
Tor Development Roadmap: Wishlist for Nov

2006–Dec 2007

Roger Dingledine Nick Mathewson Shava Nerad

November 9, 2006

1 Introduction

Tor (the software) and Tor (the overall software/network/support/document
suite) are now experiencing all the crises of success. Over the next year, we’re
probably going to grow more in terms of users, developers, and funding than
before. This gives us the opportunity to perform long-neglected maintenance
tasks.

2 Code and design infrastructure

2.1 Protocol revision

To maintain backward compatibility, we’ve postponed major protocol changes
and redesigns for a long time. Because of this, there are a number of sensible
revisions we’ve been putting off until we could deploy several of them at once.
To do each of these, we first need to discuss design alternatives with other
cryptographers and outside collaborators to make sure that our choices are
secure.

First of all, our protocol needs better versioning support so that we can
make backward-incompatible changes to our core protocol. There are difficult
anonymity issues here, since many naive designs would make it easy to tell
clients apart (and then track them) based on their supported versions.

With protocol versioning support would come the ability to future-proof
our ciphersuites. For example, not only our OR protocol, but also our direc-
tory protocol, is pretty firmly tied to the SHA-1 hash function, which though
not yet known to be insecure for our purposes, has begun to show its age. We
should remove assumptions throughout our design based on the assumption that
public keys, secret keys, or digests will remain any particular size indefinitely.

Our OR authentication protocol, though provably secure[4], relies more
on particular aspects of RSA and our implementation thereof than we had ini-
tially believed. To future-proof against changes, we should replace it with a less
delicate approach.

1

(For all the above: 2 person-months to specify, spread over several
months with time for interaction with external participants. One
person-month to implement. Start specifying in early 2007.)

We might design a stream migration feature so that streams tunneled over
Tor could be more resilient to dropped connections and changed IPs. (Not in
2007.)

A new protocol could support multiple cell sizes. Right now, all data
passes through the Tor network divided into 512-byte cells. This is efficient for
high-bandwidth protocols, but inefficient for protocols like SSH or AIM that
send information in small chunks. Of course, we need to investigate the extent
to which multiple sizes could make it easier for an adversary to fingerprint a
traffic pattern. (Not in 2007.)

As a part of our design, we should investigate possible cipher modes other
than counter mode. For example, a mode with built-in integrity checking, error
propagation, and random access could simplify our protocol significantly. Sadly,
many of these are patented and unavailable for us. (Not in 2007.)

2.2 Scalability

2.2.1 Improved directory efficiency

Right now, clients download a statement of the network status made by each
directory authority. We could reduce network bandwidth significantly by hav-
ing the authorities jointly sign a statement reflecting their vote on the current
network status. This would save clients up to 160K per hour, and make their
view of the network more uniform. Of course, we’d need to make sure the voting
process was secure and resilient to failures in the network. (Must do; specify
in 2006. 2 weeks to specify, 3-4 weeks to implement.)

We should shorten router descriptors, since the current format includes
a great deal of information that’s only of interest to the directory authorities,
and not of interest to clients. We can do this by having each router upload
a short-form and a long-form signed descriptor, and having clients download
only the short form. Even a naive version of this would save about 40% of
the bandwidth currently spent by clients downloading descriptors. (Must do;
specify in 2006. 3-4 weeks.)

We should have routers upload their descriptors even less often,
so that clients do not need to download replacements every 18 hours whether
any information has changed or not. (As of Tor 0.1.2.3-alpha, clients tolerate
routers that don’t upload often, but routers still upload at least every 18 hours
to support older clients.) (Must do, but not until 0.1.1.x is deprecated
in mid 2007. 1 week.)

2.2.2 Non-clique topology

Our current network design achieves a certain amount of its anonymity by mak-
ing clients act like each other through the simple expedient of making sure that

2

all clients know all servers, and that any server can talk to any other server. But
as the number of servers increases to serve an ever-greater number of clients,
these assumptions become impractical.

At worst, if these scalability issues become troubling before a solution is
found, we can design and build a solution to split the network into multiple
slices until a better solution comes along. This is not ideal, since rather than
looking like all other users from a point of view of path selection, users would
“only” look like 200,000–300,000 other users. (Not unless needed.)

We are in the process of designing improved schemes for network scal-
ability. Some approaches focus on limiting what an adversary can know about
what a user knows; others focus on reducing the extent to which an adversary
can exploit this knowledge. These are currently in their infancy, and will prob-
ably not be needed in 2007, but they must be designed in 2007 if they are to be
deployed in 2008. (Design in 2007; unknown difficulty. Write a paper.)

