/* Copyright (c) 2003-2004, Roger Dingledine * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. * Copyright (c) 2007-2008, The Tor Project, Inc. */ /* See LICENSE for licensing information */ /* $Id$ */ const char address_c_id[] = "$Id$"; /** * \file address.c * \brief Functions to use and manipulate the tor_addr_t structure. **/ #include "orconfig.h" #include "compat.h" #include "util.h" #include "address.h" #include "log.h" #ifdef MS_WINDOWS #include #include #endif #ifdef HAVE_SYS_TIME_H #include #endif #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_ERRNO_H #include #endif #ifdef HAVE_NETINET_IN_H #include #endif #ifdef HAVE_ARPA_INET_H #include #endif #ifdef HAVE_SYS_SOCKET_H #include #endif #ifdef HAVE_NETDB_H #include #endif #ifdef HAVE_SYS_PARAM_H #include /* FreeBSD needs this to know what version it is */ #endif #include #include #include #include #include /** Convert the tor_addr_t in a, with port in port, into a * socklen object in *sa_out of object size len. If not enough * room is free, or on error, return -1. Else return the length of the * sockaddr. */ socklen_t tor_addr_to_sockaddr(const tor_addr_t *a, uint16_t port, struct sockaddr *sa_out, socklen_t len) { if (a->family == AF_INET) { struct sockaddr_in *sin; if (len < (int)sizeof(struct sockaddr_in)) return -1; sin = (struct sockaddr_in *)sa_out; sin->sin_family = AF_INET; sin->sin_port = htons(port); sin->sin_addr.s_addr = tor_addr_to_ipv4n(a); return sizeof(struct sockaddr_in); } else if (a->family == AF_INET6) { struct sockaddr_in6 *sin6; if (len < (int)sizeof(struct sockaddr_in6)) return -1; sin6 = (struct sockaddr_in6 *)sa_out; memset(sin6, 0, sizeof(struct sockaddr_in6)); sin6->sin6_family = AF_INET6; sin6->sin6_port = htons(port); memcpy(&sin6->sin6_addr, &a->addr.in6_addr, sizeof(struct in6_addr)); return sizeof(struct sockaddr_in6); } else { return -1; } } /** Set the tor_addr_t in a to contain the socket address contained in * sa. */ int tor_addr_from_sockaddr(tor_addr_t *a, const struct sockaddr *sa, uint16_t *port_out) { tor_assert(a); tor_assert(sa); memset(a, 0, sizeof(tor_addr_t)); if (sa->sa_family == AF_INET) { struct sockaddr_in *sin = (struct sockaddr_in *) sa; a->family = AF_INET; a->addr.in_addr.s_addr = sin->sin_addr.s_addr; if (port_out) *port_out = ntohs(sin->sin_port); } else if (sa->sa_family == AF_INET6) { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) sa; a->family = AF_INET6; memcpy(&a->addr.in6_addr, &sin6->sin6_addr, sizeof(struct in6_addr)); if (port_out) *port_out = ntohs(sin6->sin6_port); } else { a->family = AF_UNSPEC; return -1; } return 0; } /** Set address a to the unspecified address. This address belongs to * no family. */ void tor_addr_make_unspec(tor_addr_t *a) { memset(a, 0, sizeof(*a)); a->family = AF_UNSPEC; } /** Similar behavior to Unix gethostbyname: resolve name, and set * *addr to the proper IP address and family. The family * argument (which must be AF_INET, AF_INET6, or AF_UNSPEC) declares a * preferred family, though another one may be returned if only one * family is implemented for this address. * * Return 0 on success, -1 on failure; 1 on transient failure. */ int tor_addr_lookup(const char *name, uint16_t family, tor_addr_t *addr) { /* Perhaps eventually this should be replaced by a tor_getaddrinfo or * something. */ struct in_addr iaddr; struct in6_addr iaddr6; tor_assert(name); tor_assert(addr); tor_assert(family == AF_INET || family == AF_INET6 || family == AF_UNSPEC); memset(addr, 0, sizeof(addr)); /* Clear the extraneous fields. */ if (!