
Penetration Test Report

Open Tech Fund

V 1.1
Diemen, December 3rd, 2021
Public

Document Properties

Client Open Tech Fund

Title Penetration Test Report

Target The Onionshare desktop and cli implementation (Release 2.4 https://github.com/
onionshare/onionshare)

Version 1.1

Pentesters Tillmann Weidinger, Philipp Koppe

Authors Philipp Koppe, Tillmann Weidinger, Patricia Piolon, Tillmann Weidinger

Reviewed by Patricia Piolon

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 October 10th, 2021 Philipp Koppe, Tillmann
Weidinger

Initial draft

1.0 October 23rd, 2021 Patricia Piolon Review

1.1 December 3rd, 2021 Tillmann Weidinger Retest of the findings

Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Overdiemerweg 28
1111 PP Diemen
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

1 Executive Summary 4
1.1 Introduction 4

1.2 Scope of work 4

1.3 Project objectives 4

1.4 Timeline 4

1.5 Results In A Nutshell 4

1.6 Summary of Findings 5

1.6.1 Findings by Threat Level 6

1.6.2 Findings by Type 7

1.7 Summary of Recommendations 7

2 Methodology 9
2.1 Planning 9

2.2 Risk Classification 9

3 Reconnaissance and Fingerprinting 11

4 Findings 12
4.1 OTF-014 — [Desktop] The QT application is Vulnerable to Out-of-Bounds Read of Uninitialized

Heap Memory 12

4.2 OTF-013 — [CLI] Flatpak and Snap Configurations Allow for Read Access on the Entire
Homefolder 13

4.3 OTF-012 — [Receive] The Receive Mode is Vulnerable to Denial of Service 14

4.4 OTF-009 — [Chat] Users Can Send Messages Without Presence in the User List 16

4.5 OTF-006 — [Website] CSP Cannot be Configured 17

4.6 OTF-005 — [Chat] Users can be Impersonated with Similar Usernames 18

4.7 OTF-004 — [Chat] Users Can Spoof Leaving a Chatroom 20

4.8 OTF-003 — [Chat] Message Sender Can Be Spoofed 23

4.9 OTF-001 — [Desktop] The Path Parameter of the History Element is not Sanitized 26

5 Non-Findings 29
5.1 NF-015 — [CLI] The File Names and Folder Names Are Properly Sanitized 29

5.2 NF-010 — [CLI] The Frontend Is Not Vulnerable to Cross-Site Scripting 29

6 Future Work 30

7 Conclusion 31

Appendix 1 Testing team 32

1 Executive Summary

1.1 Introduction

Between September 26, 2021 and October 8, 2021, Radically Open Security B.V. carried out a penetration test for Open

Tech Fund

This report contains our findings as well as detailed explanations of exactly how ROS performed the penetration test.

1.2 Scope of work

The scope of the penetration test was limited to the following target(s):

• The Onionshare desktop and cli implementation (Release 2.4 https://github.com/onionshare/onionshare)

The scoped services are broken down as follows:

• Pentest on the desktop client implementation: 4-5 days

• Partial Code audit of shared code parts in the cli package: 5-6 days

• Retest/fixes: 0-2 days

• Reporting: 1.5 days

• Review & projectmanagement: 1 days

• Total effort: 11.5 - 15.5 days

1.3 Project objectives

ROS will perform a penetration test of the Onionshare application and components with OTF in order to assess the

security of the application against adversaries. To do so ROS will access the Onionshare repositories and guide OTF in

attempting to find vulnerabilities, exploiting any such found to try and gain further access and elevated privileges.

1.4 Timeline

The Security Audit took place between September 26, 2021 and October 8, 2021.

1.5 Results In A Nutshell

The most impactful finding we discovered is relevant for users of the desktop application and allows to render arbitrary

HTML inside the Onionshare desktop application. This was possible due to missing input sanitization in the history

4 Radically Open Security B.V.

https://github.com/onionshare/onionshare

Public

element OTF-001 (page 26) . While testing the capabilities of an adversary with such a primitive we discovered an out

of bounds read in the QT image rendering component OTF-014 (page 12) . This can be abused to create a denial of

service attack against the machine which runs the Onionshare desktop application.