2.2.3 Relay incentives

To support more users on the network, we need to get more servers. So far,
we’ve relied on volunteerism to attract server operators, and so far it’s served
us well. But in the long run, we need to design incentives for users to
run servers and relay traffic for others. Most obviously, we could try to build
the network so that servers offered improved service for other servers, but we
would need to do so without weakening anonymity and making it obvious which
connections originate from users running servers. We have some preliminary
designs here [2] [1], but need to perform some more research to make sure they
would be safe and effective. (Write a draft paper; 2 person-months.)

2.3 Portability

Our Windows implementation, though much improved, continues to lag
behind Unix and Mac OS X, especially when running as a server. We hope
to merge promising patches from Mike Chiussi to address this point, and bring
Windows performance on par with other platforms. (Do in 2007; 1.5 months
to integrate not counting Mike’s work.)

We should have better support for portable devices, including modes
of operation that require less RAM, and that write to disk less frequently (to
avoid wearing out flash RAM). (Optional; 2 weeks.)

We should stop using socketpair on Windows; instead, we can use in-
memory structures to communicate between cpuworkers and the main thread,
and between connections. (Optional; 1 week.)

2.4 Performance: resource usage

We’ve been working on using less RAM, especially on servers. This has paid
off a lot for directory caches in the 0.1.2, which in some cases are using 90% less
memory than they used to require. But we can do better, especially in the area

3

around our buffer management algorithms, by using an approach more like the
BSD and Linux kernels use instead of our current ring buffer approach. (For OR
connections, we can just use queues of cell-sized chunks produced with a spe-
cialized allocator.) This could potentially save around 25 to 50% of the memory
currently allocated for network buffers, and make Tor a more attractive propo-
sition for restricted-memory environments like old computers, mobile devices,
and the like. (Do in 2007; 2-3 weeks plus one week measurement.)

We should improve our bandwidth limiting. The current system has
been crucial in making users willing to run servers: nobody is willing to run
a server if it might use an unbounded amount of bandwidth, especially if they
are charged for their usage. We can make our system better by letting users
configure bandwidth limits independently for their own traffic and traffic relayed
for others; and by adding write limits for users running directory servers. (Do
in 2006; 2-3 weeks.)

On many hosts, sockets are still in short supply, and will be until we can mi-
grate our protocol to UDP. We can use fewer sockets by making our self-to-self
connections happen internally to the code rather than involving the operating
system’s socket implementation. (Optional; 1 week.)

2.5 Performance: network usage

We know too little about how well our current path selection algorithms actually
spread traffic around the network in practice. We should research the efficacy
of our traffic allocation and either assure ourselves that it is close enough to
optimal as to need no improvement (unlikely) or identify ways to improve
network usage, and get more users’ traffic delivered faster. Performing this
research will require careful thought about anonymity implications.

We should also examine the efficacy of our congestion control algo-
rithm, and see whether we can improve client performance in the presence of
a congested network through dynamic ‘sendme’ window sizes or other means.
This will have anonymity implications too if we aren’t careful.

(For both of the above: research, design and write a measurement
tool in 2007: 1 month. See if we can interest a graduate student.)

We should work on making Tor perform better on networks with low band-
width and high packet loss. (Do in 2007 if we’re funded to do it; 4-6
weeks.)

2.6 Performance scenario: one Tor client, many users

We should improve Tor’s performance when a single Tor handles many
clients. Many organizations want to manage a single Tor client on their fire-
wall for many users, rather than having each user install a separate Tor client.
We haven’t optimized for this scenario, and it is likely that there are some code
paths in the current implementation that become inefficient when a single Tor is
servicing hundreds or thousands of client connections. (Additionally, it is likely

4

that such clients have interesting anonymity requirements the we should investi-
gate.) We should profile Tor under appropriate loads, identify bottlenecks, and
fix them. (Do in 2007 if we’re funded to do it; 4-8 weeks.)

2.7 Tor servers on asymmetric bandwidth

Tor should work better on servers that have asymmetric connections like cable
or DSL. Because Tor has separate TCP connections between each hop, if the
incoming bytes are arriving just fine and the outgoing bytes are all getting
dropped on the floor, the TCP push-back mechanisms don’t really transmit
this information back to the incoming streams. (Do in 2007 since related to
bandwidth limiting. 3-4 weeks.)

