// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Garbage collector: type and heap bitmaps. // // Stack, data, and bss bitmaps // // Stack frames and global variables in the data and bss sections are described // by 1-bit bitmaps in which 0 means uninteresting and 1 means live pointer // to be visited during GC. The bits in each byte are consumed starting with // the low bit: 1<<0, 1<<1, and so on. // // Heap bitmap // // The heap bitmap comprises 2 bits for each pointer-sized word in the heap, // stored in the heapArena metadata backing each heap arena. // That is, if ha is the heapArena for the arena starting a start, // then ha.bitmap[0] holds the 2-bit entries for the four words start // through start+3*ptrSize, ha.bitmap[1] holds the entries for // start+4*ptrSize through start+7*ptrSize, and so on. // // In each 2-bit entry, the lower bit holds the same information as in the 1-bit // bitmaps: 0 means uninteresting and 1 means live pointer to be visited during GC. // The meaning of the high bit depends on the position of the word being described // in its allocated object. In all words *except* the second word, the // high bit indicates that the object is still being described. In // these words, if a bit pair with a high bit 0 is encountered, the // low bit can also be assumed to be 0, and the object description is // over. This 00 is called the ``dead'' encoding: it signals that the // rest of the words in the object are uninteresting to the garbage // collector. // // In the second word, the high bit is the GC ``checkmarked'' bit (see below). // // The 2-bit entries are split when written into the byte, so that the top half // of the byte contains 4 high bits and the bottom half contains 4 low (pointer) // bits. // This form allows a copy from the 1-bit to the 4-bit form to keep the // pointer bits contiguous, instead of having to space them out. // // The code makes use of the fact that the zero value for a heap bitmap // has no live pointer bit set and is (depending on position), not used, // not checkmarked, and is the dead encoding. // These properties must be preserved when modifying the encoding. // // The bitmap for noscan spans is not maintained. Code must ensure // that an object is scannable before consulting its bitmap by // checking either the noscan bit in the span or by consulting its // type's information. // // Checkmarks // // In a concurrent garbage collector, one worries about failing to mark // a live object due to mutations without write barriers or bugs in the // collector implementation. As a sanity check, the GC has a 'checkmark' // mode that retraverses the object graph with the world stopped, to make // sure that everything that should be marked is marked. // In checkmark mode, in the heap bitmap, the high bit of the 2-bit entry // for the second word of the object holds the checkmark bit. // When not in checkmark mode, this bit is set to 1. // // The smallest possible allocation is 8 bytes. On a 32-bit machine, that // means every allocated object has two words, so there is room for the // checkmark bit. On a 64-bit machine, however, the 8-byte allocation is // just one word, so the second bit pair is not available for encoding the // checkmark. However, because non-pointer allocations are combined // into larger 16-byte (maxTinySize) allocations, a plain 8-byte allocation // must be a pointer, so the type bit in the first word is not actually needed. // It is still used in general, except in checkmark the type bit is repurposed // as the checkmark bit and then reinitialized (to 1) as the type bit when // finished. // package runtime import ( "runtime/internal/atomic" "runtime/internal/sys" "unsafe" ) const ( bitPointer = 1 << 0 bitScan = 1 << 4 heapBitsShift = 1 // shift offset between successive bitPointer or bitScan entries wordsPerBitmapByte = 8 / 2 // heap words described by one bitmap byte // all scan/pointer bits in a byte bitScanAll = bitScan | bitScan< snelems { throw("s.freeindex > s.nelems") } aCache := s.allocCache bitIndex := sys.Ctz64(aCache) for bitIndex == 64 { // Move index to start of next cached bits. sfreeindex = (sfreeindex + 64) &^ (64 - 1) if sfreeindex >= snelems { s.freeindex = snelems return snelems } whichByte := sfreeindex / 8 // Refill s.allocCache with the next 64 alloc bits. s.refillAllocCache(whichByte) aCache = s.allocCache bitIndex = sys.Ctz64(aCache) // nothing available in cached bits // grab the next 8 bytes and try again. } result := sfreeindex + uintptr(bitIndex) if result >= snelems { s.freeindex = snelems return snelems } s.allocCache >>= uint(bitIndex + 1) sfreeindex = result + 1 if sfreeindex%64 == 0 && sfreeindex != snelems { // We just incremented s.freeindex so it isn't 0. // As each 1 in s.allocCache was encountered and used for allocation // it was shifted away. At this point s.allocCache contains all 0s. // Refill s.allocCache so that it corresponds // to the bits at s.allocBits starting at s.freeindex. whichByte := sfreeindex / 8 s.refillAllocCache(whichByte) } s.freeindex = sfreeindex return result } // isFree reports whether the index'th object in s is unallocated. // // The caller must ensure s.state is mSpanInUse, and there must have // been no preemption points since ensuring this (which could allow a // GC transition, which would allow the state to change). func (s *mspan) isFree(index uintptr) bool { if index < s.freeindex { return false } bytep, mask := s.allocBits.bitp(index) return *bytep&mask == 0 } func (s *mspan) objIndex(p uintptr) uintptr { byteOffset := p - s.base() if byteOffset == 0 { return 0 } if s.baseMask != 0 { // s.baseMask is non-0, elemsize is a power of two, so shift by s.divShift return byteOffset >> s.divShift } return uintptr(((uint64(byteOffset) >> s.divShift) * uint64(s.divMul)) >> s.divShift2) } func markBitsForAddr(p uintptr) markBits { s := spanOf(p) objIndex := s.objIndex(p) return s.markBitsForIndex(objIndex) } func (s *mspan) markBitsForIndex(objIndex uintptr) markBits { bytep, mask := s.gcmarkBits.bitp(objIndex) return markBits{bytep, mask, objIndex} } func (s *mspan) markBitsForBase() markBits { return markBits{(*uint8)(s.gcmarkBits), uint8(1), 0} } // isMarked reports whether mark bit m is set. func (m markBits) isMarked() bool { return *m.bytep&m.mask != 0 } // setMarked sets the marked bit in the markbits, atomically. func (m markBits) setMarked() { // Might be racing with other updates, so use atomic update always. // We used to be clever here and use a non-atomic update in certain // cases, but it's not worth the risk. atomic.Or8(m.bytep, m.mask) } // setMarkedNonAtomic sets the marked bit in the markbits, non-atomically. func (m markBits) setMarkedNonAtomic() { *m.bytep |= m.mask } // clearMarked clears the marked bit in the markbits, atomically. func (m markBits) clearMarked() { // Might be racing with other updates, so use atomic update always. // We used to be clever here and use a non-atomic update in certain // cases, but it's not worth the risk. atomic.And8(m.bytep, ^m.mask) } // markBitsForSpan returns the markBits for the span base address base. func markBitsForSpan(base uintptr) (mbits markBits) { mbits = markBitsForAddr(base) if mbits.mask != 1 { throw("markBitsForSpan: unaligned start") } return mbits } // advance advances the markBits to the next object in the span. func (m *markBits) advance() { if m.mask == 1<<7 { m.bytep = (*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(m.bytep)) + 1)) m.mask = 1 } else { m.mask = m.mask << 1 } m.index++ } // heapBitsForAddr returns the heapBits for the address addr. // The caller must ensure addr is in an allocated span. // In particular, be careful not to point past the end of an object. // // nosplit because it is used during write barriers and must not be preempted. //go:nosplit func heapBitsForAddr(addr uintptr) (h heapBits) { // 2 bits per word, 4 pairs per byte, and a mask is hard coded. arena := arenaIndex(addr) ha := mheap_.arenas[arena.l1()][arena.l2()] // The compiler uses a load for nil checking ha, but in this // case we'll almost never hit that cache line again, so it // makes more sense to do a value check. if ha == nil { // addr is not in the heap. Return nil heapBits, which // we expect to crash in the caller. return } h.bitp = &ha.bitmap[(addr/(sys.PtrSize*4))%heapArenaBitmapBytes] h.shift = uint32((addr / sys.PtrSize) & 3) h.arena = uint32(arena) h.last = &ha.bitmap[len(ha.bitmap)-1] return } // badPointer throws bad pointer in heap panic. func badPointer(s *mspan, p, refBase, refOff uintptr) { // Typically this indicates an incorrect use // of unsafe or cgo to store a bad pointer in // the Go heap. It may also indicate a runtime // bug. // // TODO(austin): We could be more aggressive // and detect pointers to unallocated objects // in allocated spans. printlock() print("runtime: pointer ", hex(p)) state := s.state.get() if state != mSpanInUse { print(" to unallocated span") } else { print(" to unused region of span") } print(" span.base()=", hex(s.base()), " span.limit=", hex(s.limit), " span.state=", state, "\n") if refBase != 0 { print("runtime: found in object at *(", hex(refBase), "+", hex(refOff), ")\n") gcDumpObject("object", refBase, refOff) } getg().m.traceback = 2 throw("found bad pointer in Go heap (incorrect use of unsafe or cgo?)") } // findObject returns the base address for the heap object containing // the address p, the object's span, and the index of the object in s. // If p does not point into a heap object, it returns base == 0. // // If p points is an invalid heap pointer and debug.invalidptr != 0, // findObject panics. // // refBase and refOff optionally give the base address of the object // in which the pointer p was found and the byte offset at which it // was found. These are used for error reporting. // // It is nosplit so it is safe for p to be a pointer to the current goroutine's stack. // Since p is a uintptr, it would not be adjusted if the stack were to move. //go:nosplit func findObject(p, refBase, refOff uintptr) (base uintptr, s *mspan, objIndex uintptr) { s = spanOf(p) // If s is nil, the virtual address has never been part of the heap. // This pointer may be to some mmap'd region, so we allow it. if s == nil { return } // If p is a bad pointer, it may not be in s's bounds. // // Check s.state to synchronize with span initialization // before checking other fields. See also spanOfHeap. if state := s.state.get(); state != mSpanInUse || p < s.base() || p >= s.limit { // Pointers into stacks are also ok, the runtime manages these explicitly. if state == mSpanManual { return } // The following ensures that we are rigorous about what data // structures hold valid pointers. if debug.invalidptr != 0 { badPointer(s, p, refBase, refOff) } return } // If this span holds object of a power of 2 size, just mask off the bits to // the interior of the object. Otherwise use the size to get the base. if s.baseMask != 0 { // optimize for power of 2 sized objects. base = s.base() base = base + (p-base)&uintptr(s.baseMask) objIndex = (base - s.base()) >> s.divShift // base = p & s.baseMask is faster for small spans, // but doesn't work for large spans. // Overall, it's faster to use the more general computation above. } else { base = s.base() if p-base >= s.elemsize { // n := (p - base) / s.elemsize, using division by multiplication objIndex = uintptr(p-base) >> s.divShift * uintptr(s.divMul) >> s.divShift2 base += objIndex * s.elemsize } } return } // next returns the heapBits describing the next pointer-sized word in memory. // That is, if h describes address p, h.next() describes p+ptrSize. // Note that next does not modify h. The caller must record the result. // // nosplit because it is used during write barriers and must not be preempted. //go:nosplit func (h heapBits) next() heapBits { if h.shift < 3*heapBitsShift { h.shift += heapBitsShift } else if h.bitp != h.last { h.bitp, h.shift = add1(h.bitp), 0 } else { // Move to the next arena. return h.nextArena() } return h } // nextArena advances h to the beginning of the next heap arena. // // This is a slow-path helper to next. gc's inliner knows that // heapBits.next can be inlined even though it calls this. This is // marked noinline so it doesn't get inlined into next and cause next // to be too big to inline. // //go:nosplit //go:noinline func (h heapBits) nextArena() heapBits { h.arena++ ai := arenaIdx(h.arena) l2 := mheap_.arenas[ai.l1()] if l2 == nil { // We just passed the end of the object, which // was also the end of the heap. Poison h. It // should never be dereferenced at this point. return heapBits{} } ha := l2[ai.l2()] if ha == nil { return heapBits{} } h.bitp, h.shift = &ha.bitmap[0], 0 h.last = &ha.bitmap[len(ha.bitmap)-1] return h } // forward returns the heapBits describing n pointer-sized words ahead of h in memory. // That is, if h describes address p, h.forward(n) describes p+n*ptrSize. // h.forward(1) is equivalent to h.next(), just slower. // Note that forward does not modify h. The caller must record the result. // bits returns the heap bits for the current word. //go:nosplit func (h heapBits) forward(n uintptr) heapBits { n += uintptr(h.shift) / heapBitsShift nbitp := uintptr(unsafe.Pointer(h.bitp)) + n/4 h.shift = uint32(n%4) * heapBitsShift if nbitp <= uintptr(unsafe.Pointer(h.last)) { h.bitp = (*uint8)(unsafe.Pointer(nbitp)) return h } // We're in a new heap arena. past := nbitp - (uintptr(unsafe.Pointer(h.last)) + 1) h.arena += 1 + uint32(past/heapArenaBitmapBytes) ai := arenaIdx(h.arena) if l2 := mheap_.arenas[ai.l1()]; l2 != nil && l2[ai.l2()] != nil { a := l2[ai.l2()] h.bitp = &a.bitmap[past%heapArenaBitmapBytes] h.last = &a.bitmap[len(a.bitmap)-1] } else { h.bitp, h.last = nil, nil } return h } // forwardOrBoundary is like forward, but stops at boundaries between // contiguous sections of the bitmap. It returns the number of words // advanced over, which will be <= n. func (h heapBits) forwardOrBoundary(n uintptr) (heapBits, uintptr) { maxn := 4 * ((uintptr(unsafe.Pointer(h.last)) + 1) - uintptr(unsafe.Pointer(h.bitp))) if n > maxn { n = maxn } return h.forward(n), n } // The caller can test morePointers and isPointer by &-ing with bitScan and bitPointer. // The result includes in its higher bits the bits for subsequent words // described by the same bitmap byte. // // nosplit because it is used during write barriers and must not be preempted. //go:nosplit func (h heapBits) bits() uint32 { // The (shift & 31) eliminates a test and conditional branch // from the generated code. return uint32(*h.bitp) >> (h.shift & 31) } // morePointers reports whether this word and all remaining words in this object // are scalars. // h must not describe the second word of the object. func (h heapBits) morePointers() bool { return h.bits()&bitScan != 0 } // isPointer reports whether the heap bits describe a pointer word. // // nosplit because it is used during write barriers and must not be preempted. //go:nosplit func (h heapBits) isPointer() bool { return h.bits()&bitPointer != 0 } // isCheckmarked reports whether the heap bits have the checkmarked bit set. // It must be told how large the object at h is, because the encoding of the // checkmark bit varies by size. // h must describe the initial word of the object. func (h heapBits) isCheckmarked(size uintptr) bool { if size == sys.PtrSize { return (*h.bitp>>h.shift)&bitPointer != 0 } // All multiword objects are 2-word aligned, // so we know that the initial word's 2-bit pair // and the second word's 2-bit pair are in the // same heap bitmap byte, *h.bitp. return (*h.bitp>>(heapBitsShift+h.shift))&bitScan != 0 } // setCheckmarked sets the checkmarked bit. // It must be told how large the object at h is, because the encoding of the // checkmark bit varies by size. // h must describe the initial word of the object. func (h heapBits) setCheckmarked(size uintptr) { if size == sys.PtrSize { atomic.Or8(h.bitp, bitPointer<> 1 } if bits&1 != 0 { dstx := (*uintptr)(unsafe.Pointer(dst + i)) srcx := (*uintptr)(unsafe.Pointer(src + i)) if !buf.putFast(*dstx, *srcx) { wbBufFlush(nil, 0) } } } } // The methods operating on spans all require that h has been returned // by heapBitsForSpan and that size, n, total are the span layout description // returned by the mspan's layout method. // If total > size*n, it means that there is extra leftover memory in the span, // usually due to rounding. // // TODO(rsc): Perhaps introduce a different heapBitsSpan type. // initSpan initializes