// Copyright 2018 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "go_asm.h" #include "go_tls.h" #include "textflag.h" // void runtime·asmstdcall(void *c); TEXT runtime·asmstdcall(SB),NOSPLIT|NOFRAME,$0 MOVM.DB.W [R4, R5, R14], (R13) // push {r4, r5, lr} MOVW R0, R4 // put libcall * in r4 MOVW R13, R5 // save stack pointer in r5 // SetLastError(0) MOVW $0, R0 MRC 15, 0, R1, C13, C0, 2 MOVW R0, 0x34(R1) MOVW 8(R4), R12 // libcall->args // Do we have more than 4 arguments? MOVW 4(R4), R0 // libcall->n SUB.S $4, R0, R2 BLE loadregs // Reserve stack space for remaining args SUB R2<<2, R13 BIC $0x7, R13 // alignment for ABI // R0: count of arguments // R1: // R2: loop counter, from 0 to (n-4) // R3: scratch // R4: pointer to libcall struct // R12: libcall->args MOVW $0, R2 stackargs: ADD $4, R2, R3 // r3 = args[4 + i] MOVW R3<<2(R12), R3 MOVW R3, R2<<2(R13) // stack[i] = r3 ADD $1, R2 // i++ SUB $4, R0, R3 // while (i < (n - 4)) CMP R3, R2 BLT stackargs loadregs: CMP $3, R0 MOVW.GT 12(R12), R3 CMP $2, R0 MOVW.GT 8(R12), R2 CMP $1, R0 MOVW.GT 4(R12), R1 CMP $0, R0 MOVW.GT 0(R12), R0 BIC $0x7, R13 // alignment for ABI MOVW 0(R4), R12 // branch to libcall->fn BL (R12) MOVW R5, R13 // free stack space MOVW R0, 12(R4) // save return value to libcall->r1 MOVW R1, 16(R4) // GetLastError MRC 15, 0, R1, C13, C0, 2 MOVW 0x34(R1), R0 MOVW R0, 20(R4) // store in libcall->err MOVM.IA.W (R13), [R4, R5, R15] TEXT runtime·badsignal2(SB),NOSPLIT|NOFRAME,$0 MOVM.DB.W [R4, R14], (R13) // push {r4, lr} MOVW R13, R4 // save original stack pointer SUB $8, R13 // space for 2 variables BIC $0x7, R13 // alignment for ABI // stderr MOVW runtime·_GetStdHandle(SB), R1 MOVW $-12, R0 BL (R1) MOVW $runtime·badsignalmsg(SB), R1 // lpBuffer MOVW $runtime·badsignallen(SB), R2 // lpNumberOfBytesToWrite MOVW (R2), R2 ADD $0x4, R13, R3 // lpNumberOfBytesWritten MOVW $0, R12 // lpOverlapped MOVW R12, (R13) MOVW runtime·_WriteFile(SB), R12 BL (R12) MOVW R4, R13 // restore SP MOVM.IA.W (R13), [R4, R15] // pop {r4, pc} TEXT runtime·getlasterror(SB),NOSPLIT,$0 MRC 15, 0, R0, C13, C0, 2 MOVW 0x34(R0), R0 MOVW R0, ret+0(FP) RET TEXT runtime·setlasterror(SB),NOSPLIT|NOFRAME,$0 MRC 15, 0, R1, C13, C0, 2 MOVW R0, 0x34(R1) RET // Called by Windows as a Vectored Exception Handler (VEH). // First argument is pointer to struct containing // exception record and context pointers. // Handler function is stored in R1 // Return 0 for 'not handled', -1 for handled. // int32_t sigtramp( // PEXCEPTION_POINTERS ExceptionInfo, // func *GoExceptionHandler); TEXT sigtramp<>(SB),NOSPLIT|NOFRAME,$0 MOVM.DB.W [R0, R4-R11, R14], (R13) // push {r0, r4-r11, lr} (SP-=40) SUB $(8+20), R13 // reserve space for g, sp, and // parameters/retval to go call MOVW R0, R6 // Save param0 MOVW R1, R7 // Save param1 BL runtime·load_g(SB) CMP $0, g // is there a current g? BL.EQ runtime·badsignal2(SB) // save g and SP in case of stack switch MOVW R13, 24(R13) MOVW g, 20(R13) // do we need to switch to the g0 stack? MOVW g, R5 // R5 = g MOVW