*name) { /* Empty address is an error. */ return -1; } else if (tor_inet_pton(AF_INET, name, &iaddr)) { /* It's an IPv4 IP. */ if (family == AF_INET6) return -1; addr->family = AF_INET; memcpy(&addr->addr.in_addr, &iaddr, sizeof(struct in_addr)); return 0; } else if (tor_inet_pton(AF_INET6, name, &iaddr6)) { if (family == AF_INET) return -1; addr->family = AF_INET6; memcpy(&addr->addr.in6_addr, &iaddr6, sizeof(struct in6_addr)); return 0; } else { #ifdef HAVE_GETADDRINFO int err; struct addrinfo *res=NULL, *res_p; struct addrinfo *best=NULL; struct addrinfo hints; int result = -1; memset(&hints, 0, sizeof(hints)); hints.ai_family = family; hints.ai_socktype = SOCK_STREAM; err = getaddrinfo(name, NULL, &hints, &res); if (!err) { best = NULL; for (res_p = res; res_p; res_p = res_p->ai_next) { if (family == AF_UNSPEC) { if (res_p->ai_family == AF_INET) { best = res_p; break; } else if (res_p->ai_family == AF_INET6 && !best) { best = res_p; } } else if (family == res_p->ai_family) { best = res_p; break; } } if (!best) best = res; if (best->ai_family == AF_INET) { addr->family = AF_INET; memcpy(&addr->addr.in_addr, &((struct sockaddr_in*)best->ai_addr)->sin_addr, sizeof(struct in_addr)); result = 0; } else if (best->ai_family == AF_INET6) { addr->family = AF_INET6; memcpy(&addr->addr.in6_addr, &((struct sockaddr_in6*)best->ai_addr)->sin6_addr, sizeof(struct in6_addr)); result = 0; } freeaddrinfo(res); return result; } return (err == EAI_AGAIN) ? 1 : -1; #else struct hostent *ent; int err; #ifdef HAVE_GETHOSTBYNAME_R_6_ARG char buf[2048]; struct hostent hostent; int r; r = gethostbyname_r(name, &hostent, buf, sizeof(buf), &ent, &err); #elif defined(HAVE_GETHOSTBYNAME_R_5_ARG) char buf[2048]; struct hostent hostent; ent = gethostbyname_r(name, &hostent, buf, sizeof(buf), &err); #elif defined(HAVE_GETHOSTBYNAME_R_3_ARG) struct hostent_data data; struct hostent hent; memset(&data, 0, sizeof(data)); err = gethostbyname_r(name, &hent, &data); ent = err ? NULL : &hent; #else ent = gethostbyname(name); #ifdef MS_WINDOWS err = WSAGetLastError(); #else err = h_errno; #endif #endif /* endif HAVE_GETHOSTBYNAME_R_6_ARG. */ if (ent) { addr->family = ent->h_addrtype; if (ent->h_addrtype == AF_INET) { memcpy(&addr->addr.in_addr, ent->h_addr, sizeof(struct in_addr)); } else if (ent->h_addrtype == AF_INET6) { memcpy(&addr->addr.in6_addr, ent->h_addr, sizeof(struct in6_addr)); } else { tor_assert(0); /* gethostbyname() returned a bizarre addrtype */ } return 0; } #ifdef MS_WINDOWS return (err == WSATRY_AGAIN) ? 1 : -1; #else return (err == TRY_AGAIN) ? 1 : -1; #endif #endif } } /** Return true iff ip is an IP reserved to localhost or local networks * in RFC1918 or RFC4193 or RFC4291. (fec0::/10, deprecated by RFC3879, is * also treated as internal for now.) */ int tor_addr_is_internal(const tor_addr_t *addr, int for_listening) { uint32_t iph4 = 0; uint32_t iph6[4]; sa_family_t v_family; v_family = tor_addr_family(addr); if (v_family == AF_INET) { iph4 = tor_addr_to_ipv4h(addr); } else if (v_family == AF_INET6) { if (tor_addr_is_v4(addr)) { /* v4-mapped */ v_family = AF_INET; iph4 = ntohl(tor_addr_to_in6_addr32(addr)[3]); } } if (v_family == AF_INET6) { const uint32_t *a32 = tor_addr_to_in6_addr32(addr); iph6[0] = ntohl(a32[0]); iph6[1] = ntohl(a32[1]); iph6[2] = ntohl(a32[2]); iph6[3] = ntohl(a32[3]); if (for_listening && !iph6[0] && !iph6[1] && !iph6[2] && !iph6[3]) /* :: */ return 0; if (((iph6[0] & 0xfe000000) == 0xfc000000) || /* fc00/7 - RFC4193 */ ((iph6[0] & 0xffc00000) == 0xfe800000) || /* fe80/10 - RFC4291 */ ((iph6[0] & 0xffc00000) == 0xfec00000)) /* fec0/10 D- RFC3879 */ return 1; if (!iph6[0] && !iph6[1] && !iph6[2] && ((iph6[3] & 0xfffffffe) == 0x00000000)) /* ::/127 */ return 1; return 0; } else if (v_family == AF_INET) { if (for_listening && !iph4) /* special case for binding to 0.0.0.0 */ return 0; if (((iph4 & 0xff000000) == 0x0a000000) || /* 10/8 */ ((iph4 & 0xff000000) == 0x00000000) || /* 0/8 */ ((iph4 & 0xff000000) == 0x7f000000) || /* 127/8 */ ((iph4 & 0xffff0000) == 0xa9fe0000) || /* 169.254/16 */ ((iph4 & 0xfff00000) == 0xac100000) || /* 172.16/12 */ ((iph4 & 0xffff0000) == 0xc0a80000)) /* 192.168/16 */ return 1; return 0; } /* unknown address family... assume it's not safe for external use */ /* rather than tor_assert(0) */ log_warn(LD_BUG, "tor_addr_is_internal() called with a non-IP address."); return 1; } /** Convert a tor_addr_t addr into a string, and store it in * dest of size len. Returns a pointer to dest on success, * or NULL on failure. If decorate, surround IPv6 addresses with * brackets. */ const char * tor_addr_to_str(char *dest, const tor_addr_t *addr, int len, int decorate) { const char *ptr; tor_assert(addr && dest); switch (tor_addr_family(addr)) { case AF_INET: if (len<3) return NULL; ptr = tor_inet_ntop(AF_INET, &addr->addr.in_addr, dest, len); break; case AF_INET6: if (decorate) ptr = tor_inet_ntop(AF_INET6, &addr->addr.in6_addr, dest+1, len-2); else ptr = tor_inet_ntop(AF_INET6, &addr->addr.in6_addr, dest, len); if (ptr && decorate) { *dest = '['; memcpy(dest+strlen(dest), "]", 2); tor_assert(ptr == dest+1); ptr = dest; } break; default: return NULL; } return ptr; } /** Parse a string s containing an IPv4/IPv6 address, and possibly * a mask and port or port range. Store the parsed address in * addr_out, a mask (if any) in mask_out, and port(s) (if any) * in port_min_out and port_max_out. * * The syntax is: * Address OptMask OptPortRange * Address ::= IPv4Address / "[" IPv6Address "]" / "*" * OptMask ::= "/" Integer / * OptPortRange ::= ":*" / ":" Integer / ":" Integer "-" Integer / * * - If mask, minport, or maxport are NULL, we do not want these * options to be set; treat them as an error if present. * - If the string has no mask, the mask is set to /32 (IPv4) or /128 (IPv6). * - If the string has one port, it is placed in both min and max port * variables. * - If the string has no port(s), port_(min|max)_out are set to 1 and 65535. * * Return an address family on success, or -1 if an invalid address string is * provided. */ int tor_addr_parse_mask_ports(const char *s, tor_addr_t *addr_out, maskbits_t *maskbits_out, uint16_t *port_min_out, uint16_t *port_max_out) { char *base = NULL, *address, *mask = NULL, *port = NULL, *rbracket = NULL; char *endptr; int any_flag=0, v4map=0; tor_assert(s); tor_assert(addr_out); /* IP, [], /mask, ports */ #define MAX_ADDRESS_LENGTH (TOR_ADDR_BUF_LEN+2+(1+INET_NTOA_BUF_LEN)+12+1) if (strlen(s) > MAX_ADDRESS_LENGTH) { log_warn(LD_GENERAL, "Impossibly long IP %s; rejecting", escaped(s)); goto err; } base = tor_strdup(s); /* Break 'base' into separate strings. */ address = base; if (*address == '[') { /* Probably IPv6 */ address++; rbracket = strchr(address, ']'); if (!rbracket) { log_warn(LD_GENERAL, "No closing IPv6 bracket in address pattern; rejecting."); goto err; } } mask = strchr((rbracket?rbracket:address),'/'); port = strchr((mask?mask:(rbracket?rbracket:address)), ':'); if (port) *port++ = '\0'; if (mask) *mask++ = '\0'; if (rbracket) *rbracket = '\0'; if (port && mask) tor_assert(port > mask); if (mask && rbracket) tor_assert(mask > rbracket); /* Now "address" is the a.b.c.d|'*'|abcd::1 part... * "mask" is the Mask|Maskbits part... * and "port" is the *|port|min-max part. */ /* Process the address portion */ memset(addr_out, 0, sizeof(tor_addr_t)); if (!strcmp(address, "*")) { addr_out->family = AF_INET; /* AF_UNSPEC ???? XXXX_IP6 */ any_flag = 1; } else if (tor_inet_pton(AF_INET6, address, &addr_out->addr.in6_addr) > 0) { addr_out->family = AF_INET6; } else if (tor_inet_pton(AF_INET, address, &addr_out->addr.in_addr) > 0) { addr_out->family = AF_INET; } else { log_warn(LD_GENERAL, "Malformed IP %s in address pattern; rejecting.", escaped(address)); goto err; } v4map = tor_addr_is_v4(addr_out); /* #ifdef ALWAYS_V6_MAP if (v_family == AF_INET) { v_family = AF_INET6; IN_ADDR6(addr_out).s6_addr32[3] = IN6_ADDRESS(addr_out).s_addr; memset(&IN6_ADDRESS(addr_out), 0, 10); IN_ADDR6(addr_out).s6_addr16[5] = 0xffff; } #else if (v_family == AF_INET6 && v4map) { v_family = AF_INET; IN4_ADDRESS((addr_out).s_addr = IN6_ADDRESS(addr_out).s6_addr32[3]; } #endif */ /* Parse mask */ if (maskbits_out) { int bits = 0; struct in_addr v4mask; if (mask) { /* the caller (tried to) specify a mask */ bits = (int) strtol(mask, &endptr, 10); if (!