Another denial of service issue was found in the receive mode OTF-012 (page 14) which blocked upload of files and

could be reproduced over the tor network.

Most issues were found in the chat component, where adversaries with access could impersonate users OTF-005 (page

18) and OTF-003 (page 23) in the web interface. It was also possible to spoof a chat leave notification without

actually leaving the chat, leading to a hidden eavesdropper OTF-004 (page 20) . Another method, which only allowed

for hidden write access was found, which could combined with the impersonation bug to spoof messages from legitimate

chat participants OTF-009 (page 16) .

A low severity issue was found in the deployed applications and allowed for adversaries with existing exploits to facilitate

these without common binary restrictions like Stack-Canaries OTF-013 (page 13) . Additionally, the webserver choice

and configuration did not allow for CSP configuration, which would leave applications dependent on external resources

without this common hardening OTF-006 (page 17) .

1.6 Summary of Findings

ID Type Description Threat level

OTF-014 Out-of-bounds Read The desktop application was found to be vulnerable to
denial of service via an undisclosed vulnerability in the QT
image parsing.

Elevated

OTF-001 Improper Input
Sanitization

The path parameter of the requested URL is not sanitized
before being passed to the QT frontend.

Elevated

OTF-012 Denial of Service The receive mode limits concurrent uploads to 100 per
second and blocks other uploads in the same second,
which can be triggered by a simple script.

Moderate

OTF-004 Improper Access
Control

Chat participants can spoof their channel leave message,
tricking others into assuming they left the chatroom.

Moderate

OTF-003 Improper Access
Control

Anyone with access to the chat environment can write
messages disguised as another chat participant.

Moderate

OTF-013 Improper Hardening The filesystem restriction could be hardened and should
only allow for pre-defined subfolders.

Low

OTF-009 Improper Access
Control

Authenticated users (or unauthenticated in public mode)
can send messages without being visible in the list of chat
participants.

Low

OTF-006 Broken Website
Hardening Control

The CSP can be turned on or off but not configured for
the specific needs of the website.

Low

Executive Summary 5

OTF-005 Improper Input
Sanitization

It is possible to change the username to that of another
chat participant with an additional space character at the
end of the name string.

Low

1.6.1 Findings by Threat Level

44.4%

33.3%

22.2%

Elevated (2)

Moderate (3)

Low (4)

6 Radically Open Security B.V.

Public

1.6.2 Findings by Type

11.1%

11.1%

11.1%

11.1%
22.2%

33.3%

Improper access control (3)

Improper input sanitization (2)

Out-of-bounds read (1)

Improper hardening (1)

Denial of service (1)

Broken website hardening control (1)

1.7 Summary of Recommendations

ID Type Recommendation

OTF-014 Out-of-bounds Read • Monitor for upstream fix
• Fix OTF-001 (page 26) as a workaround

OTF-013 Improper Hardening • Reduce read access in Flatpak configuration.

OTF-012 Denial of Service • Remove this limitation

or
• Derive directory name from milliseconds

OTF-009 Improper Access
Control

• Allow chat access only after emission of the join event.
• Implement proper session handling.

OTF-006 Broken Website
Hardening Control

• Consider offering a configurable webserver choice
• Consider configurable CSP

OTF-005 Improper Input
Sanitization

• Remove non-visible characters from the username

OTF-004 Improper Access
Control

• Implement proper session handling

OTF-003 Improper Access
Control

• Implement proper session handling

Executive Summary 7

OTF-001 Improper Input
Sanitization

• Manually define the text format of the QLabel via setTextFormat()

8 Radically Open Security B.V.

Public

2 Methodology

2.1 Planning

Our general approach during penetration tests is as follows:

1. Reconnaissance

We attempt to gather as much information as possible about the target. Reconnaissance can take two forms:

active and passive. A passive attack is always the best starting point as this would normally defeat intrusion

detection systems and other forms of protection afforded to the app or network. This usually involves trying to

discover publicly available information by visiting websites, newsgroups, etc. An active form would be more

intrusive, could possibly show up in audit logs and might take the form of a social engineering type of attack.