2.8 Running Tor as both client and server

Many performance tradeoffs and balances that might need more attention. We
first need to track and fix whatever bottlenecks emerge; but we also need to
invent good algorithms for prioritizing the client’s traffic without starving the
server’s traffic too much. (No idea; try profiling and improving things in
2007.)

2.9 Protocol redesign for UDP

Tor has relayed only TCP traffic since its first versions, and has used TLS-over-
TCP to do so. This approach has proved reliable and flexible, but in the long
term we will need to allow UDP traffic on the network, and switch some or all
of the network to using a UDP transport. Supporting UDP traffic will make
Tor more suitable for protocols that require UDP, such as many VOIP protocols.
Using a UDP transport could greatly reduce resource limitations on servers,
and make the network far less interruptible by lossy connections. Either of these
protocol changes would require a great deal of design work, however. We hope
to be able to enlist the aid of a few talented graduate students to assist with
the initial design and specification, but the actual implementation will require
significant testing of different reliable transport approaches. (Maybe do a
design in 2007 if we find an interested academic. Ian or Ben L might
be good partners here.)

3 Blocking resistance

3.1 Design for blocking resistance

We have written a design document explaining our general approach to blocking
resistance. We should workshop it with other experts in the field to get their
ideas about how we can improve Tor’s efficacy as an anti-censorship tool.

5

3.2 Implementation: client-side and bridges-side

Our anticensorship design calls for some nodes to act as “bridges” that are out-
side a national firewall, and others inside the firewall to act as pure clients. This
part of the design is quite clear-cut; we’re probably ready to begin implement-
ing it. To implement bridges, we need to have servers publish themselves
as limited-availability relays to a special bridge authority if they judge they’d
make good servers. We will also need to help provide documentation for port
forwarding, and an easy configuration tool for running as a bridge.

To implement clients, we need to provide a flexible interface to learn about
bridges and to act on knowledge of bridges. We also need to teach them how to
know to use bridges as their first hop, and how to fetch directory information
from both classes of directory authority.

Clients also need to use the encrypted directory variant added in Tor
0.1.2.3-alpha. This will let them retrieve directory information over Tor once
they’ve got their initial bridges. We may want to get the rest of the Tor user
base to begin using this encrypted directory variant too, to provide cover.

Bridges will want to be able to listen on multiple addresses and ports
if they can, to give the adversary more ports to block.

3.3 Research: anonymity implications from becoming a
bridge

3.4 Implementation: bridge authority

The design here is also reasonably clear-cut: we need to run some directory
authorities with a slightly modified protocol that doesn’t leak the entire list of
bridges. Thus users can learn up-to-date information for bridges they already
know about, but they can’t learn about arbitrary new bridges.

3.5 Normalizing the Tor protocol on the wire

Additionally, we should resist content-based filters. Though an adversary
can’t see what users are saying, some aspects of our protocol are easy to finger-
print as Tor. We should correct this where possible.

Look like Firefox; or look like nothing? Future research: investigate timing
similarities with other protocols.

3.6 Access control for bridges

Design/impl: password-protecting bridges, in light of above. And/or more gen-
eral access control.

6

3.7 Research: scanning-resistance

3.8 Research/Design/Impl: how users discover bridges

Our design anticipates an arms race between discovery methods and censors.
We need to begin the infrastructure on our side quickly, preferably in a flexible
language like Python, so we can adapt quickly to censorship.

phase one: personal bridges phase two: families of personal bridges phase
three: more structured social network phase four: bag of tricks Research: phase
five...

Integration with Psiphon, etc?

3.9 Document best practices for users

Document best practices for various activities common among blocked users
(e.g. WordPress use).

3.10 Research: how to know if a bridge has been blocked?

3.11 GeoIP maintenance, and ”private” user statistics

How to know if the whole idea is working?

3.12 Research: hiding whether the user is reading or pub-
lishing?

3.13 Research: how many bridges do you need to know
to maintain reachability?

3.14 Resisting censorship of the Tor website, docs, and
mirrors

We should take some effort to consider initial distribution of Tor and re-
lated information in countries where the Tor website and mirrors are censored.
(Right now, most countries that block access to Tor block only the main website
and leave mirrors and the network itself untouched.) Falling back on word-of-
mouth is always a good last resort, but we should also take steps to make sure
it’s relatively easy for users to get ahold of a copy.