the heap bitmap for a span. // It clears all checkmark bits. // If this is a span of pointer-sized objects, it initializes all // words to pointer/scan. // Otherwise, it initializes all words to scalar/dead. func (h heapBits) initSpan(s *mspan) { // Clear bits corresponding to objects. nw := (s.npages << _PageShift) / sys.PtrSize if nw%wordsPerBitmapByte != 0 { throw("initSpan: unaligned length") } if h.shift != 0 { throw("initSpan: unaligned base") } isPtrs := sys.PtrSize == 8 && s.elemsize == sys.PtrSize for nw > 0 { hNext, anw := h.forwardOrBoundary(nw) nbyte := anw / wordsPerBitmapByte if isPtrs { bitp := h.bitp for i := uintptr(0); i < nbyte; i++ { *bitp = bitPointerAll | bitScanAll bitp = add1(bitp) } } else { memclrNoHeapPointers(unsafe.Pointer(h.bitp), nbyte) } h = hNext nw -= anw } } // initCheckmarkSpan initializes a span for being checkmarked. // It clears the checkmark bits, which are set to 1 in normal operation. func (h heapBits) initCheckmarkSpan(size, n, total uintptr) { // The ptrSize == 8 is a compile-time constant false on 32-bit and eliminates this code entirely. if sys.PtrSize == 8 && size == sys.PtrSize { // Checkmark bit is type bit, bottom bit of every 2-bit entry. // Only possible on 64-bit system, since minimum size is 8. // Must clear type bit (checkmark bit) of every word. // The type bit is the lower of every two-bit pair. for i := uintptr(0); i < n; i += wordsPerBitmapByte { *h.bitp &^= bitPointerAll h = h.forward(wordsPerBitmapByte) } return } for i := uintptr(0); i < n; i++ { *h.bitp &^= bitScan << (heapBitsShift + h.shift) h = h.forward(size / sys.PtrSize) } } // clearCheckmarkSpan undoes all the checkmarking in a span. // The actual checkmark bits are ignored, so the only work to do // is to fix the pointer bits. (Pointer bits are ignored by scanobject // but consulted by typedmemmove.) func (h heapBits) clearCheckmarkSpan(size, n, total uintptr) { // The ptrSize == 8 is a compile-time constant false on 32-bit and eliminates this code entirely. if sys.PtrSize == 8 && size == sys.PtrSize { // Checkmark bit is type bit, bottom bit of every 2-bit entry. // Only possible on 64-bit system, since minimum size is 8. // Must clear type bit (checkmark bit) of every word. // The type bit is the lower of every two-bit pair. for i := uintptr(0); i < n; i += wordsPerBitmapByte { *h.bitp |= bitPointerAll h = h.forward(wordsPerBitmapByte) } } } // countAlloc returns the number of objects allocated in span s by // scanning the allocation bitmap. func (s *mspan) countAlloc() int { count := 0 bytes := divRoundUp(s.nelems, 8) // Iterate over each 8-byte chunk and count allocations // with an intrinsic. Note that newMarkBits guarantees that // gcmarkBits will be 8-byte aligned, so we don't have to // worry about edge cases, irrelevant bits will simply be zero. for i := uintptr(0); i < bytes; i += 8 { // Extract 64 bits from the byte pointer and get a OnesCount. // Note that the unsafe cast here doesn't preserve endianness, // but that's OK. We only care about how many bits are 1, not // about the order we discover them in. mrkBits := *(*uint64)(unsafe.Pointer(s.gcmarkBits.bytep(i))) count += sys.OnesCount64(mrkBits) } return count } // heapBitsSetType records that the new allocation [x, x+size) // holds in [x, x+dataSize) one or more values of type typ. // (The number of values is given by dataSize / typ.size.) // If dataSize < size, the fragment [x+dataSize, x+size) is // recorded as non-pointer data. // It is known that the type has pointers somewhere; // malloc does not call heapBitsSetType when there are no pointers, // because all free objects are marked as noscan during // heapBitsSweepSpan. // // There can only be one allocation from a given span active at a time, // and the bitmap for a span always falls on byte boundaries, // so there are no write-write races for access to the heap bitmap. // Hence, heapBitsSetType can access the bitmap without atomics. // // There can be read-write races between heapBitsSetType and things // that read the heap bitmap like scanobject. However, since // heapBitsSetType is only used for objects that have not yet been // made reachable, readers will ignore bits being modified by this // function. This does mean this function cannot transiently modify // bits that belong to neighboring objects. Also, on weakly-ordered // machines, callers must execute a store/store (publication) barrier // between calling this function and making the object reachable. func heapBitsSetType(x, size, dataSize uintptr, typ *_type) { const doubleCheck = false // slow but helpful; enable to test modifications to this code // dataSize is always size rounded up to the next malloc size class, // except in the case of allocating a defer block, in which case // size is sizeof(_defer{}) (at least 6 words) and dataSize may be // arbitrarily larger. // // The checks for size == sys.PtrSize and size == 2*sys.PtrSize can therefore // assume that dataSize == size without checking it explicitly. if sys.PtrSize == 8 && size == sys.PtrSize { // It's one word and it has pointers, it must be a pointer. // Since all allocated one-word objects are pointers // (non-pointers are aggregated into tinySize allocations), // initSpan sets the pointer bits for us. Nothing to do here. if doubleCheck { h := heapBitsForAddr(x) if !h.isPointer() { throw("heapBitsSetType: pointer bit missing") } if !h.morePointers() { throw("heapBitsSetType: scan bit missing") } } return } h := heapBitsForAddr(x) ptrmask := typ.gcdata // start of 1-bit pointer mask (or GC program, handled below) // Heap bitmap bits for 2-word object are only 4 bits, // so also shared with objects next to it. // This is called out as a special case primarily for 32-bit systems, // so that on 32-bit systems the code below can assume all objects // are 4-word aligned (because they're all 16-byte aligned). if size == 2*sys.PtrSize { if typ.size == sys.PtrSize { // We're allocating a block big enough to hold two pointers. // On 64-bit, that means the actual object must be two pointers, // or else we'd have used the one-pointer-sized block. // On 32-bit, however, this is the 8-byte block, the smallest one. // So it could be that we're allocating one pointer and this was // just the smallest block available. Distinguish by checking dataSize. // (In general the number of instances of typ being allocated is // dataSize/typ.size.) if sys.PtrSize == 4 && dataSize == sys.PtrSize { // 1 pointer object. On 32-bit machines clear the bit for the // unused second word. *h.bitp &^= (bitPointer | bitScan | ((bitPointer | bitScan) << heapBitsShift)) << h.shift *h.bitp |= (bitPointer | bitScan) << h.shift } else { // 2-element slice of pointer. *h.bitp |= (bitPointer | bitScan | bitPointer<= nw { goto Phase3 } *hbitp = uint8(hb) hbitp = add1(hbitp) b >>= 4 nb -= 4 case sys.PtrSize == 8 && h.shift == 2: // Ptrmask and heap bitmap are misaligned. // The bits for the first two words are in a byte shared // with another object, so we must be careful with the bits // already there. // We took care of 1-word and 2-word objects above, // so this is at least a 6-word object. hb = (b & (bitPointer | bitPointer<>= 2 nb -= 2 // Note: no bitScan for second word because that's // the checkmark. *hbitp &^= uint8((bitPointer | bitScan | (bitPointer << heapBitsShift)) << (2 * heapBitsShift)) *hbitp |= uint8(hb) hbitp = add1(hbitp) if w += 2; w >= nw { // We know that there is more data, because we handled 2-word objects above. // This must be at least a 6-word object. If we're out of pointer words, // mark no scan in next bitmap byte and finish. hb = 0 w += 4 goto Phase3 } } // Phase 2: Full bytes in bitmap, up to but not including write to last byte (full or partial) in bitmap. // The loop computes the bits for that last write but does not execute the write; // it leaves the bits in hb for processing by phase 3. // To avoid repeated adjustment of nb, we subtract out the 4 bits we're going to // use in the first half of the loop right now, and then we only adjust nb explicitly // if the 8 bits used by each iteration isn't balanced by 8 bits loaded mid-loop. nb -= 4 for { // Emit bitmap byte. // b has at least nb+4 bits, with one exception: // if w+4 >= nw, then b has only nw-w bits, // but we'll stop at the break and then truncate // appropriately in Phase 3. hb = b & bitPointerAll hb |= bitScanAll if w += 4; w >= nw { break } *hbitp = uint8(hb) hbitp = add1(hbitp) b >>= 4 // Load more bits. b has nb right now. if p != endp { // Fast path: keep reading from ptrmask. // nb unmodified: we just loaded 8 bits, // and the next iteration will consume 8 bits, // leaving us with the same nb the next time we're here. if nb < 8 { b |= uintptr(*p) << nb p = add1(p) } else { // Reduce the number of bits in b. // This is important if we skipped // over a scalar tail, since nb could // be larger than the bit width of b. nb -= 8 } } else if p == nil { // Almost as fast path: track bit count and refill from pbits. // For short repetitions. if nb < 8 { b |= pbits << nb nb += endnb } nb -= 8 // for next iteration } else { // Slow path: reached end of ptrmask. // Process final partial byte and rewind to start. b |= uintptr(*p) << nb nb += endnb if nb < 8 { b |= uintptr(*ptrmask) << nb p = add1(ptrmask) } else { nb -= 8 p = ptrmask } } // Emit bitmap byte. hb = b & bitPointerAll hb |= bitScanAll if w += 4; w >= nw { break } *hbitp = uint8(hb) hbitp = add1(hbitp) b >>= 4 } Phase3: // Phase 3: Write last byte or partial byte and zero the rest of the bitmap entries. if w > nw { // Counting the 4 entries in hb not yet written to memory, // there are more entries than possible pointer slots. // Discard the excess entries (can't be more than 3). mask := uintptr(1)<<(4-(w-nw)) - 1 hb &= mask | mask<<4 // apply mask to both pointer bits and scan bits } // Change nw from counting possibly-pointer words to total words in allocation. nw = size / sys.PtrSize // Write whole bitmap bytes. // The first is hb, the rest are zero. if w <= nw { *hbitp = uint8(hb) hbitp = add1(hbitp) hb = 0 // for possible final half-byte below for w += 4; w <= nw; w += 4 { *hbitp = 0 hbitp = add1(hbitp) } } // Write final partial bitmap byte if any. // We know w > nw, or else we'd still be in the loop above. // It can be bigger only due to the 4 entries in hb that it counts. // If w == nw+4 then there's nothing left to do: we wrote all nw entries // and can discard the 4 sitting in hb. // But if w == nw+2, we need to write first two in hb. // The byte is shared with the next object, so be careful with // existing bits. if w == nw+2 { *hbitp = *hbitp&^(bitPointer|bitScan|(bitPointer|bitScan)<= 4 { // This loop processes four words at a time, // so round cnw down accordingly. hNext, words := h.forwardOrBoundary(cnw / 4 * 4) // n is the number of bitmap bytes to copy. n := words / 4 memmove(unsafe.Pointer(h.bitp), unsafe.Pointer(src), n) cnw -= words h = hNext src = addb(src, n) } if doubleCheck && h.shift != 0 { print("cnw=", cnw, " h.shift=", h.shift, "\n") throw("bad shift after block copy") } // Handle the last byte if it's shared. if cnw == 2 { *h.bitp = *h.bitp&^(bitPointer|bitScan|(bitPointer|bitScan)< x+size { throw("copy exceeded object size") } if !