2. Enumeration

We use various fingerprinting tools to determine what hosts are visible on the target network and, more

importantly, try to ascertain what services and operating systems they are running. Visible services are researched

further to tailor subsequent tests to match.

3. Scanning

Vulnerability scanners are used to scan all discovered hosts for known vulnerabilities or weaknesses. The results

are analyzed to determine if there are any vulnerabilities that could be exploited to gain access or enhance

privileges to target hosts.

4. Obtaining Access

We use the results of the scans to assist in attempting to obtain access to target systems and services, or to

escalate privileges where access has been obtained (either legitimately though provided credentials, or via

vulnerabilities). This may be done surreptitiously (for example to try to evade intrusion detection systems or rate

limits) or by more aggressive brute-force methods. This step also consist of manually testing the application

against the latest (2017) list of OWASP Top 10 risks. The discovered vulnerabilities from scanning and manual

testing are moreover used to further elevate access on the application.

2.2 Risk Classification

Throughout the report, vulnerabilities or risks are labeled and categorized according to the Penetration Testing Execution

Standard (PTES). For more information, see: http://www.pentest-standard.org/index.php/Reporting

These categories are:

• Extreme

Extreme risk of security controls being compromised with the possibility of catastrophic financial/reputational

losses occurring as a result.

Methodology 9

http://www.pentest-standard.org/index.php/Reporting

• High

High risk of security controls being compromised with the potential for significant financial/reputational losses

occurring as a result.

• Elevated

Elevated risk of security controls being compromised with the potential for material financial/reputational losses

occurring as a result.

• Moderate

Moderate risk of security controls being compromised with the potential for limited financial/reputational losses

occurring as a result.

• Low

Low risk of security controls being compromised with measurable negative impacts as a result.

10 Radically Open Security B.V.

Public

3 Reconnaissance and Fingerprinting

We were able to gain information about the software and infrastructure through the following automated scans. Any

relevant scan output will be referred to in the findings.

• nmap – https://nmap.org

• Burp Suite Professional – https://portswigger.net/burp/pro

• GoBuster – https://github.com/OJ/gobuster

Reconnaissance and Fingerprinting 11

https://nmap.org
https://portswigger.net/burp/pro
https://github.com/OJ/gobuster

4 Findings

We have identified the following issues:

4.1 OTF-014 — [Desktop] The QT application is Vulnerable to Out-of-Bounds
Read of Uninitialized Heap Memory

Vulnerability ID: OTF-014 Status: Resolved

Vulnerability type: Out-of-bounds Read

Threat level: Elevated

Description:

The desktop application was found to be vulnerable to denial of service via an undisclosed vulnerability in the QT image

parsing.

Technical description:

Prerequisites:

• Onion address is known

• Public service or authentication is valid

• Desktop application is used

• History is displayed

The rendering of images found in OTF-001 (page 26) could be elevated to a Denial of Service, which requires

only very few bytes to be sent as a path parameter to any of the Onionshare functions. Roughly 20 bytes lead to 4GB

memory consumption and this can be triggered multiple times. To be abused, this vulnerability requires rendering in the

history tab, so some user interaction is required. The issue is in the process of disclosure to the QT security mailing list.

More details will be provided after a fixed QT build has been deployed.

Retest:

The issue was partially resolved. The path value is now sanitized in OTF-001 (page 26), but the upstream issues are

not resolved at the time of retest.

12 Radically Open Security B.V.

Public

Impact:

An adversary with knowledge of the Onion service address in public mode or with authentication in private mode can

perform a Denial of Service attack, which quickly results in out-of-memory for the server. This requires the desktop

application with rendered history, therefore the impact is only elevated.

Recommendation:

• Monitor for upstream fix

• Fix OTF-001 (page 26) as a workaround

4.2 OTF-013 — [CLI] Flatpak and Snap Configurations Allow for Read Access
on the Entire Homefolder

Vulnerability ID: OTF-013 Status: Resolved

Vulnerability type: Improper Hardening

Threat level: Low

Description:

The filesystem restriction could be hardened and should only allow for pre-defined subfolders.