4 Security

4.1 Security research projects

We should investigate approaches with some promise to help Tor resist end-to-
end traffic correlation attacks. It’s an open research question whether (and to
what extent) mixed-latency networks, low-volume long-distance padding,
or other approaches can resist these attacks, which are currently some of the

7

most effective against careful Tor users. We should research these questions
and perform simulations to identify opportunities for strengthening our design
without dropping performance to unacceptable levels. (Start doing this in
2007; write a paper. 8-16 weeks.)

We’ve got some preliminary results suggesting that a topology-aware
routing algorithm [3] could reduce Tor users’ vulnerability against local or
ISP-level adversaries, by ensuring that they are never in a position to watch
both ends of a connection. We need to examine the effects of this approach in
more detail and consider side-effects on anonymity against other kinds of ad-
versaries. If the approach still looks promising, we should investigate ways for
clients to implement it (or an approximation of it) without having to download
routing tables for the whole Internet. (Not in 2007 unless a graduate
student wants to do it.)

We should research the efficacy of website fingerprinting attacks, wherein
an adversary tries to match the distinctive traffic and timing pattern of the re-
sources constituting a given website to the traffic pattern of a user’s client.
These attacks work great in simulations, but in practice we hear they don’t
work nearly as well. We should get some actual numbers to investigate the
issue, and figure out what’s going on. If we resist these attacks, or can improve
our design to resist them, we should. (Possibly part of end-to-end cor-
relation paper. Otherwise, not in 2007 unless a graduate student is
interested.)

4.2 Implementation security

Right now, each Tor node stores its keys unencrypted. We should encrypt
more Tor keys so that Tor authorities can require a startup password. We
should look into adding intermediary medium-term “signing keys” between iden-
tity keys and onion keys, so that a password could be required to replace a
signing key, but not to start Tor. This would improve Tor’s long-term security,
especially in its directory authority infrastructure. (Design this as a part
of the revised “v2.1” directory protocol; implement it in 2007. 3-4
weeks.)

We should also mark RAM that holds key material as non-swappable
so that there is no risk of recovering key material from a hard disk compromise.
This would require submitting patches upstream to OpenSSL, where support
for marking memory as sensitive is currently in a very preliminary state. (Nice
to do, but not in immediate Tor scope.)

There are numerous tools for identifying trouble spots in code (such as Cover-
ity or even VS2005’s code analysis tool) and we should convince somebody to
run some of them against the Tor codebase. Ideally, we could figure out a way
to get our code checked periodically rather than just once. (Almost no time
once we talk somebody into it.)

We should try protocol fuzzing to identify errors in our implementation.
(Not in 2007 unless we find a grad student or undergraduate who
wants to try.)

8

Our guard nodes help prevent an attacker from being able to become a chosen
client’s entry point by having each client choose a few favorite entry points as
“guards” and stick to them. We should implement a directory guards feature
to keep adversaries from enumerating Tor users by acting as a directory cache.
(Do in 2007; 2 weeks.)

4.3 Detect corrupt exits and other servers

With the success of our network, we’ve attracted servers in many locations,
operated by many kinds of people. Unfortunately, some of these locations have
compromised or defective networks, and some of these people are untrustworthy
or incompetent. Our current design relies on authority administrators to iden-
tify bad nodes and mark them as nonfunctioning. We should automate the
process of identifying malfunctioning nodes as follows:

We should create a generic feedback mechanism for add-on tools like
Mike Perry’s “Snakes on a Tor” to report failing nodes to authorities. (Do in
2006; 1-2 weeks.)

We should write tools to detect more kinds of innocent node failure,
such as nodes whose network providers intercept SSL, nodes whose network
providers censor popular websites, and so on. We should also try to detect
routers that snoop traffic; we could do this by launching connections to
throwaway accounts, and seeing which accounts get used. (Do in 2007; ask
Mike Perry if he’s interested. 4-6 weeks.)

We should add an efficient way for authorities to mark a set of servers
as probably collaborating though not necessarily otherwise dishonest. This
happens when an administrator starts multiple routers, but doesn’t mark them
as belonging to the same family. (Do during v2.1 directory protocol re-
design; 1-2 weeks to implement.)

To avoid attacks where an adversary claims good performance in order to
attract traffic, we should have authorities measure node performance
(including stability and bandwidth) themselves, and not simply believe what
they’re told. Measuring stability can be done by tracking MTBF. Measuring
bandwidth can be tricky, since it’s hard to distinguish between a server with
low capacity, and a high-capacity server with most of its capacity in use. (Do
“Stable” in 2007; 2-3 weeks. “Fast” will be harder; do it if we can
interest a grad student.)