(cnw == 0 || cnw == 2) { print("x=", x, " size=", size, " cnw=", cnw, "\n") throw("bad number of remaining words") } // Set up hbitp so doubleCheck code below can check it. hbitp = h.bitp } // Zero the object where we wrote the bitmap. memclrNoHeapPointers(unsafe.Pointer(x), uintptr(unsafe.Pointer(src))-x) } // Double check the whole bitmap. if doubleCheck { // x+size may not point to the heap, so back up one // word and then call next(). end := heapBitsForAddr(x + size - sys.PtrSize).next() endAI := arenaIdx(end.arena) if !outOfPlace && (end.bitp == nil || (end.shift == 0 && end.bitp == &mheap_.arenas[endAI.l1()][endAI.l2()].bitmap[0])) { // The unrolling code above walks hbitp just // past the bitmap without moving to the next // arena. Synthesize this for end.bitp. end.arena-- endAI = arenaIdx(end.arena) end.bitp = addb(&mheap_.arenas[endAI.l1()][endAI.l2()].bitmap[0], heapArenaBitmapBytes) end.last = nil } if typ.kind&kindGCProg == 0 && (hbitp != end.bitp || (w == nw+2) != (end.shift == 2)) { println("ended at wrong bitmap byte for", typ.string(), "x", dataSize/typ.size) print("typ.size=", typ.size, " typ.ptrdata=", typ.ptrdata, " dataSize=", dataSize, " size=", size, "\n") print("w=", w, " nw=", nw, " b=", hex(b), " nb=", nb, " hb=", hex(hb), "\n") h0 := heapBitsForAddr(x) print("initial bits h0.bitp=", h0.bitp, " h0.shift=", h0.shift, "\n") print("ended at hbitp=", hbitp, " but next starts at bitp=", end.bitp, " shift=", end.shift, "\n") throw("bad heapBitsSetType") } // Double-check that bits to be written were written correctly. // Does not check that other bits were not written, unfortunately. h := heapBitsForAddr(x) nptr := typ.ptrdata / sys.PtrSize ndata := typ.size / sys.PtrSize count := dataSize / typ.size totalptr := ((count-1)*typ.size + typ.ptrdata) / sys.PtrSize for i := uintptr(0); i < size/sys.PtrSize; i++ { j := i % ndata var have, want uint8 have = (*h.bitp >> h.shift) & (bitPointer | bitScan) if i >= totalptr { want = 0 // deadmarker if typ.kind&kindGCProg != 0 && i < (totalptr+3)/4*4 { want = bitScan } } else { if j < nptr && (*addb(ptrmask, j/8)>>(j%8))&1 != 0 { want |= bitPointer } if i != 1 { want |= bitScan } else { have &^= bitScan } } if have != want { println("mismatch writing bits for", typ.string(), "x", dataSize/typ.size) print("typ.size=", typ.size, " typ.ptrdata=", typ.ptrdata, " dataSize=", dataSize, " size=", size, "\n") print("kindGCProg=", typ.kind&kindGCProg != 0, " outOfPlace=", outOfPlace, "\n") print("w=", w, " nw=", nw, " b=", hex(b), " nb=", nb, " hb=", hex(hb), "\n") h0 := heapBitsForAddr(x) print("initial bits h0.bitp=", h0.bitp, " h0.shift=", h0.shift, "\n") print("current bits h.bitp=", h.bitp, " h.shift=", h.shift, " *h.bitp=", hex(*h.bitp), "\n") print("ptrmask=", ptrmask, " p=", p, " endp=", endp, " endnb=", endnb, " pbits=", hex(pbits), " b=", hex(b), " nb=", nb, "\n") println("at word", i, "offset", i*sys.PtrSize, "have", hex(have), "want", hex(want)) if typ.kind&kindGCProg != 0 { println("GC program:") dumpGCProg(addb(typ.gcdata, 4)) } throw("bad heapBitsSetType") } h = h.next() } if ptrmask == debugPtrmask.data { unlock(&debugPtrmask.lock) } } } var debugPtrmask struct { lock mutex data *byte } // heapBitsSetTypeGCProg implements heapBitsSetType using a GC program. // progSize is the size of the memory described by the program. // elemSize is the size of the element that the GC program describes (a prefix of). // dataSize is the total size of the intended data, a multiple of elemSize. // allocSize is the total size of the allocated memory. // // GC programs are only used for large allocations. // heapBitsSetType requires that allocSize is a multiple of 4 words, // so that the relevant bitmap bytes are not shared with surrounding // objects. func heapBitsSetTypeGCProg(h heapBits, progSize, elemSize, dataSize, allocSize uintptr, prog *byte) { if sys.PtrSize == 8 && allocSize%(4*sys.PtrSize) != 0 { // Alignment will be wrong. throw("heapBitsSetTypeGCProg: small allocation") } var totalBits uintptr if elemSize == dataSize { totalBits = runGCProg(prog, nil, h.bitp, 2) if totalBits*sys.PtrSize != progSize { println("runtime: heapBitsSetTypeGCProg: total bits", totalBits, "but progSize", progSize) throw("heapBitsSetTypeGCProg: unexpected bit count") } } else { count := dataSize / elemSize // Piece together program trailer to run after prog that does: // literal(0) // repeat(1, elemSize-progSize-1) // zeros to fill element size // repeat(elemSize, count-1) // repeat that element for count // This zero-pads the data remaining in the first element and then // repeats that first element to fill the array. var trailer [40]byte // 3 varints (max 10 each) + some bytes i := 0 if n := elemSize/sys.PtrSize - progSize/sys.PtrSize; n > 0 { // literal(0) trailer[i] = 0x01 i++ trailer[i] = 0 i++ if n > 1 { // repeat(1, n-1) trailer[i] = 0x81 i++ n-- for ; n >= 0x80; n >>= 7 { trailer[i] = byte(n | 0x80) i++ } trailer[i] = byte(n) i++ } } // repeat(elemSize/ptrSize, count-1) trailer[i] = 0x80 i++ n := elemSize / sys.PtrSize for ; n >= 0x80; n >>= 7 { trailer[i] = byte(n | 0x80) i++ } trailer[i] = byte(n) i++ n = count - 1 for ; n >= 0x80; n >>= 7 { trailer[i] = byte(n | 0x80) i++ } trailer[i] = byte(n) i++ trailer[i] = 0 i++ runGCProg(prog, &trailer[0], h.bitp, 