Technical description:

The Flatpak and Snap configurations allow for read-only access on the whole home folder. The relevant lines

in the configuration files are onionshare/snap/snapcraft.yaml#L20 and onionshare/flatpak/

org.onionshare.OnionShare.yaml#L19, respectively.

The encapsulation of filesystem access via these mechanisms should be restricted to pre-defined folders and not allow

for access to (configuration) files outside the Onionshare-specific folders.

Sadly Snap does not allow for further restriction to specific folders and therefore cannot be further hardened. By default

both frameworks disallow access to hidden folders and therefore reduce the potential impact.

Retest:

The issue was resolved. The configuration is not allowing read access to the home folder aside from proper file dialogs.

Findings 13

Impact:

An adversary with a primitive that allows for filesystem access from the context of the Onionshare process can access

sensitive files in the entire user home folder. This could lead to the leaking of sensitive data. Due to the automatic

exclusion of hidden folders, the impact is reduced.

Recommendation:

• Reduce read access in Flatpak configuration.

4.3 OTF-012 — [Receive] The Receive Mode is Vulnerable to Denial of Service

Vulnerability ID: OTF-012 Status: Resolved

Vulnerability type: Denial of Service

Threat level: Moderate

Description:

The receive mode limits concurrent uploads to 100 per second and blocks other uploads in the same second, which can

be triggered by a simple script.

Technical description:

The following script uses GNU parallel and curl with around 6000 requests in parallel to send 10000 requests. A change

in the ulimit -n configuration is required for it to work. This is sufficient to block file upload on a (public) receive

instance.

seq 10000 | parallel --max-args 0 --jobs 6000 "curl -i -s -x socks5h://localhost:9150 -
k -X $'POST' -H $'Host: csqrp3qciewvj5axph4o62jnr6aevhmpxfkydmi3256bprhbusr2ltid.onion'
 -H $'Accept-Encoding: gzip, deflate' -H $'Content-Type: multipart/form-data;
 boundary=---------------------------19182376703918074873375387042' -H $'Content-Length: 329' -H
 $'Connection: close' --data-binary $'-----------------------------19182376703918074873375387042\x0d
\x0aContent-Disposition: form-data; name=\"file[]\"; filename=\"poc.txt\"\x0d\x0aContent-Type:
 text/plain\x0d\x0a\x0d\x0aA\x0d\x0a-----------------------------19182376703918074873375387042\x0d
\x0aContent-Disposition: form-data; name=\"text\"\x0d\x0a\x0d\x0a\x0d
\x0a-----------------------------19182376703918074873375387042--\x0d\x0a' $'http://
csqrp3qciewvj5axph4o62jnr6aevhmpxfkydmi3256bprhbusr2ltid.onion/upload-ajax'"

Attack duration was around 80 seconds.

Cases where over 99 requests were sent per second:

14 Radically Open Security B.V.

Public

Every 0.1s: ls | grep... onionvm: Tue Oct 5 12:17:00 2021

78

Cases where files were successfully written to disk:

Every 0.1s: ls | wc -w onionvm: Tue Oct 5 12:17:00 2021

8399

This means that during the attack time 1601 requests of 10000 were dropped. We tried to upload multiple files in the web

interface during the attack and were not successful.

The failsafe is used to prevent creating more than 100 directories per second:

Create that directory, which shouldn't exist yet
 try:
 os.makedirs(self.receive_mode_dir, 0o700, exist_ok=False)
 except OSError:
 # If this directory already exists, maybe someone else is uploading files at
 # the same second, so use a different name in that case
 if os.path.exists(self.receive_mode_dir):
 # Keep going until we find a directory name that's available
 i = 1
 while True:
 new_receive_mode_dir = f"{self.receive_mode_dir}-{i}"
 try:
 os.makedirs(new_receive_mode_dir, 0o700, exist_ok=False)
 self.receive_mode_dir = new_receive_mode_dir
 break
 except OSError:
 pass
 i += 1
 # Failsafe
 if i == 100:
 self.web.common.log(
 "ReceiveModeRequest",
 "__init__",
 "Error finding available receive mode directory",
)
 self.upload_error = True
 break
 except PermissionError:
 self.web.add_request(
 self.web.REQUEST_ERROR_DATA_DIR_CANNOT_CREATE,
 request.path,
 {"receive_mode_dir": self.receive_mode_dir},
)
 print(
 f"Could not create OnionShare data folder: {self.receive_mode_dir}"
)
 self.web.common.log(
 "ReceiveModeRequest",
 "__init__",
 "Permission denied creating receive mode directory",
)
 self.upload_error = True

Findings 15

The limit of 100 requests/second is significantly lower than the possible network bandwidth and greatly reduces the

attack complexity for denial of service. Our test was conducted over the tor network, which showed no limitation for the

required bandwidth.

