sep) { next = end+strlen(sep); } else { next = end+1; while (*next == '\t' || *next == ' ') ++next; } if (flags&SPLIT_SKIP_SPACE) { while (end > cp && TOR_ISSPACE(*(end-1))) --end; } if (end != cp || !(flags&SPLIT_IGNORE_BLANK)) { smartlist_add(sl, tor_strndup(cp, end-cp)); ++n; } if (!next) break; cp = next; } return n; } /** Allocate and return a new string containing the concatenation of * the elements of sl, in order, separated by join. If * terminate is true, also terminate the string with join. * If len_out is not NULL, set len_out to the length of * the returned string. Requires that every element of sl is * NUL-terminated string. */ char *smartlist_join_strings(smartlist_t *sl, const char *join, int terminate, size_t *len_out) { return smartlist_join_strings2(sl,join,strlen(join),terminate,len_out); } /** As smartlist_join_strings, but instead of separating/terminated with a * NUL-terminated string join, uses the join_len-byte sequence * at join. (Useful for generating a sequence of NUL-terminated * strings.) */ char *smartlist_join_strings2(smartlist_t *sl, const char *join, size_t join_len, int terminate, size_t *len_out) { int i; size_t n = 0; char *r = NULL, *dst, *src; tor_assert(sl); tor_assert(join); for (i = 0; i < sl->num_used; ++i) { n += strlen(sl->list[i]); n += join_len; } if (!terminate) n -= join_len; dst = r = tor_malloc(n+1); for (i = 0; i < sl->num_used; ) { for (src = sl->list[i]; *src; ) *dst++ = *src++; if (++i < sl->num_used || terminate) { memcpy(dst, join, join_len); dst += join_len; } } *dst = '\0'; if (len_out) *len_out = dst-r; return r; } /* Splay-tree implementation of string-to-void* map */ struct strmap_entry_t { SPLAY_ENTRY(strmap_entry_t) node; char *key; void *val; }; struct strmap_t { SPLAY_HEAD(strmap_tree, strmap_entry_t) head; }; static int compare_strmap_entries(struct strmap_entry_t *a, struct strmap_entry_t *b) { return strcmp(a->key, b->key); } SPLAY_PROTOTYPE(strmap_tree, strmap_entry_t, node, compare_strmap_entries); SPLAY_GENERATE(strmap_tree, strmap_entry_t, node, compare_strmap_entries); /** Create a new empty map from strings to void*'s. */ strmap_t* strmap_new(void) { strmap_t *result; result = tor_malloc(sizeof(strmap_t)); SPLAY_INIT(&result->head); return result; } /** Set the current value for key to val. Returns the previous * value for key if one was set, or NULL if one was not. * * This function makes a copy of key if necessary, but not of val. */ void* strmap_set(strmap_t *map, const char *key, void *val) { strmap_entry_t *resolve; strmap_entry_t search; void *oldval; tor_assert(map); tor_assert(key); tor_assert(val); search.key = (char*)key; resolve = SPLAY_FIND(strmap_tree, &map->head, &search); if (resolve) { oldval = resolve->val; resolve->val = val; return oldval; } else { resolve = tor_malloc_zero(sizeof(strmap_entry_t)); resolve->key = tor_strdup(key); resolve->val = val; SPLAY_INSERT(strmap_tree, &map->head, resolve); return NULL; } } /** Return the current value associated with key, or NULL if no * value is set. */ void* strmap_get(strmap_t *map, const char *key) { strmap_entry_t *resolve; strmap_entry_t search; tor_assert(map); tor_assert(key); search.key = (char*)key; resolve = SPLAY_FIND(strmap_tree, &map->head, &search); if (resolve) { return resolve->val; } else { return NULL; } } /** Remove the value currently associated with key from the map. * Return the value if one was set, or NULL if there was no entry for * key. * * Note: you must free any storage associated with the returned value. */ void* strmap_remove(strmap_t *map, const char *key) { strmap_entry_t *resolve; strmap_entry_t search; void *oldval; tor_assert(map); tor_assert(key); search.key = (char*)key; resolve = SPLAY_FIND(strmap_tree, &map->head, &search); if (resolve) { oldval = resolve->val; SPLAY_REMOVE(strmap_tree, &map->head, resolve); tor_free(resolve->key); tor_free(resolve); return oldval; } else { return NULL; } } /** Same as strmap_set, but first converts key to lowercase. */ void* strmap_set_lc(strmap_t *map, const char *key, void *val) { /* We