2) // Even though we filled in the full array just now, // record that we only filled in up to the ptrdata of the // last element. This will cause the code below to // memclr the dead section of the final array element, // so that scanobject can stop early in the final element. totalBits = (elemSize*(count-1) + progSize) / sys.PtrSize } endProg := unsafe.Pointer(addb(h.bitp, (totalBits+3)/4)) endAlloc := unsafe.Pointer(addb(h.bitp, allocSize/sys.PtrSize/wordsPerBitmapByte)) memclrNoHeapPointers(endProg, uintptr(endAlloc)-uintptr(endProg)) } // progToPointerMask returns the 1-bit pointer mask output by the GC program prog. // size the size of the region described by prog, in bytes. // The resulting bitvector will have no more than size/sys.PtrSize bits. func progToPointerMask(prog *byte, size uintptr) bitvector { n := (size/sys.PtrSize + 7) / 8 x := (*[1 << 30]byte)(persistentalloc(n+1, 1, &memstats.buckhash_sys))[:n+1] x[len(x)-1] = 0xa1 // overflow check sentinel n = runGCProg(prog, nil, &x[0], 1) if x[len(x)-1] != 0xa1 { throw("progToPointerMask: overflow") } return bitvector{int32(n), &x[0]} } // Packed GC pointer bitmaps, aka GC programs. // // For large types containing arrays, the type information has a // natural repetition that can be encoded to save space in the // binary and in the memory representation of the type information. // // The encoding is a simple Lempel-Ziv style bytecode machine // with the following instructions: // // 00000000: stop // 0nnnnnnn: emit n bits copied from the next (n+7)/8 bytes // 10000000 n c: repeat the previous n bits c times; n, c are varints // 1nnnnnnn c: repeat the previous n bits c times; c is a varint // runGCProg executes the GC program prog, and then trailer if non-nil, // writing to dst with entries of the given size. // If size == 1, dst is a 1-bit pointer mask laid out moving forward from dst. // If size == 2, dst is the 2-bit heap bitmap, and writes move backward // starting at dst (because the heap bitmap does). In this case, the caller guarantees // that only whole bytes in dst need to be written. // // runGCProg returns the number of 1- or 2-bit entries written to memory. func runGCProg(prog, trailer, dst *byte, size int) uintptr { dstStart := dst // Bits waiting to be written to memory. var bits uintptr var nbits uintptr p := prog Run: for { // Flush accumulated full bytes. // The rest of the loop assumes that nbits <= 7. for ; nbits >= 8; nbits -= 8 { if size == 1 { *dst = uint8(bits) dst = add1(dst) bits >>= 8 } else { v := bits&bitPointerAll | bitScanAll *dst = uint8(v) dst = add1(dst) bits >>= 4 v = bits&bitPointerAll | bitScanAll *dst = uint8(v) dst = add1(dst) bits >>= 4 } } // Process one instruction. inst := uintptr(*p) p = add1(p) n := inst & 0x7F if inst&0x80 == 0 { // Literal bits; n == 0 means end of program. if n == 0 { // Program is over; continue in trailer if present. if trailer != nil { p = trailer trailer = nil continue } break Run } nbyte := n / 8 for i := uintptr(0); i < nbyte; i++ { bits |= uintptr(*p) << nbits p = add1(p) if size == 1 { *dst = uint8(bits) dst = add1(dst) bits >>= 8 } else { v := bits&0xf | bitScanAll *dst = uint8(v) dst = add1(dst) bits >>= 4 v = bits&0xf | bitScanAll *dst = uint8(v) dst = add1(dst) bits >>= 4 } } if n %= 8; n > 0 { bits |= uintptr(*p) << nbits p = add1(p) nbits += n } continue Run } // Repeat. If n == 0, it is encoded in a varint in the next bytes. if n == 0 { for off := uint(0); ; off += 7 { x := uintptr(*p) p = add1(p) n |= (x & 0x7F) << off if x&0x80 == 0 { break } } } // Count is encoded in a varint in the next bytes. c := uintptr(0) for off := uint(0); ; off += 7 { x := uintptr(*p) p = add1(p) c |= (x & 0x7F) << off if x&0x80 == 0 { break } } c *= n // now total number of bits to copy // If the number of bits being repeated is small, load them // into a register and use that register for the entire loop // instead of repeatedly reading from memory. // Handling fewer than 8 bits here makes the general loop simpler. // The cutoff is sys.PtrSize*8 - 7 to guarantee that when we add // the pattern to a bit buffer holding at most 7 bits (a partial byte) // it will not overflow. src := dst const maxBits = sys.PtrSize*8 - 7 if n <= maxBits { // Start with bits in output buffer. pattern := bits npattern := nbits // If we need more bits, fetch them from memory. if size == 1 { src = subtract1(src) for npattern < n { pattern <<= 8 pattern |= uintptr(*src) src = subtract1(src) npattern += 8 } } else { src = subtract1(src) for npattern < n { pattern <<= 4 pattern |= uintptr(*src) & 0xf src = subtract1(src) npattern += 4 } } // We started with the whole bit output buffer, // and then we loaded bits from whole bytes. // Either way, we might now have too many instead of too few. // Discard the extra. if npattern > n { pattern >>= npattern - n npattern = n } // Replicate pattern to at most maxBits. if npattern == 1 { // One bit being repeated. // If the bit is 1, make the pattern all 1s. // If the bit is 0, the pattern is already all 0s, // but we can claim that the number of bits // in the word is equal to the number we need (c), // because right shift of bits will zero fill. if pattern == 1 { pattern = 1<8 bits, there will be full bytes to flush // on each iteration. for ; c >= npattern; c -= npattern { bits |= pattern << nbits nbits += npattern if size == 1 { for nbits >= 8 { *dst = uint8(bits) dst = add1(dst) bits >>= 8 nbits -= 8 } } else { for nbits >= 4 { *dst = uint8(bits&0xf | bitScanAll) dst = add1(dst) bits >>= 4 nbits -= 4 } } } // Add final fragment to bit buffer. if c > 0 { pattern &= 1< nbits because n > maxBits and nbits <= 7 if size == 1 { // Leading src fragment. src = subtractb(src, (off+7)/8) if frag := off & 7; frag != 0 { bits |= uintptr(*src) >> (8 - frag) << nbits src = add1(src) nbits += frag c -= frag } // Main loop: load one byte, write another. // The bits are rotating through the bit buffer. for i := c / 8; i > 0; i-- { bits |= uintptr(*src) << nbits src = add1(src) *dst = uint8(bits) dst = add1(dst) bits >>= 8 } // Final src fragment. if c %= 8; c > 0 { bits |= (uintptr(*src) & (1<> (4 - frag) << nbits src = add1(src) nbits += frag c -= frag } // Main loop: load one byte, write another. // The bits are rotating through the bit buffer. for i := c / 4; i > 0; i-- { bits |= (uintptr(*src) & 0xf) << nbits src = add1(src) *dst = uint8(bits&0xf | bitScanAll) dst = add1(dst) bits >>= 4 } // Final src fragment. if c %= 4; c > 0 { bits |= (uintptr(*src) & (1< 0; nbits -= 8 { *dst = uint8(bits) dst = add1(dst) bits >>= 8 } } else { totalBits = (uintptr(unsafe.Pointer(dst))-uintptr(unsafe.Pointer(dstStart)))*4 + nbits nbits += -nbits & 3 for ; nbits > 0; nbits -= 4 { v := bits&0xf | bitScanAll *dst = uint8(v) dst = add1(dst) bits >>= 4 } } return totalBits } // materializeGCProg allocates space for the (1-bit) pointer bitmask // for an object of size ptrdata. Then it fills that space with the // pointer bitmask specified by the program prog. // The bitmask starts at s.startAddr. // The result must be deallocated with dematerializeGCProg. func materializeGCProg(ptrdata uintptr, prog *byte) *mspan { // Each word of ptrdata needs one bit in the bitmap. bitmapBytes := divRoundUp(ptrdata, 8*sys.PtrSize) // Compute the number of pages needed for bitmapBytes. pages := divRoundUp(bitmapBytes, pageSize) s := mheap_.allocManual(pages, &memstats.gc_sys) runGCProg(addb(prog, 4), nil, (*byte)(unsafe.Pointer(s.startAddr)), 1) return s } func dematerializeGCProg(s *mspan) { mheap_.freeManual(s, &memstats.gc_sys) } func dumpGCProg(p *byte) { nptr := 0 for { x := *p p = add1(p) if x == 0 { print("\t", nptr, " end\n") break } if x&0x80 == 0 { print("\t", nptr, " lit ", x, ":") n := int(x+7) / 8 for i := 0; i < n; i++ { print(" ", hex(*p)) p = add1(p) } print("\n") nptr += int(x) } else { nbit := int(x &^ 0x80) if nbit == 0 { for nb := uint(0); ; nb += 7 { x := *p p = add1(p) nbit |= int(x&0x7f) << nb if x&0x80 == 0 { break } } } count := 0 for nb := uint(0); ; nb += 7 { x := *p p = add1(p) count |= int(x&0x7f) << nb if x&0x80 == 0 { break } } print("\t", nptr, " repeat ", nbit, " × ", count, "\n") nptr += nbit * count } } } // Testing. func getgcmaskcb(frame *stkframe, ctxt unsafe.Pointer) bool { target := (*stkframe)(ctxt) if frame.sp <= target.sp && target.sp < frame.varp { *target = *frame return false } return true } // gcbits returns the GC type info for x, for testing. // The result is the bitmap entries (0 or 1), one entry per byte. //go:linkname reflect_gcbits reflect.gcbits func reflect_gcbits(x interface{}) []byte { ret := getgcmask(x) typ := (*ptrtype)(unsafe.Pointer(efaceOf(&x)._type)).elem nptr := typ.ptrdata / sys.PtrSize for uintptr(len(ret)) > nptr && ret[len(ret)-1] == 0 { ret = ret[:len(ret)-1] } return ret } // Returns GC type info for the pointer stored in ep for testing. // If ep points to the stack, only static live information will be returned // (i.e. not for objects which are only dynamically live stack objects). func getgcmask(ep interface{}) (mask []byte) { e := *efaceOf(&ep) p := e.data t := e._type // data or bss for _, datap := range activeModules() { // data if datap.data <= uintptr(p) && uintptr(p) < datap.edata { bitmap := datap.gcdatamask.bytedata n := (*ptrtype)(unsafe.Pointer(t)).elem.size mask = make([]byte, n/sys.PtrSize) for i := uintptr(0); i < n; i += sys.PtrSize { off := (uintptr(p) + i - datap.data) / sys.PtrSize mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 } return } // bss if datap.bss <= uintptr(p) && uintptr(p) < datap.ebss { bitmap := datap.gcbssmask.bytedata n := (*ptrtype)(unsafe.Pointer(t)).elem.size mask = make([]byte, n/sys.PtrSize) for i := uintptr(0); i < n; i += sys.PtrSize { off := (uintptr(p) + i - datap.bss) / sys.PtrSize mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 } return } } // heap if base, s, _ := findObject(uintptr(p), 0, 0); base != 0 { hbits := heapBitsForAddr(base) n := s.elemsize mask = make([]byte, n/sys.PtrSize) for i := uintptr(0); i < n; i += sys.PtrSize { if hbits.isPointer() { mask[i/sys.PtrSize] = 1 } if i != 1*sys.PtrSize && !hbits.morePointers() { mask = mask[:i/sys.PtrSize] break } hbits = hbits.next() } return } // stack if _g_ := getg(); _g_.m.curg.stack.lo <= uintptr(p) && uintptr(p) < _g_.m.curg.stack.hi { var frame stkframe frame.sp = uintptr(p) _g_ := getg() gentraceback(_g_.m.curg.sched.pc, _g_.m.curg.sched.sp, 0, _g_.m.curg, 0, nil, 1000, getgcmaskcb, noescape(unsafe.Pointer(&frame)), 0) if frame.fn.valid() { locals, _, _ := getStackMap(&frame, nil, false) if locals.n == 0 { return } size := uintptr(locals.n) * sys.PtrSize n := (*ptrtype)(unsafe.Pointer(t)).elem.size mask = make([]byte, n/sys.PtrSize) for i := uintptr(0); i < n; i += sys.PtrSize { off := (uintptr(p) + i - frame.varp + size) / sys.PtrSize mask[i/sys.PtrSize] = locals.ptrbit(off) } } return } // otherwise, not something the GC knows about. // possibly read-only data, like malloc(0). // must not have pointers return }