Retest:

The issue was resolved. The folder name contains the nanosecond of the request time.

Impact:

An adversary with access to the receive mode can block file upload for others. There is no way to block this attack in

public mode due to the anonymity properties of the tor network.

Recommendation:

• Remove this limitation

or

• Derive directory name from milliseconds

4.4 OTF-009 — [Chat] Users Can Send Messages Without Presence in the
User List

Vulnerability ID: OTF-009 Status: Resolved

Vulnerability type: Improper Access Control

Threat level: Low

Description:

Authenticated users (or unauthenticated in public mode) can send messages without being visible in the list of chat

participants.

Technical description:

Prerequisites:

• Existing chatroom

• Access to the chatroom (Public or known Private Key)

16 Radically Open Security B.V.

Public

• Either a modified frontend client or manual requests from burp/curl

If a user opens the chatroom without emitting the join message he will not be present in session.users[x] list.

Therefore there is no listing in the frontend and no chat participant knows another party joined the chat. It is still possible

to send messages in the chatroom.

If a user decides to abuse OTF-003 (page 23) he can impersonate messages from existing users; others would not

be able to distinguish original and faked messages. This is also a prerequisite for OTF-004 (page 20).

Retest:

The issue was resolved. The client side is no longer announcing their presence and this is tracked on the server side.

Impact:

An adversary with access to the chat environment can send messages to the chat without being visible in the list of chat

participants.

Recommendation:

• Allow chat access only after emission of the join event.

• Implement proper session handling.

4.5 OTF-006 — [Website] CSP Cannot be Configured

Vulnerability ID: OTF-006 Status: Resolved

Vulnerability type: Broken Website Hardening Control

Threat level: Low

Description:

The CSP can be turned on or off but not configured for the specific needs of the website.

Technical description:

The website mode of the application allows to use a hardened CSP, which will block any scripts and external resources.

It is not possible to configure this CSP for individual pages and therefore the security enhancement cannot be used for

websites using javascript or external resources like fonts or images.

Findings 17

If CSP were configurable, the website creator could harden it accordingly to the needs of the application.

As this issue correlates with the Github issue for exposing the flask application directly (https://github.com/onionshare/

onionshare/issues/1389), it can be assumed that this can be solved by either changing to a well-known webserver, which

supports this kind of configuration, or enhancing the status quo by making the CSP a configurable part of each website.

We believe that bundling the nginx or apache webserver would add complexity and dependencies to the application that

could result in a larger attack surface - as these packages receive regular security updates. On the other hand it is not

recommended to directly expose the flask webserver, due to lack of hardening. This is a trade-off which needs to be

evaluated by the Onionshare developers, as multiple features are involved. Ideally the application user could choose

between the built-in flask webserver or a system webserver of choice.

Retest:

The issue was resolved. The CSP can be configured and passed to the application via command line.

Impact:

As this is a general weakness and not a direct vulnerability in the Onionshare application, the direct impact of this issue

is rather low.

Recommendation:

• Consider offering a configurable webserver choice

• Consider configurable CSP

4.6 OTF-005 — [Chat] Users can be Impersonated with Similar Usernames

Vulnerability ID: OTF-005 Status: Resolved

Vulnerability type: Improper Input Sanitization

Threat level: Low

Description:

It is possible to change the username to that of another chat participant with an additional space character at the end of

the name string.

18 Radically Open Security B.V.

https://github.com/onionshare/onionshare/issues/1389
https://github.com/onionshare/onionshare/issues/1389

Public

Technical description:

Assumed users in Chat:

• Alice

• Bob

• Mallory

1. Mallory renames to Alice .

2. Mallory sends message as Alice .

3. Alice and Bob receive a message from Mallory disguised as Alice , which is hard to distinguish from the Alice

in the web interface.