g_m(R5), R2 // R2 = m MOVW m_g0(R2), R4 // R4 = g0 CMP R5, R4 // if curg == g0 BEQ g0 // switch to g0 stack MOVW R4, g // g = g0 MOVW (g_sched+gobuf_sp)(g), R3 // R3 = g->gobuf.sp BL runtime·save_g(SB) // traceback will think that we've done PUSH and SUB // on this stack, so subtract them here to match. // (we need room for sighandler arguments anyway). // and re-save old SP for restoring later. SUB $(40+8+20), R3 MOVW R13, 24(R3) // save old stack pointer MOVW R3, R13 // switch stack g0: MOVW 0(R6), R2 // R2 = ExceptionPointers->ExceptionRecord MOVW 4(R6), R3 // R3 = ExceptionPointers->ContextRecord // make it look like mstart called us on g0, to stop traceback MOVW $runtime·mstart(SB), R4 MOVW R4, 0(R13) // Save link register for traceback MOVW R2, 4(R13) // Move arg0 (ExceptionRecord) into position MOVW R3, 8(R13) // Move arg1 (ContextRecord) into position MOVW R5, 12(R13) // Move arg2 (original g) into position BL (R7) // Call the go routine MOVW 16(R13), R4 // Fetch return value from stack // Compute the value of the g0 stack pointer after deallocating // this frame, then allocating 8 bytes. We may need to store // the resume SP and PC on the g0 stack to work around // control flow guard when we resume from the exception. ADD $(40+20), R13, R12 // switch back to original stack and g MOVW 24(R13), R13 MOVW 20(R13), g BL runtime·save_g(SB) done: MOVW R4, R0 // move retval into position ADD $(8 + 20), R13 // free locals MOVM.IA.W (R13), [R3, R4-R11, R14] // pop {r3, r4-r11, lr} // if return value is CONTINUE_SEARCH, do not set up control // flow guard workaround CMP $0, R0 BEQ return // Check if we need to set up the control flow guard workaround. // On Windows/ARM, the stack pointer must lie within system // stack limits when we resume from exception. // Store the resume SP and PC on the g0 stack, // and return to returntramp on the g0 stack. returntramp // pops the saved PC and SP from the g0 stack, resuming execution // at the desired location. // If returntramp has already been set up by a previous exception // handler, don't clobber the stored SP and PC on the stack. MOVW 4(R3), R3 // PEXCEPTION_POINTERS->Context MOVW 0x40(R3), R2 // load PC from context record MOVW $returntramp<>(SB), R1 CMP R1, R2 B.EQ return // do not clobber saved SP/PC // Save resume SP and PC on g0 stack MOVW 0x38(R3), R2 // load SP from context record MOVW R2, 0(R12) // Store resume SP on g0 stack MOVW 0x40(R3), R2 // load PC from context record MOVW R2, 4(R12) // Store resume PC on g0 stack // Set up context record to return to returntramp on g0 stack MOVW R12, 0x38(R3) // save g0 stack pointer // in context record MOVW $returntramp<>(SB), R2 // save resume address MOVW R2, 0x40(R3) // in context record return: B (R14) // return // // Trampoline to resume execution from exception handler. // This is part of the control flow guard workaround. // It switches stacks and jumps to the continuation address. // TEXT returntramp<>(SB),NOSPLIT|NOFRAME,$0 MOVM.IA (R13), [R13, R15] // ldm