*endptr) { /* strtol converted everything, so it was an integer */ if ((bits<0 || bits>128) || ((tor_addr_family(addr_out) == AF_INET) && bits > 32)) { log_warn(LD_GENERAL, "Bad number of mask bits (%d) on address range; rejecting.", bits); goto err; } } else { /* mask might still be an address-style mask */ if (tor_inet_pton(AF_INET, mask, &v4mask) > 0) { bits = addr_mask_get_bits(ntohl(v4mask.s_addr)); if (bits < 0) { log_warn(LD_GENERAL, "IPv4-style mask %s is not a prefix address; rejecting.", escaped(mask)); goto err; } } else { /* Not IPv4; we don't do address-style IPv6 masks. */ log_warn(LD_GENERAL, "Malformed mask on address range %s; rejecting.", escaped(s)); goto err; } } if (tor_addr_family(addr_out) == AF_INET6 && v4map) { if (bits > 32 && bits < 96) { /* Crazy */ log_warn(LD_GENERAL, "Bad mask bits %i for V4-mapped V6 address; rejecting.", bits); goto err; } /* XXXX_IP6 is this really what we want? */ bits = 96 + bits%32; /* map v4-mapped masks onto 96-128 bits */ } } else { /* pick an appropriate mask, as none was given */ if (any_flag) bits = 0; /* This is okay whether it's V6 or V4 (FIX V4-mapped V6!) */ else if (tor_addr_family(addr_out) == AF_INET) bits = 32; else if (tor_addr_family(addr_out) == AF_INET6) bits = 128; } *maskbits_out = (maskbits_t) bits; } else { if (mask) { log_warn(LD_GENERAL, "Unexpected mask in addrss %s; rejecting", escaped(s)); goto err; } } /* Parse port(s) */ if (port_min_out) { uint16_t port2; if (!port_max_out) /* caller specified one port; fake the second one */ port_max_out = &port2; if (parse_port_range(port, port_min_out, port_max_out) < 0) { goto err; } else if ((*port_min_out != *port_max_out) && port_max_out == &port2) { log_warn(LD_GENERAL, "Wanted one port from address range, but there are two."); port_max_out = NULL; /* caller specified one port, so set this back */ goto err; } } else { if (port) { log_warn(LD_GENERAL, "Unexpected ports in addrss %s; rejecting", escaped(s)); goto err; } } tor_free(base); return tor_addr_family(addr_out); err: tor_free(base); return -1; } /** Determine whether an address is IPv4, either native or ipv4-mapped ipv6. * Note that this is about representation only, as any decent stack will * reject ipv4-mapped addresses received on the wire (and won't use them * on the wire either). */ int tor_addr_is_v4(const tor_addr_t *addr) { tor_assert(addr); if (tor_addr_family(addr) == AF_INET) return 1; if (tor_addr_family(addr) == AF_INET6) { /* First two don't need to be ordered */ uint32_t *a32 = tor_addr_to_in6_addr32(addr); if (a32[0] == 0 && a32[1] == 0 && ntohl(a32[2]) == 0x0000ffffu) return 1; } return 0; /* Not IPv4 - unknown family or a full-blood IPv6 address */ } /** Determine whether an address addr is null, either all zeroes or * belonging to family AF_UNSPEC. */ int tor_addr_is_null(const tor_addr_t *addr) { tor_assert(addr); switch (tor_addr_family(addr)) { case AF_INET6: { uint32_t *a32 = tor_addr_to_in6_addr32(addr); return (a32[0] == 0) && (a32[1] == 0) && (a32[2] == 0) && (a32[3] == 0); } case AF_INET: return (tor_addr_to_ipv4n(addr) == 0); case AF_UNSPEC: return 1; default: log_warn(LD_BUG, "Called with unknown address family %d", (int)tor_addr_family(addr)); return 0; } //return 1; } /** Return true iff addr is a loopback address */ int tor_addr_is_loopback(const tor_addr_t *addr) { tor_assert(addr); switch (tor_addr_family(addr)) { case AF_INET6: { /* ::1 */ uint32_t *a32 = tor_addr_to_in6_addr32(addr); return (a32[0] == 0) && (a32[1] == 0) && (a32[2] == 0) && (a32[3] == 1); } case AF_INET: /* 127.0.0.1 */ return (tor_addr_to_ipv4h(addr) & 0xff000000) == 0x7f000000; case AF_UNSPEC: return 0; default: tor_fragile_assert(); return 0; } } /** Set dest to equal the IPv4 address in v4addr (given in * network order. */ void tor_addr_from_ipv4n(tor_addr_t *dest, uint32_t v4addr) { tor_assert(dest); memset(dest, 0, sizeof(dest)); dest->family = AF_INET; dest->addr.in_addr.s_addr = v4addr; } /** Set dest to equal the IPv6 address in the 16 bytes at * ipv6_bytes. */ void tor_addr_from_ipv6_bytes(tor_addr_t *dest, const char *ipv6_bytes) { tor_assert(dest); tor_assert(ipv6_bytes); memset(dest, 0, sizeof(dest)); dest->family = AF_INET6; memcpy(dest->addr.in6_addr.s6_addr, ipv6_bytes, 16); } /** DOCDOC */ void tor_addr_from_in6(tor_addr_t *dest, const struct in6_addr *in6) { tor_addr_from_ipv6_bytes(dest, (const char*)in6->s6_addr); } /** Copy a tor_addr_t from src to dest. */ void tor_addr_copy(tor_addr_t *dest, const tor_addr_t *src) { tor_assert(src); tor_assert(dest); memcpy(dest, src, sizeof(tor_addr_t)); } /** Given two addresses addr1 and addr2, return 0 if the two * addresses are equivalent under the mask mbits, less than 0 if addr1 * preceeds addr2, and greater than 0 otherwise. * * Different address families (IPv4 vs IPv6) are always considered unequal. * NOT QUITE XXXX DOCDOC. */ int tor_addr_compare(const tor_addr_t *addr1, const tor_addr_t *addr2, tor_addr_comparison_t how) { return tor_addr_compare_masked(addr1, addr2, 128, how); } /** As tor_addr_compare(), but only looks at the first mask bits of * the address. * * Reduce over-specific masks (>128 for ipv6, >32 for ipv4) to 128 or 32. */ int tor_addr_compare_masked(const tor_addr_t *addr1, const tor_addr_t *addr2, maskbits_t mbits, tor_addr_comparison_t how) { uint32_t ip4a=0, ip4b=0; sa_family_t v_family[2]; int idx; uint32_t masked_a, masked_b; tor_assert(addr1 && addr2); if (how == CMP_EXACT) { int r = ((int)addr2->family) - ((int)addr1->family); if (r) return r; switch (addr1->family) { case AF_UNSPEC: return 0; /* All unspecified addresses are equal */ case AF_INET: { uint32_t a1 = ntohl(addr1->addr.in_addr.s_addr); uint32_t a2 = ntohl(addr2->addr.in_addr.s_addr); a1 >>= (32-mbits); a2 >>= (32-mbits); return (a1 < a2) ? -1 : (a1 == a2) ? 0 : 1; } case AF_INET6: { const uint8_t *a1 = addr1->addr.in6_addr.s6_addr; const uint8_t *a2 = addr2->addr.in6_addr.s6_addr; const int bytes = mbits >> 3; const int leftover_bits = mbits & 7; if (bytes && (r = memcmp(a1, a2, bytes))) { return r; } else if (leftover_bits) { uint8_t b1 = a1[bytes] >> (8-leftover_bits); uint8_t b2 = a2[bytes] >> (8-leftover_bits); return (b1 < b2) ? -1 : (b1 == b2) ? 0 : 1; } else { return 0; } } default: tor_fragile_assert(); return 0; } } /* XXXX021 this code doesn't handle mask bits right it's using v4-mapped v6 * addresses. If I ask whether ::ffff:1.2.3.4 and ::ffff:1.2.7.8 are the * same in the first 16 bits, it will say "yes." That's not so intuitive. * * XXXX021 Also, it's way too complicated. */ v_family[0] = tor_addr_family(addr1); v_family[1] = tor_addr_family(addr2); /* All UNSPEC addresses are equal; they are unequal to all other addresses.*/ if (v_family[0] == AF_UNSPEC) { if (v_family[1] == AF_UNSPEC) return 0; else return 1; } else { if (v_family[1] == AF_UNSPEC) return -1; } if (v_family[0] == AF_INET) { /* If this is native IPv4, note the address */ /* Later we risk overwriting a v4-mapped address */ ip4a = tor_addr_to_ipv4h(addr1); } else if ((v_family[0] == AF_INET6) && tor_addr_is_v4(addr1)) { v_family[0] = AF_INET; ip4a = tor_addr_to_mapped_ipv4h(addr1); } if (v_family[1] == AF_INET) { /* If this is native IPv4, note the address */ /* Later we risk overwriting a v4-mapped address */ ip4b = tor_addr_to_ipv4h(addr2); } else if ((v_family[1] == AF_INET6) && tor_addr_is_v4(addr2)) { v_family[1] = AF_INET; ip4b = tor_addr_to_mapped_ipv4h(addr2); } if (v_family[0] > v_family[1]) /* Comparison of virtual families */ return 1; else if (v_family[0] < v_family[1]) return -1; if (mbits == 0) /* Under a complete wildcard mask, consider them equal */ return 0; if (v_family[0] == AF_INET) { /* Real or mapped IPv4 */ if (mbits >= 32) { masked_a = ip4a; masked_b = ip4b; } else if (mbits == 0) { return 0; } else { masked_a = ip4a >> (32-mbits); masked_b = ip4b >> (32-mbits); } if (masked_a < masked_b) return -1; else if (masked_a > masked_b) return 1; return 0; } else if (v_family[0] == AF_INET6) { /* Real IPv6 */ const uint32_t *a1 = tor_addr_to_in6_addr32(addr1); const uint32_t *a2 = tor_addr_to_in6_addr32(addr2); for (idx = 0; idx < 4; ++idx) { uint32_t masked_a = ntohl(a1[idx]); uint32_t masked_b = ntohl(a2[idx]); if (!mbits) { return 0; /* Mask covers both addresses from here on */ } else if (mbits < 32) { masked_a >>= (32-mbits); masked_b >>= (32-mbits); } if (masked_a > masked_b) return 1; else if (masked_a < masked_b) return -1; if (mbits < 32) return 0; mbits -= 32; } return 0; } tor_assert(0); /* Unknown address family */ return -1; /* unknown address family, return unequal? */ } /** Return a hash code based on the address addr */ unsigned int tor_addr_hash(const tor_addr_t *addr) { switch (tor_addr_family(addr)) { case AF_INET: return tor_addr_to_ipv4h(addr); case AF_UNSPEC: return 0x4e4d5342; case AF_INET6: { const uint32_t *u = tor_addr_to_in6_addr32(addr); return u[0] + u[1] + u[2] + u[3]; } default: tor_fragile_assert(); return 0; } } /** Return a newly allocatd string with a representation of addr. */ char * tor_dup_addr(const tor_addr_t *addr) { char buf[TOR_ADDR_BUF_LEN]; tor_addr_to_str(buf, addr, sizeof(buf), 0); return tor_strdup(buf); } /** Return a string representing the address addr. This string is * statically allocated, and must not be freed. Each call to * fmt_addr invalidates the last result of the function. This * function is not thread-safe. */ const char * fmt_addr(const tor_addr_t *addr) { static char buf[TOR_ADDR_BUF_LEN]; if (!addr) return ""; tor_addr_to_str(buf, addr, sizeof(buf), 0); return buf; } /** Convert the string in src to a tor_addr_t addr. The string * may be an IPv4 address, an IPv6 address, or an IPv6 address surrounded by * square brackets. * * Return an address family on success, or -1 if an invalid address string is * provided. */ int tor_addr_from_str(tor_addr_t *addr, const char *src) { char *tmp = NULL; /* Holds substring if we got a dotted quad. */ int result; tor_assert(addr && src); if (src[0] == '[' && src[1]) src = tmp = tor_strndup(src+1, strlen(src)-2); if (tor_inet_pton(AF_INET6, src, &addr->addr.in6_addr) > 0) { result = addr->family = AF_INET6; } else if (tor_inet_pton(AF_INET, src, &addr->addr.in_addr) > 0) { result = addr->family = AF_INET; } else { result = -1; } tor_free(tmp); return result; } /** Parse an address or address-port combination from s, and put the result in addr_outport_out. Return 0 on success, negative on failure.*/ int tor_addr_port_parse(const char *s, tor_addr_t *addr_out, uint16_t *port_out) { const char *port; tor_addr_t addr; uint16_t portval; char *tmp = NULL; tor_assert(s); tor_assert(addr_out); s = eat_whitespace(s); if (*s == '[') { port = strstr(s, "]"); if (!port) goto err; tmp = tor_strndup(s+1, port-s); port = port+1; if (*port == ':') port++; else port = NULL; } else { port = strchr(s, ':'); if (port) tmp = tor_strndup(s, port-s); else tmp = tor_strdup(s); if (port) ++port; } if (tor_addr_lookup(tmp, AF_UNSPEC, &addr) < 0) goto err; tor_free(tmp); if (port) { portval = (int) tor_parse_long(port, 10, 1, 65535, NULL, NULL); if (!portval) goto err; } else { portval = 0; } if (port_out) *port_out = portval; tor_addr_copy(addr_out, &addr); return 0; err: tor_free(tmp); return -1; } /** Set *addr to the IP address (if any) of whatever interface * connects to the internet. This address should only be used in checking * whether our address has changed. Return 0 on success, -1 on failure. */ int get_interface_address6(int severity, sa_family_t family, tor_addr_t *addr) { int sock=-1, r=-1; struct sockaddr_storage my_addr, target_addr; socklen_t my_addr_len; tor_assert(addr); memset(addr, 0, sizeof(tor_addr_t)); memset(&target_addr, 0, sizeof(target_addr)); my_addr_len = (socklen_t)sizeof(my_addr); /* Use the "discard" service port */ ((struct sockaddr_in*)&target_addr)->sin_port = 9; /* Don't worry: no packets are sent. We just need to use a real address * on the actual internet. */ if (family == AF_INET6) { struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)&target_addr; sock = tor_open_socket(PF_INET6,SOCK_DGRAM,IPPROTO_UDP); my_addr_len = (socklen_t)sizeof(struct