Other (invisible) whitespace characters were found to be working as well.

Retest:

The issue was resolved. User names are stripped from leading or trailing spaces and the user name value is now limited

to ASCII only, due to invisible non-whitespace characters like U+3164 HANGUL FILLER.

Impact:

An adversary with access to the chat environment can use the rename feature to impersonate other participants by

adding whitespace characters at the end of the username.

Recommendation:

• Remove non-visible characters from the username

Findings 19

4.7 OTF-004 — [Chat] Users Can Spoof Leaving a Chatroom

Vulnerability ID: OTF-004 Status: Resolved

Vulnerability type: Improper Access Control

Threat level: Moderate

Description:

Chat participants can spoof their channel leave message, tricking others into assuming they left the chatroom.

Technical description:

20 Radically Open Security B.V.

Public

Findings 21

This series of screenshots show Alice, Bob and Eve joined a chatroom and are the only participants in the chatroom.

Eve seemingly leaves the chatroom, which leads Bob and Alice to believe they are having a private chat. The last

screenshot shows that Eve only emitted the leave message and is still able to read the chat and possibly write

messages.

This can be reproduced by joining the chat with two different instances, where one instance has slightly modified the

client-side JavaScript code similar to OTF-003 (page 23). The joined emit needs to be removed from the connect

event handler. Therefore the modified client is not listed in the userlist and has no active session. The modified non-listed

user also needs to change their username to Eve, which is not shown in the chatroom. The modified client then emits the

disconnect event and their connection is no longer usable.

This results in the leave message for Eve and the removal from the user-list but not in removal of the original session of

the Eve who announced to join the chat.

Retest:

The issue was resolved. The client side is no longer announcing their presence and this is tracked on the server side.

22 Radically Open Security B.V.

Public

Impact:

An adversary with access to the chat environment can spoof his leave event but still persist in the chat with access to all

sent messages and the possibility to write in the chat using OTF-003 (page 23).

Recommendation:

• Implement proper session handling

4.8 OTF-003 — [Chat] Message Sender Can Be Spoofed

Vulnerability ID: OTF-003 Status: Resolved

Vulnerability type: Improper Access Control

Threat level: Moderate

Description:

Anyone with access to the chat environment can write messages disguised as another chat participant.

Technical description:

Prerequisites:

• Alice and Bob are legitimate users

• A third user has access to the chat environment

Findings 23

This screenshot shows Alice (glimpse-depress) and Bob (blinker-doorpost) joined a chatroom and are the

only participants in the chatroom. Then the non-listed user squad-nursing writes a message in the chatroom without

being visible in the list of users. The sending of the message itself is not required but was done here to show the initial

access. The non-listed participant now renames himself to Bob and writes another message, seemingly coming from

Bob.

This can be reproduced by slightly modifying the client-side JavaScript. The joined emit needs to be removed from the

socket.on(connect) event handler. Therefore a client is not listed in the userlist and has no active session.

onionshare/cli/onionshare_cli/resources/static/js/chat.js#L16

socket.on('connect', function () {
 // socket.emit('joined', {});
 });

This can be done either via a crafted client or runtime modification of the chat.js script in the browser's internal

debugger.

It is still possible to call the text method and send text to the chat via websocket.

cli/onionshare_cli/web/chat_mode.py#L131

@self.web.socketio.on("text", namespace="/chat")
 def text(message):
 """Sent by a client when the user entered a new message.
 The message is sent to all people in the room."""
 emit(
 "message",
 {"username": session.get("name"), "msg": message["msg"]},
 room=session.get("room"),
)

24 Radically Open Security B.V.

Public

It is also possible to call the update_username function and choose an existing username from the chat.

cli/onionshare_cli/web/chat_mode.py#L141

@self.web.socketio.on("update_username", namespace="/chat")
 def update_username(message):
 """Sent by a client when the user updates their username.
 The message is sent to all people in the room."""
 current_name = session.get("name")
 if message.get("username", ""):
 session["name"] = message["username"]
 self.connected_users[
 self.connected_users.index(current_name)
] = session.get("name")
 emit(
 "status",
 {
 "msg": "{} has updated their username to: {}".format(
 current_name, session.get("name")
),
 "connected_users": self.connected_users,
 "old_name": current_name,
 "new_name": session.get("name"),
 },
 room=session.get("room"),
)

Afterwards the hidden user can send messages that are displayed as coming from the impersonated user. There is no

way to distinguish between the fake and original message.