sp, [sp, pc] TEXT runtime·exceptiontramp(SB),NOSPLIT|NOFRAME,$0 MOVW $runtime·exceptionhandler(SB), R1 B sigtramp<>(SB) TEXT runtime·firstcontinuetramp(SB),NOSPLIT|NOFRAME,$0 MOVW $runtime·firstcontinuehandler(SB), R1 B sigtramp<>(SB) TEXT runtime·lastcontinuetramp(SB),NOSPLIT|NOFRAME,$0 MOVW $runtime·lastcontinuehandler(SB), R1 B sigtramp<>(SB) TEXT runtime·ctrlhandler(SB),NOSPLIT|NOFRAME,$0 MOVW $runtime·ctrlhandler1(SB), R1 B runtime·externalthreadhandler(SB) TEXT runtime·profileloop(SB),NOSPLIT|NOFRAME,$0 MOVW $runtime·profileloop1(SB), R1 B runtime·externalthreadhandler(SB) // int32 externalthreadhandler(uint32 arg, int (*func)(uint32)) // stack layout: // +----------------+ // | callee-save | // | registers | // +----------------+ // | m | // +----------------+ // 20| g | // +----------------+ // 16| func ptr (r1) | // +----------------+ // 12| argument (r0) | //---+----------------+ // 8 | param1 | // +----------------+ // 4 | param0 | // +----------------+ // 0 | retval | // +----------------+ // TEXT runtime·externalthreadhandler(SB),NOSPLIT|NOFRAME,$0 MOVM.DB.W [R4-R11, R14], (R13) // push {r4-r11, lr} SUB $(m__size + g__size + 20), R13 // space for locals MOVW R0, 12(R13) MOVW R1, 16(R13) // zero out m and g structures ADD $20, R13, R0 // compute pointer to g MOVW R0, 4(R13) MOVW $(m__size + g__size), R0 MOVW R0, 8(R13) BL runtime·memclrNoHeapPointers(SB) // initialize m and g structures ADD $20, R13, R2 // R2 = g ADD $(20 + g__size), R13, R3 // R3 = m MOVW R2, m_g0(R3) // m->g0 = g MOVW R3, g_m(R2) // g->m = m MOVW R2, m_curg(R3) // m->curg = g MOVW R2, g BL runtime·save_g(SB) // set up stackguard stuff MOVW R13, R0 MOVW R0, g_stack+stack_hi(g) SUB $(32*1024), R0 MOVW R0, (g_stack+stack_lo)(g) MOVW R0, g_stackguard0(g) MOVW R0, g_stackguard1(g) // move argument into position and call function MOVW 12(R13), R0 MOVW R0, 4(R13) MOVW 16(R13), R1 BL (R1) // clear g MOVW $0, g BL runtime·save_g(SB) MOVW 0(R13), R0 // load return value ADD $(m__size + g__size + 20), R13 // free locals MOVM.IA.W (R13), [R4-R11, R15] // pop {r4-r11, pc} GLOBL runtime·cbctxts(SB), NOPTR, $4 TEXT runtime·callbackasm1(SB),NOSPLIT|NOFRAME,$0 // On entry, the trampoline in zcallback_windows_arm.s left // the callback index in R12 (which is volatile in the C ABI). // Push callback register arguments r0-r3. We do this first so // they're contiguous with stack arguments. MOVM.DB.W [R0-R3], (R13) // Push C callee-save registers r4-r11 and lr. MOVM.DB.W [R4-R11, R14], (R13) SUB $(16 + callbackArgs__size), R13 // space for locals // Create a struct callbackArgs on our stack. MOVW R12, (16+callbackArgs_index)(R13) // callback index MOVW $(16+callbackArgs__size+4*9)(R13), R0 MOVW R0, (16+callbackArgs_args)(R13) // address of args vector MOVW $0, R0 MOVW R0, (16+callbackArgs_result)(R13) // result // Prepare for entry to Go. BL runtime·load_g(SB) // Call cgocallback, which will call callbackWrap(frame). MOVW $0, R0 MOVW R0, 12(R13) // context MOVW $16(R13), R1 // R1 = &callbackArgs{...