Operating a directory authority should be easier. We rely on author-
ity operators to keep the network running well, but right now their job involves
too much busywork and administrative overhead. A better interface for them
to use could free their time to work on exception cases rather than on adding
named nodes to the network. (Do in 2007; 4-5 weeks.)

4.4 Protocol security

In addition to other protocol changes discussed above, we should add hooks
for denial-of-service resistance; we have some preliminary designs, but we

9

shouldn’t postpone them until we really need them. If somebody tries a DDoS
attack against the Tor network, we won’t want to wait for all the servers and
clients to upgrade to a new version. (Research project; do this in 2007 if
funded.)

5 Development infrastructure

5.1 Build farm

We’ve begun to deploy a cross-platform distributed build farm of hosts that build
and test the Tor source every time it changes in our development repository.

We need to get more participants, so that we can test a larger variety
of platforms. (Previously, we’ve only found out when our code had broken on
obscure platforms when somebody got around to building it.)

We need also to add our dependencies to the build farm, so that we can
ensure that libraries we need (especially libevent) do not stop working on any
important platform between one release and the next.

(This is ongoing as more buildbots arrive.)

5.2 Improved testing harness

Currently, our unit tests cover only about 20% of the code base. This is
uncomfortably low; we should write more and switch to a more flexible testing
framework. (Ongoing basis, time permitting.)

We should also write flexible automated single-host deployment tests
so we can more easily verify that the current codebase works with the network.
(Worthwhile in 2007; would save lots of time. 2-4 weeks.)

We should build automated stress testing frameworks so we can see which
realistic loads cause Tor to perform badly, and regularly profile Tor against
these loads. This would give us in vitro performance values to supplement our
deployment experience. (Worthwhile in 2007; 2-6 weeks.)

We should improve our memory profiling code. (...)

5.3 Centralized build system

We currently rely on a separate packager to maintain the packaging system
and to build Tor on each platform for which we distribute binaries. Separate
package maintainers is sensible, but separate package builders has meant long
turnaround times between source releases and package releases. We should cre-
ate the necessary infrastructure for us to produce binaries for all major packages
within an hour or so of source release. (We should brainstorm this at least
in 2007.)

10

5.4 Improved metrics

We need a way to measure the network’s health, capacity, and degree of
utilization. Our current means for doing this are ad hoc and not completely
accurate

We need better ways to tell which countries are users are coming
from, and how many there are. A good perspective of the network helps
us allocate resources and identify trouble spots, but our current approaches will
work less and less well as we make it harder for adversaries to enumerate users.
We’ll probably want to shift to a smarter, statistical approach rather than our
current “count and extrapolate” method.

(All of this in 2007 if funded; 4-8 weeks)

5.5 Controller library

We’ve done lots of design and development on our controller interface, which
allows UI applications and other tools to interact with Tor. We could encourage
the development of more such tools by releasing a general-purpose controller
library, ideally with API support for several popular programming languages.
(2006 or 2007; 1-2 weeks.)

6 User experience

6.1 Get blocked less, get blocked less broadly

Right now, some services block connections from the Tor network because they
don’t have a better way to keep vandals from abusing them than blocking IP
addresses associated with vandalism. Our approach so far has been to educate
them about better solutions that currently exist, but we should also create
better solutions for limiting vandalism by anonymous users like cre-
dential and blind-signature based implementations, and encourage their use.
Other promising starting points including writing a patch and explanation for
Wikipedia, and helping Freenode to document, maintain, and expand its current
Tor-friendly position. (Do a writeup here in 2007; 1-2 weeks.)

Those who do block Tor users also block overbroadly, sometimes blacklisting
operators of Tor servers that do not permit exit to their services. We could
obviate innocent reasons for doing so by designing a narrowly-targeted Tor
RBL service so that those who wanted to overblock Tor could no longer plead
incompetence. (Possibly in 2007 if we decide it’s a good idea; 3 weeks.)

6.2 All-in-one bundle

We need a well-tested, well-documented bundle of Tor and supporting appli-
cations configured to use it correctly. We have an initial implementation well

11

under way, but it will need additional work in identifying requisite Firefox exten-
sions, identifying security threats, improving user experience, and so on. This
will need significantly more work before it’s ready for a general public release.

6.3 LiveCD Tor

We need a nice bootable livecd containing a minimal OS and a few applications
configured to use it correctly. The Anonym.OS project demonstrated that this
is quite feasible, but their project is not currently maintained.