sockaddr_in6); sin6->sin6_family = AF_INET6; S6_ADDR16(sin6->sin6_addr)[0] = htons(0x2002); /* 2002:: */ } else if (family == AF_INET) { struct sockaddr_in *sin = (struct sockaddr_in*)&target_addr; sock = tor_open_socket(PF_INET,SOCK_DGRAM,IPPROTO_UDP); my_addr_len = (socklen_t)sizeof(struct sockaddr_in); sin->sin_family = AF_INET; sin->sin_addr.s_addr = htonl(0x12000001); /* 18.0.0.1 */ } else { return -1; } if (sock < 0) { int e = tor_socket_errno(-1); log_fn(severity, LD_NET, "unable to create socket: %s", tor_socket_strerror(e)); goto err; } if (connect(sock,(struct sockaddr *)&target_addr, (socklen_t)sizeof(target_addr))<0) { int e = tor_socket_errno(sock); log_fn(severity, LD_NET, "connect() failed: %s", tor_socket_strerror(e)); goto err; } if (getsockname(sock,(struct sockaddr*)&my_addr, &my_addr_len)) { int e = tor_socket_errno(sock); log_fn(severity, LD_NET, "getsockname() to determine interface failed: %s", tor_socket_strerror(e)); goto err; } memcpy(addr, &my_addr, sizeof(tor_addr_t)); r=0; err: if (sock >= 0) tor_close_socket(sock); return r; } /* ====== * IPv4 helpers * XXXX021 IPv6 deprecate some of these. */ /** Return true iff ip (in host order) is an IP reserved to localhost, * or reserved for local networks by RFC 1918. */ int is_internal_IP(uint32_t ip, int for_listening) { tor_addr_t myaddr; myaddr.family = AF_INET; myaddr.addr.in_addr.s_addr = htonl(ip); return tor_addr_is_internal(&myaddr, for_listening); } /** Parse a string of the form "host[:port]" from addrport. If * address is provided, set *address to a copy of the * host portion of the string. If addr is provided, try to * resolve the host portion of the string and store it into * *addr (in host byte order). If port_out is provided, * store the port number into *port_out, or 0 if no port is given. * If port_out is NULL, then there must be no port number in * addrport. * Return 0 on success, -1 on failure. */ int parse_addr_port(int severity, const char *addrport, char **address, uint32_t *addr, uint16_t *port_out) { const char *colon; char *_address = NULL; int _port; int ok = 1; tor_assert(addrport); colon = strchr(addrport, ':'); if (colon) { _address = tor_strndup(addrport, colon-addrport); _port = (int) tor_parse_long(colon+1,10,1,65535,NULL,NULL); if (!_port) { log_fn(severity, LD_GENERAL, "Port %s out of range", escaped(colon+1)); ok = 0; } if (!port_out) { char *esc_addrport = esc_for_log(addrport); log_fn(severity, LD_GENERAL, "Port %s given on %s when not required", escaped(colon+1), esc_addrport); tor_free(esc_addrport); ok = 0; } } else { _address = tor_strdup(addrport); _port = 0; } if (addr) { /* There's an addr pointer, so we need to resolve the hostname. */ if (tor_lookup_hostname(_address,addr)) { log_fn(severity, LD_NET, "Couldn't look up %s", escaped(_address)); ok = 0; *addr = 0; } } if (address && ok) { *address = _address; } else { if (address) *address = NULL; tor_free(_address); } if (port_out) *port_out = ok ? ((uint16_t) _port) : 0; return ok ? 0 : -1; } /** If mask is an address mask for a bit-prefix, return the number of * bits. Otherwise, return -1. */ int addr_mask_get_bits(uint32_t mask) { int i; if (mask == 0) return 0; if (mask == 0xFFFFFFFFu) return 32; for (i=0; i<=32; ++i) { if (mask == (uint32_t) ~((1u<<(32-i))-1)) { return i; } } return -1; } /** Compare two addresses a1 and a2 for equality under a * netmask of mbits bits. Return -1, 0, or 1. * * XXXX_IP6 Temporary function to allow masks as bitcounts everywhere. This * will be replaced with an IPv6-aware version as soon as 32-bit addresses are * no longer passed around. */ int addr_mask_cmp_bits(uint32_t a1, uint32_t a2, maskbits_t bits) { if (bits > 32) bits = 32; else if (bits == 0) return 0; a1 >>= (32-bits); a2 >>= (32-bits); if (a1 < a2) return -1; else if (a1 > a2) return 1; else return 0; } /** Parse a string s in the format of (*|port(-maxport)?)