} MOVW R1, 8(R13) // frame (address of callbackArgs) MOVW $·callbackWrap(SB), R1 MOVW R1, 4(R13) // PC of function to call BL runtime·cgocallback(SB) // Get callback result. MOVW (16+callbackArgs_result)(R13), R0 ADD $(16 + callbackArgs__size), R13 // free locals MOVM.IA.W (R13), [R4-R11, R12] // pop {r4-r11, lr=>r12} ADD $(4*4), R13 // skip r0-r3 B (R12) // return // uint32 tstart_stdcall(M *newm); TEXT runtime·tstart_stdcall(SB),NOSPLIT|NOFRAME,$0 MOVM.DB.W [R4-R11, R14], (R13) // push {r4-r11, lr} MOVW m_g0(R0), g MOVW R0, g_m(g) BL runtime·save_g(SB) // do per-thread TLS initialization BL init_thread_tls<>(SB) // Layout new m scheduler stack on os stack. MOVW R13, R0 MOVW R0, g_stack+stack_hi(g) SUB $(64*1024), R0 MOVW R0, (g_stack+stack_lo)(g) MOVW R0, g_stackguard0(g) MOVW R0, g_stackguard1(g) BL runtime·emptyfunc(SB) // fault if stack check is wrong BL runtime·mstart(SB) // Exit the thread. MOVW $0, R0 MOVM.IA.W (R13), [R4-R11, R15] // pop {r4-r11, pc} // onosstack calls fn on OS stack. // adapted from asm_arm.s : systemstack // func onosstack(fn unsafe.Pointer, arg uint32) TEXT runtime·onosstack(SB),NOSPLIT,$0 MOVW fn+0(FP), R5 // R5 = fn MOVW arg+4(FP), R6 // R6 = arg // This function can be called when there is no g, // for example, when we are handling a callback on a non-go thread. // In this case we're already on the system stack. CMP $0, g BEQ noswitch MOVW g_m(g), R1 // R1 = m MOVW m_gsignal(R1), R2 // R2 = gsignal CMP g, R2 B.EQ noswitch MOVW m_g0(R1), R2 // R2 = g0 CMP g, R2 B.EQ noswitch MOVW m_curg(R1), R3 CMP g, R3 B.EQ switch // Bad: g is not gsignal, not g0, not curg. What is it? // Hide call from linker nosplit analysis. MOVW $runtime·badsystemstack(SB), R0 BL (R0) B runtime·abort(SB) switch: // save our state in g->sched. Pretend to // be systemstack_switch if the G stack is scanned. MOVW $runtime·systemstack_switch(SB), R3 ADD $4, R3, R3 // get past push {lr} MOVW R3, (g_sched+gobuf_pc)(g) MOVW R13, (g_sched+gobuf_sp)(g) MOVW LR, (g_sched+gobuf_lr)(g) MOVW g, (g_sched+gobuf_g)(g) // switch to g0 MOVW R2, g MOVW (g_sched+gobuf_sp)(R2), R3 // make it look like mstart called systemstack on g0, to stop traceback SUB $4, R3, R3 MOVW $runtime·mstart(SB), R4 MOVW R4, 0(R3) MOVW R3, R13 // call target function MOVW R6, R0 // arg BL (R5) // switch back to g MOVW g_m(g), R1 MOVW m_curg(R1), g MOVW (g_sched+gobuf_sp)(g), R13 MOVW $0, R3 MOVW R3, (g_sched+gobuf_sp)(g) RET noswitch: // Using a tail call here cleans up tracebacks since we won't stop // at an intermediate systemstack. MOVW.P 4(R13), R14 // restore LR MOVW R6, R0 // arg B (R5) // Runs on OS stack. Duration (in 100ns units) is in R0. TEXT runtime·usleep2(SB),NOSPLIT|NOFRAME,$0 MOVM.DB.W [R4, R14], (R13) // push {r4, lr} MOVW R13, R4 // Save SP SUB $8, R13 // R13 = R13 - 8 BIC $0x7, R13 // Align SP for ABI RSB $0, R0, R3 // R3 = -R0 MOVW $0, R1 // R1 = FALSE (alertable) MOVW $-1, R0 // R0 = handle MOVW R13, R2 // R2 = pTime MOVW R3, 0(R2) // time_lo MOVW R0, 4(R2) // time_hi MOVW runtime·_NtWaitForSingleObject(SB), R3 