6.4 A Tor client in a VM

a.k.a JanusVM [......]
which is quite related to the firewall-level deployment section below. JanusVM
is a Linux kernel running in VMWare. It gets an IP address from the network,
and serves as a DHCP server for its host Windows machine. It intercepts all
outgoing traffic and redirects it into Privoxy, Tor, etc. This Linux-in-Windows
approach may help us with scalability in the short term, and it may also be a
good long-term solution rather than accepting all security risks in Windows.

6.5 Firewall-level deployment

Another useful deployment mode for some users is using Tor in a firewall
configuration, and directing all their traffic through Tor. This can be a little
tricky to set up currently, but it’s an effective way to make sure no traffic leaves
the host un-anonymized. To achieve this, we need to improve and port our
new TransPort feature which allows Tor to be used without SOCKS support;
to add an anonymizing DNS proxy feature to Tor; and to construct a
recommended set of firewall configurations to redirect traffic to Tor.

This is an area where deployment via a livecd, or an installation targeted
at specialized home routing hardware, could be useful.

6.6 Assess software and configurations for anonymity risks

Right now, users and packagers are more or less on their own when selecting
Firefox extensions. We should assemble a recommended list of browser
extensions through experiment, and include this in the application bundles we
distribute.

We should also describe best practices for using Tor with each class
of application. For example, Ethan Zuckerman has written a detailed tutorial
on how to use Tor, Firefox, GMail, and Wordpress to blog with improved safety.
There are many other cases on the Internet where anonymity would be helpful,
and there are a lot of ways to screw up using Tor.

The Foxtor and Torbutton extensions serve similar purposes; we should pick
a favorite, and merge in the useful features of the other.

12

6.7 Localization

Right now, most of our user-facing code is internationalized. We need to interna-
tionalize the last few hold-outs (like the Tor installer), and get more translations
for the parts that are already internationalized.

Also, we should look into a unified translator’s solution. Currently, since
different tools have been internationalized using the framework-appropriate method,
different tools require translators to localize them via different interfaces. Inas-
much as possible, we should make translators only need to use a single tool to
translate the whole Tor suite.

7 Support

It would be nice to set up some user support infrastructure and contrib-
utor support infrastructure, especially focusing on server operators and on
coordinating volunteers.

This includes intuitive and easy ticket systems for bug reports and feature
suggestions (not just mailing lists with a half dozen people and no clear roles for
who answers what), but it also includes a more personalized and efficient frame-
work for interaction so we keep the attention and interest of the contributors,
and so we make them feel helpful and wanted.

8 Documentation

8.1 Unified documentation scheme

We need to inventory our documentation. Our documentation so far has
been mostly produced on an ad hoc basis, in response to particular needs and
requests. We should figure out what documentation we have, which of it (if
any) should get priority, and whether we can’t put it all into a single format.

We could unify the docs into a single book-like thing. This will also help
us identify what sections of the “book” are missing.

8.2 Missing technical documentation

We should revise our design paper to reflect the new decisions and research
we’ve made since it was published in 2004. This will help other researchers
evaluate and suggest improvements to Tor’s current design.

Other projects sometimes implement the client side of our protocol. We
encourage this, but we should write a document about how to avoid ex-
cessive resource use, so we don’t need to worry that they will do so without
regard to the effect of their choices on server resources.

13

8.3 Missing user documentation

Our documentation falls into two broad categories: some is ‘discoursive’ and
explains in detail why users should take certain actions, and other documenta-
tion is ‘comprehensive’ and describes all of Tor’s features. Right now, we have
no document that is both deep, readable, and thorough. We should correct this
by identifying missing spots in our design.

References

[1] Roger Dingledine and Nick Mathewson. Tor incentives design brainstorms.
http://tor.eff.org/svn/trunk/doc/incentives.txt.

[2] Roger Dingledine, Nick Mathewson, and Paul Syverson. Challenges in de-
ploying low-latency anonymity, 2005. Manuscript.

[3] Nick Feamster and Roger Dingledine. Location diversity in anonymity net-
works. In Proceedings of the Workshop on Privacy in the Electronic Society
(WPES 2004), Washington, DC, USA, October 2004. http://freehaven.
net/doc/routing-zones/routing-zones.ps.

[4] Ian Goldberg. On the security of the tor authentication protocol. In Pro-
ceedings of the Sixth Workshop on Privacy Enhancing Technologies (PET
2006), Cambridge, UK, June 2006. Springer. http://www.cypherpunks.
ca/~iang/pubs/torsec.pdf.

14