?, setting the * various *out pointers as appropriate. Return 0 on success, -1 on failure. */ int parse_port_range(const char *port, uint16_t *port_min_out, uint16_t *port_max_out) { int port_min, port_max, ok; tor_assert(port_min_out); tor_assert(port_max_out); if (!port || *port == '\0' || strcmp(port, "*") == 0) { port_min = 1; port_max = 65535; } else { char *endptr = NULL; port_min = (int)tor_parse_long(port, 10, 0, 65535, &ok, &endptr); if (!ok) { log_warn(LD_GENERAL, "Malformed port %s on address range; rejecting.", escaped(port)); return -1; } else if (endptr && *endptr == '-') { port = endptr+1; endptr = NULL; port_max = (int)tor_parse_long(port, 10, 1, 65536, &ok, &endptr); if (!ok) { log_warn(LD_GENERAL, "Malformed port %s on address range; rejecting.", escaped(port)); return -1; } } else { port_max = port_min; } if (port_min > port_max) { log_warn(LD_GENERAL, "Insane port range on address policy; rejecting."); return -1; } } if (port_min < 1) port_min = 1; if (port_max > 65535) port_max = 65535; *port_min_out = (uint16_t) port_min; *port_max_out = (uint16_t) port_max; return 0; } /** Parse a string s in the format of * (IP(/mask|/mask-bits)?|*)(:(*|port(-maxport))?)?, setting the various * *out pointers as appropriate. Return 0 on success, -1 on failure. */ int parse_addr_and_port_range(const char *s, uint32_t *addr_out, maskbits_t *maskbits_out, uint16_t *port_min_out, uint16_t *port_max_out) { char *address; char *mask, *port, *endptr; struct in_addr in; int bits; tor_assert(s); tor_assert(addr_out); tor_assert(maskbits_out); tor_assert(port_min_out); tor_assert(port_max_out); address = tor_strdup(s); /* Break 'address' into separate strings. */ mask = strchr(address,'/'); port = strchr(mask?mask:address,':'); if (mask) *mask++ = '\0'; if (port) *port++ = '\0'; /* Now "address" is the IP|'*' part... * "mask" is the Mask|Maskbits part... * and "port" is the *|port|min-max part. */ if (strcmp(address,"*")==0) { *addr_out = 0; } else if (tor_inet_aton(address, &in) != 0) { *addr_out = ntohl(in.s_addr); } else { log_warn(LD_GENERAL, "Malformed IP %s in address pattern; rejecting.", escaped(address)); goto err; } if (!mask) { if (strcmp(address,"*")==0) *maskbits_out = 0; else *maskbits_out = 32; } else { endptr = NULL; bits = (int) strtol(mask, &endptr, 10); if (!*endptr) { /* strtol handled the whole mask. */ if (bits < 0 || bits > 32) { log_warn(LD_GENERAL, "Bad number of mask bits on address range; rejecting."); goto err; } *maskbits_out = bits; } else if (tor_inet_aton(mask, &in) != 0) { bits = addr_mask_get_bits(ntohl(in.s_addr)); if (bits < 0) { log_warn(LD_GENERAL, "Mask %s on address range isn't a prefix; dropping", escaped(mask)); goto err; } *maskbits_out = bits; } else { log_warn(LD_GENERAL, "Malformed mask %s on address range; rejecting.", escaped(mask)); goto err; } } if (parse_port_range(port, port_min_out, port_max_out)<0) goto err; tor_free(address); return 0; err: tor_free(address); return -1; } /** Given an IPv4 in_addr struct *in (in network order, as usual), * write it as a string into the buf_len-byte buffer in * buf. */ int tor_inet_ntoa(const struct in_addr *in, char *buf, size_t buf_len) { uint32_t a = ntohl(in->s_addr); return tor_snprintf(buf, buf_len, "%d.%d.%d.%d", (int)(uint8_t)((a>>24)&0xff), (int)(uint8_t)((a>>16)&0xff), (int)(uint8_t)((a>>8 )&0xff), (int)(uint8_t)((a )&0xff)); } /** Given a host-order addr, call tor_inet_ntop() on it * and return a strdup of the resulting address. */ char * tor_dup_ip(uint32_t addr) { char buf[TOR_ADDR_BUF_LEN]; struct in_addr in; in.s_addr = htonl(addr); tor_inet_ntop(AF_INET, &in, buf, sizeof(buf)); return tor_strdup(buf); } /** * Set *addr to the host-order IPv4 address (if any) of whatever * interface connects to the internet. This address should only be used in * checking whether our address has changed. Return 0 on success, -1 on * failure. */ int get_interface_address(int severity, uint32_t *addr) { tor_addr_t local_addr; int r; r = get_interface_address6(severity, AF_INET, &local_addr); if (r>=0) *addr = tor_addr_to_ipv4h(&local_addr); return r; }