BL (R3) MOVW R4, R13 // Restore SP MOVM.IA.W (R13), [R4, R15] // pop {R4, pc} // Runs on OS stack. Duration (in 100ns units) is in R0. // TODO: neeeds to be implemented properly. TEXT runtime·usleep2HighRes(SB),NOSPLIT|NOFRAME,$0 B runtime·abort(SB) // Runs on OS stack. TEXT runtime·switchtothread(SB),NOSPLIT|NOFRAME,$0 MOVM.DB.W [R4, R14], (R13) // push {R4, lr} MOVW R13, R4 BIC $0x7, R13 // alignment for ABI MOVW runtime·_SwitchToThread(SB), R0 BL (R0) MOVW R4, R13 // restore stack pointer MOVM.IA.W (R13), [R4, R15] // pop {R4, pc} TEXT ·publicationBarrier(SB),NOSPLIT|NOFRAME,$0-0 B runtime·armPublicationBarrier(SB) // never called (cgo not supported) TEXT runtime·read_tls_fallback(SB),NOSPLIT|NOFRAME,$0 MOVW $0xabcd, R0 MOVW R0, (R0) RET // See http://www.dcl.hpi.uni-potsdam.de/research/WRK/2007/08/getting-os-information-the-kuser_shared_data-structure/ // Must read hi1, then lo, then hi2. The snapshot is valid if hi1 == hi2. #define _INTERRUPT_TIME 0x7ffe0008 #define _SYSTEM_TIME 0x7ffe0014 #define time_lo 0 #define time_hi1 4 #define time_hi2 8 TEXT runtime·nanotime1(SB),NOSPLIT,$0-8 MOVW $0, R0 MOVB runtime·useQPCTime(SB), R0 CMP $0, R0 BNE useQPC MOVW $_INTERRUPT_TIME, R3 loop: MOVW time_hi1(R3), R1 MOVW time_lo(R3), R0 MOVW time_hi2(R3), R2 CMP R1, R2 BNE loop // wintime = R1:R0, multiply by 100 MOVW $100, R2 MULLU R0, R2, (R4, R3) // R4:R3 = R1:R0 * R2 MULA R1, R2, R4, R4 // wintime*100 = R4:R3 MOVW R3, ret_lo+0(FP) MOVW R4, ret_hi+4(FP) RET useQPC: B runtime·nanotimeQPC(SB) // tail call RET TEXT time·now(SB),NOSPLIT,$0-20 MOVW $0, R0 MOVB runtime·useQPCTime(SB), R0 CMP $0, R0 BNE useQPC MOVW $_INTERRUPT_TIME, R3 loop: MOVW time_hi1(R3), R1 MOVW time_lo(R3), R0 MOVW time_hi2(R3), R2 CMP R1, R2 BNE loop // wintime = R1:R0, multiply by 100 MOVW $100, R2 MULLU R0, R2, (R4, R3) // R4:R3 = R1:R0 * R2 MULA R1, R2, R4, R4 // wintime*100 = R4:R3 MOVW R3, mono+12(FP) MOVW R4, mono+16(FP) MOVW $_SYSTEM_TIME, R3 wall: MOVW time_hi1(R3), R1 MOVW time_lo(R3), R0 MOVW time_hi2(R3), R2 CMP R1, R2 BNE wall // w = R1:R0 in 100ns untis // convert to Unix epoch (but still 100ns units) #define delta 116444736000000000 SUB.S $(delta & 0xFFFFFFFF), R0 SBC $(delta >> 32), R1 // Convert to nSec MOVW $100, R2 MULLU R0, R2, (R4, R3) // R4:R3 = R1:R0 * R2 MULA R1, R2, R4, R4 // w = R2:R1 in nSec MOVW R3, R1 // R4:R3 -> R2:R1 MOVW R4, R2 // multiply nanoseconds by reciprocal of 10**9 (scaled by 2**61) // to get seconds (96 bit scaled result) MOVW $0x89705f41, R3 // 2**61 * 10**-9 MULLU R1,R3,(R6,R5) // R7:R6:R5 = R2:R1 * R3 MOVW $0,R7 MULALU R2,R3,(R7,R6) // unscale by discarding low 32 bits, shifting the rest by 29 MOVW R6>>29,R6 // R7:R6 = (R7:R6:R5 >> 61) ORR R7<<3,R6 MOVW R7>>29,R7 // subtract (10**9 * sec) from nsec to get nanosecond remainder MOVW $1000000000, R5 // 10**9 MULLU R6,R5,(R9,R8) // R9:R8 = R7:R6 * R5 MULA R7,R5,R9,R9 SUB.S R8,R1 // R2:R1 -= R9:R8 SBC R9,R2 // because reciprocal was a truncated repeating fraction, quotient // may be slightly too