Retest:

The issue was resolved. The authentication process no longer allows for multiple rooms and the session is bound to a

unique user name. User names are also sanitized see OTF-005 (page 18) to prevent non-unique chat usernames.

Impact:

An adversary with access to the chat environment can impersonate existing chat participants and write messages but

not read the conversation. The similar exploit described in OTF-004 (page 20) has only slightly more requirements

but also allows for reading.

Recommendation:

• Implement proper session handling

Findings 25

4.9 OTF-001 — [Desktop] The Path Parameter of the History Element is not
Sanitized

Vulnerability ID: OTF-001 Status: Resolved

Vulnerability type: Improper Input Sanitization

Threat level: Elevated

Description:

The path parameter of the requested URL is not sanitized before being passed to the QT frontend.

Technical description:

The path parameter is not sanitized before being passed to the constructor of the QLabel .

onionshare/desktop/src/onionshare/tab/mode/__init__.py#L499

def handle_request_individual_file_started(self, event):
 """
 Handle REQUEST_INDVIDIDUAL_FILES_STARTED event.
 Used in both Share and Website modes, so implemented here.
 """
 self.toggle_history.update_indicator(True)
 self.history.requests_count += 1
 self.history.update_requests()

 item = IndividualFileHistoryItem(self.common, event["data"], event["path"])
 self.history.add(event["data"]["id"], item)

onionshare/desktop/src/onionshare/tab/mode/history.py#L483

class IndividualFileHistoryItem(HistoryItem):
 def __init__(self, common, data, path):
 super(IndividualFileHistoryItem, self).__init__()
 self.status = HistoryItem.STATUS_STARTED
 self.common = common

 self.id = id
 self.path = path

 self.path_label = QtWidgets.QLabel(self.path)

https://doc.qt.io/qt-5/qlabel.html#details

Warning: When passing a QString to the constructor or calling setText(),
make sure to sanitize your input, as QLabel tries to guess whether it displays the text
as plain text or as rich text, a subset of HTML 4 markup. You may want to call setTextFormat()
explicitly, e.g. in case you expect the text to be in plain format but cannot control the text
 source

26 Radically Open Security B.V.

https://doc.qt.io/qt-5/qlabel.html#details

Public

(for instance when displaying data loaded from the Web).

This path is used in all components for displaying the server access history. This leads to a rendered HTML4 Subset (QT

RichText editor) in the Onionshare frontend.

In the following example an adversary injects a crafted image file into an Onionshare instance with receive mode and

renders it in the history component of the Onionshare application.

The only requirement is another visit to the shared site with the following parameter attached to the path of the URL:

<img src='
AAAAFElEQVQY02Nk+M+ABzAxMIxKYwIAQC0BEwZFOw4AAAAASUVORK5CYII=' />

This will be rendered as a green square in the history tab where the path value is supposed to be (the value itself is

shown at the bottom of the page).

Possible scenarios where this could lead to remote code execution would be a 0-day in libpng or other internal image

rendering (OTF-014 (page 12)) of the QT framework.

The QT documentation indicates that external files could be rendered, but we were unable to find a QT code path

allowing for it.

Retest:

Findings 27

The issue was resolved. The content type is now plain text only.

Impact:

An adversary with knowledge of the Onion service address in public mode or with authentication in private mode can

render arbitrary HTML (QT-HTML4 Subset) in the server desktop application. This requires the desktop application with

rendered history, therefore the impact is only elevated.

Recommendation:

• Manually define the text format of the QLabel via setTextFormat()

28 Radically Open Security B.V.

Public

5 Non-Findings

In this section we list some of the things that were tried but turned out to be dead ends.