could be a little faster by using strcasecmp instead, and a separate * type, but I don't think it matters. */ void *v; char *lc_key = tor_strdup(key); tor_strlower(lc_key); v = strmap_set(map,lc_key,val); tor_free(lc_key); return v; } /** Same as strmap_get, but first converts key to lowercase. */ void* strmap_get_lc(strmap_t *map, const char *key) { void *v; char *lc_key = tor_strdup(key); tor_strlower(lc_key); v = strmap_get(map,lc_key); tor_free(lc_key); return v; } /** Same as strmap_remove, but first converts key to lowercase */ void* strmap_remove_lc(strmap_t *map, const char *key) { void *v; char *lc_key = tor_strdup(key); tor_strlower(lc_key); v = strmap_remove(map,lc_key); tor_free(lc_key); return v; } /** Invoke fn() on every entry of the map, in order. For every entry, * fn() is invoked with that entry's key, that entry's value, and the * value of data supplied to strmap_foreach. fn() must return a new * (possibly unmodified) value for each entry: if fn() returns NULL, the * entry is removed. * * Example: * \code * static void* upcase_and_remove_empty_vals(const char *key, void *val, * void* data) { * char *cp = (char*)val; * if (!*cp) { // val is an empty string. * free(val); * return NULL; * } else { * for (; *cp; cp++) * *cp = toupper(*cp); * } * return val; * } * } * * ... * * strmap_foreach(map, upcase_and_remove_empty_vals, NULL); * \endcode */ void strmap_foreach(strmap_t *map, void* (*fn)(const char *key, void *val, void *data), void *data) { strmap_entry_t *ptr, *next; tor_assert(map); tor_assert(fn); for (ptr = SPLAY_MIN(strmap_tree, &map->head); ptr != NULL; ptr = next) { /* This remove-in-place usage is specifically blessed in tree(3). */ next = SPLAY_NEXT(strmap_tree, &map->head, ptr); ptr->val = fn(ptr->key, ptr->val, data); if (!ptr->val) { SPLAY_REMOVE(strmap_tree, &map->head, ptr); tor_free(ptr->key); tor_free(ptr); } } } /** return an iterator pointer to the front of a map. * * Iterator example: * * \code * // uppercase values in "map", removing empty values. * * strmap_iter_t *iter; * const char *key; * void *val; * char *cp; * * for (iter = strmap_iter_init(map); !strmap_iter_done(iter); ) { * strmap_iter_get(iter, &key, &val); * cp = (char*)val; * if (!*cp) { * iter = strmap_iter_next_rmv(iter); * free(val); * } else { * for (;*cp;cp++) *cp = toupper(*cp); * iter = strmap_iter_next(iter); * } * } * \endcode * */ strmap_iter_t *strmap_iter_init(strmap_t *map) { tor_assert(map); return SPLAY_MIN(strmap_tree, &map->head); } /** Advance the iterator iter for map a single step to the next entry. */ strmap_iter_t *strmap_iter_next(strmap_t *map, strmap_iter_t *iter) { tor_assert(map); tor_assert(iter); return SPLAY_NEXT(strmap_tree, &map->head, iter); } /** Advance the iterator iter a single step to the next entry, removing * the current entry. */ strmap_iter_t *strmap_iter_next_rmv(strmap_t *map, strmap_iter_t *iter) { strmap_iter_t *next; tor_assert(map); tor_assert(iter); next = SPLAY_NEXT(strmap_tree, &map->head, iter); SPLAY_REMOVE(strmap_tree, &map->head, iter); tor_free(iter->key); tor_free(iter); return next; } /** Set *keyp and *valp to the current entry pointed to by iter. */ void strmap_iter_get(strmap_iter_t *iter, const char **keyp, void **valp) { tor_assert(iter); tor_assert(keyp); tor_assert(valp); *keyp = iter->key; *valp = iter->val; } /** Return true iff iter has advanced past the last entry of map. */ int strmap_iter_done(strmap_iter_t *iter) { return iter == NULL; } /** Remove all entries from map, and deallocate storage for those entries. * If free_val is provided, it is invoked on every value in map. */ void strmap_free(strmap_t *map, void (*free_val)(void*)) { strmap_entry_t *ent, *next; for (ent = SPLAY_MIN(strmap_tree, &map->head); ent != NULL; ent = next) { next = SPLAY_NEXT(strmap_tree, &map->head, ent); SPLAY_REMOVE(strmap_tree, &map->head, ent); tor_free(ent->key); if (free_val) free_val(ent->val); tor_free(ent); } tor_assert(SPLAY_EMPTY(&map->head)); tor_free(map); } int strmap_isempty(strmap_t *map) { return SPLAY_EMPTY(&map->head); }