small -- adjust to make remainder < 10**9 CMP R5,R1 // if remainder > 10**9 SUB.HS R5,R1 // remainder -= 10**9 ADD.HS $1,R6 // sec += 1 MOVW R6,sec_lo+0(FP) MOVW R7,sec_hi+4(FP) MOVW R1,nsec+8(FP) RET useQPC: B runtime·nanotimeQPC(SB) // tail call RET // save_g saves the g register (R10) into thread local memory // so that we can call externally compiled // ARM code that will overwrite those registers. // NOTE: runtime.gogo assumes that R1 is preserved by this function. // runtime.mcall assumes this function only clobbers R0 and R11. // Returns with g in R0. // Save the value in the _TEB->TlsSlots array. // Effectively implements TlsSetValue(). // tls_g stores the TLS slot allocated TlsAlloc(). TEXT runtime·save_g(SB),NOSPLIT|NOFRAME,$0 MRC 15, 0, R0, C13, C0, 2 ADD $0xe10, R0 MOVW $runtime·tls_g(SB), R11 MOVW (R11), R11 MOVW g, R11<<2(R0) MOVW g, R0 // preserve R0 across call to setg<> RET // load_g loads the g register from thread-local memory, // for use after calling externally compiled // ARM code that overwrote those registers. // Get the value from the _TEB->TlsSlots array. // Effectively implements TlsGetValue(). TEXT runtime·load_g(SB),NOSPLIT|NOFRAME,$0 MRC 15, 0, R0, C13, C0, 2 ADD $0xe10, R0 MOVW $runtime·tls_g(SB), g MOVW (g), g MOVW g<<2(R0), g RET // This is called from rt0_go, which runs on the system stack // using the initial stack allocated by the OS. // It calls back into standard C using the BL below. // To do that, the stack pointer must be 8-byte-aligned. TEXT runtime·_initcgo(SB),NOSPLIT|NOFRAME,$0 MOVM.DB.W [R4, R14], (R13) // push {r4, lr} // Ensure stack is 8-byte aligned before calling C code MOVW R13, R4 BIC $0x7, R13 // Allocate a TLS slot to hold g across calls to external code MOVW $runtime·_TlsAlloc(SB), R0 MOVW (R0), R0 BL (R0) // Assert that slot is less than 64 so we can use _TEB->TlsSlots CMP $64, R0 MOVW $runtime·abort(SB), R1 BL.GE (R1) // Save Slot into tls_g MOVW $runtime·tls_g(SB), R1 MOVW R0, (R1) BL init_thread_tls<>(SB) MOVW R4, R13 MOVM.IA.W (R13), [R4, R15] // pop {r4, pc} // void init_thread_tls() // // Does per-thread TLS initialization. Saves a pointer to the TLS slot // holding G, in the current m. // // g->m->tls[0] = &_TEB->TlsSlots[tls_g] // // The purpose of this is to enable the profiling handler to get the // current g associated with the thread. We cannot use m->curg because curg // only holds the current user g. If the thread is executing system code or // external code, m->curg will be NULL. The thread's TLS slot always holds // the current g, so save a reference to this location so the profiling // handler can get the real g from the thread's m. // // Clobbers R0-R3 TEXT init_thread_tls<>(SB),NOSPLIT|NOFRAME,$0 // compute &_TEB->TlsSlots[tls_g] MRC 15, 0, R0, C13, C0, 2 ADD $0xe10, R0 MOVW $runtime·tls_g(SB), R1 MOVW (R1), R1 MOVW R1<<2, R1 ADD R1, R0 // save in g->m->tls[0] MOVW g_m(g), R1 MOVW R0, m_tls(R1) RET // Holds the TLS Slot, which was allocated by TlsAlloc() GLOBL runtime·tls_g+0(SB), NOPTR, $4