5.1 NF-015 — [CLI] The File Names and Folder Names Are Properly Sanitized

The usage of werkzeug.secure_filename and subsequent usage of safe file name shows no weakness against

bogus, user-supplied file names. The folder names are not based on user-supplied input.

5.2 NF-010 — [CLI] The Frontend Is Not Vulnerable to Cross-Site Scripting

The frontend code found in chat.js, receive.js and chat.js properly escapes user-supplied content and

properly constructs dynamic HTML tags.

Non-Findings 29

6 Future Work

• Retest of findings

When mitigations for the vulnerabilities described in this report have been deployed, a repeat test should be

performed to ensure that they are effective and have not introduced other security problems.

• Regular security assessments

Security is an ongoing process and not a product, so we advise undertaking regular security assessments and

penetration tests, ideally prior to every major release or every quarter.

30 Radically Open Security B.V.

Public

7 Conclusion

We discovered 2 Elevated, 4 Low and 3 Moderate -severity issues during this penetration test.

The penetration test goals were the de-anonymization of users and code execution on any of the involved parties, which

was not found possible in the time allocated for the engagement. This is most likely due to the choice of offloading the

client interaction and authentication fully on the Tor-browser and relying on the security assumptions of a recent and

well maintained browser. Additionally, the usage of stable third party libraries for file and network handling, as well as

the separation of logic and user interface exposed only a minimal attack surface. User-controlled input is minimal and in

most cases sanitized or validated.

The direct exposure of the flask web server is one of the few issues that require more in-depth consideration and further

work to harden the application. Using the system's temporary storage for storing compressed versions of files to serve is

not the most streamlined way to approach fileserving, as it introduces file size limits and adds additional complexity, but

we did not find any security-relevant issues in this component.

The implemented QT frontend did have some potential high-impact issues, as arbitrary HTML (QT Subset) could be

rendered. This lead to discovery of a previously unknown vulnerability in the QT image handling process, and we do

believe capable and motivated adversaries could achieve code execution. This assumption is based on the well known

history of security-relevant bugs (CVE-2015-1860,CVE-2011-3194,CVE-2018-19873) in this component of the QT

framework.

Our general impression is that the Onionshare project has no major security vulnerabilities and can be used within the

properly documented boundaries. Sane default configurations were chosen and inexperienced users are warned about

the consequences of sensitive configuration changes.

We recommend fixing all of the issues found and then performing a retest in order to ensure that mitigations are effective

and that no new vulnerabilities have been introduced.

Finally, we want to emphasize that security is a process – this penetration test is just a one-time snapshot. Security

posture must be continuously evaluated and improved. Regular audits and ongoing improvements are essential in order

to maintain control of your corporate information security. We hope that this pentest report (and the detailed explanations

of our findings) will contribute meaningfully towards that end.

Please don't hesitate to let us know if you have any further questions, or need further clarification on anything in this

report.

Conclusion 31

Appendix 1 Testing team

Tillmann Weidinger Tillmann is a trained full-stack developer with a strong emphasis on security. He
started tinkering with computers in his early teens. Due to this he has multiple years
of experience in (reverse-)engineering hard- and software, software architecture and
breaking things. His main interests evolve around Secure Coding, Automation, Web
Applications, WiFi, DMA attacks and other topics between hard- and software with
a focus on red-teaming. He enjoys programming in multiple languages and recently
has chosen rust as his new favorite. He started studying IT-Security at Ruhr University
Bochum and switched to Computer Science at FH Bochum and will graduate in 2021.
Due to his broad experience in application development and system's security he can
quickly adapt to new IT-Security related topics and is always happy to learn lesser
known facts.

Philipp Koppe Philipp is a PhD candidate in IT-Security at Ruhr University Bochum, focusing on
reverse engineering and mitigating the exploitation of software vulnerabilities. He also
loves to build software security and anti-piracy solutions for embedded systems. He has
many years of experience in the security and engineering domain and is always happy
with building or breaking systems.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEO of Radically Open Security.

Front page image by Slava (https://secure.flickr.com/photos/slava/496607907/), "Mango HaX0ring",
Image styling by Patricia Piolon, https://creativecommons.org/licenses/by-sa/2.0/legalcode.

32 Radically Open Security B.V.

