// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Use an external test to avoid os/exec -> net/http -> crypto/x509 -> os/exec // circular dependency on non-cgo darwin. package exec_test import ( "bufio" "bytes" "context" "flag" "fmt" "internal/poll" "internal/testenv" "io" "log" "net" "net/http" "net/http/httptest" "os" "os/exec" "os/exec/internal/fdtest" "path/filepath" "reflect" "runtime" "strconv" "strings" "sync" "testing" "time" ) // haveUnexpectedFDs is set at init time to report whether any file descriptors // were open at program start. var haveUnexpectedFDs bool func init() { if os.Getenv("GO_EXEC_TEST_PID") != "" { return } if runtime.GOOS == "windows" { return } for fd := uintptr(3); fd <= 100; fd++ { if poll.IsPollDescriptor(fd) { continue } if fdtest.Exists(fd) { haveUnexpectedFDs = true return } } } // TestMain allows the test binary to impersonate many other binaries, // some of which may manipulate os.Stdin, os.Stdout, and/or os.Stderr // (and thus cannot run as an ordinary Test function, since the testing // package monkey-patches those variables before running tests). func TestMain(m *testing.M) { flag.Parse() pid := os.Getpid() if os.Getenv("GO_EXEC_TEST_PID") == "" { os.Setenv("GO_EXEC_TEST_PID", strconv.Itoa(pid)) code := m.Run() if code == 0 && flag.Lookup("test.run").Value.String() == "" && flag.Lookup("test.list").Value.String() == "" { for cmd := range helperCommands { if _, ok := helperCommandUsed.Load(cmd); !ok { fmt.Fprintf(os.Stderr, "helper command unused: %q\n", cmd) code = 1 } } } os.Exit(code) } args := flag.Args() if len(args) == 0 { fmt.Fprintf(os.Stderr, "No command\n") os.Exit(2) } cmd, args := args[0], args[1:] f, ok := helperCommands[cmd] if !ok { fmt.Fprintf(os.Stderr, "Unknown command %q\n", cmd) os.Exit(2) } f(args...) os.Exit(0) } // registerHelperCommand registers a command that the test process can impersonate. // A command should be registered in the same source file in which it is used. // If all tests are run and pass, all registered commands must be used. // (This prevents stale commands from accreting if tests are removed or // refactored over time.) func registerHelperCommand(name string, f func(...string)) { if helperCommands[name] != nil { panic("duplicate command registered: " + name) } helperCommands[name] = f } // maySkipHelperCommand records that the test that uses the named helper command // was invoked, but may call Skip on the test before actually calling // helperCommand. func maySkipHelperCommand(name string) { helperCommandUsed.Store(name, true) } // helperCommand returns an exec.Cmd that will run the named helper command. func helperCommand(t *testing.T, name string, args ...string) *exec.Cmd { t.Helper() return helperCommandContext(t, nil, name, args...) } // helperCommandContext is like helperCommand, but also accepts a Context under // which to run the command. func helperCommandContext(t *testing.T, ctx context.Context, name string, args ...string) (cmd *exec.Cmd) { helperCommandUsed.LoadOrStore(name, true) t.Helper() testenv.MustHaveExec(t) cs := append([]string{name}, args...) if ctx != nil { cmd = exec.CommandContext(ctx, exePath(t), cs...) } else { cmd = exec.Command(exePath(t), cs...) } return cmd } // exePath returns the path to the running executable. func exePath(t testing.TB) string { exeOnce.Do(func() { // Use os.Executable instead of os.Args[0] in case the caller modifies // cmd.Dir: if the test binary is invoked like "./exec.test", it should // not fail spuriously. exeOnce.path, exeOnce.err = os.Executable() }) if exeOnce.err != nil { if t == nil { panic(exeOnce.err) } t.Fatal(exeOnce.err) } return exeOnce.path } var exeOnce struct { path string err error sync.Once } var helperCommandUsed sync.Map var helperCommands = map[string]func(...string){ "echo": cmdEcho, "echoenv": cmdEchoEnv, "cat": cmdCat, "pipetest": cmdPipeTest, "stdinClose": cmdStdinClose, "exit": cmdExit, "describefiles": cmdDescribeFiles, "extraFilesAndPipes": cmdExtraFilesAndPipes, "stderrfail": cmdStderrFail, "yes": cmdYes, } func cmdEcho(args ...string) { iargs := []any{} for _, s := range args { iargs = append(iargs, s) } fmt.Println(iargs...) } func cmdEchoEnv(args ...string) { for _, s := range args { fmt.Println(os.Getenv(s)) } } func cmdCat(args ...string) { if len(args) == 0 { io.Copy(os.Stdout, os.Stdin) return } exit := 0 for _, fn := range args { f, err := os.Open(fn) if err != nil { fmt.Fprintf(os.Stderr, "Error: %v\n", err) exit = 2 } else { defer f.Close() io.Copy(os.Stdout, f) } } os.Exit(exit) } func cmdPipeTest(...string) { bufr := bufio.NewReader(os.Stdin) for { line, _, err := bufr.ReadLine() if err == io.EOF { break } else if err != nil { os.Exit(1) } if bytes.HasPrefix(line, []byte("O:")) { os.Stdout.Write(line) os.Stdout.Write([]byte{'\n'}) } else if bytes.HasPrefix(line, []byte("E:")) { os.Stderr.Write(line) os.Stderr.Write([]byte{'\n'}) } else { os.Exit(1) } } } func cmdStdinClose(...string) { b, err := io.ReadAll(os.Stdin) if err != nil { fmt.Fprintf(os.Stderr, "Error: %v\n", err) os.Exit(1) } if s := string(b); s != stdinCloseTestString { fmt.Fprintf(os.Stderr, "Error: Read %q, want %q", s, stdinCloseTestString) os.Exit(1) } } func cmdExit(args ...string) { n, _ := strconv.Atoi(args[0]) os.Exit(n) } func cmdDescribeFiles(args ...string) { f := os.NewFile(3, fmt.Sprintf("fd3")) ln, err := net.FileListener(f) if err == nil { fmt.Printf("fd3: listener %s\n", ln.Addr()) ln.Close() } } func cmdExtraFilesAndPipes(args ...string) { n, _ := strconv.Atoi(args[0]) pipes := make([]*os.File, n) for i := 0; i < n; i++ { pipes[i] = os.NewFile(uintptr(3+i), strconv.Itoa(i)) } response := "" for i, r := range pipes { ch := make(chan string, 1) go func(c chan string) { buf := make([]byte, 10) n, err := r.Read(buf) if err != nil { fmt.Fprintf(os.Stderr, "Child: read error: %v on pipe %d\n", err, i) os.Exit(1) } c <- string(buf[:n]) close(c) }(ch) select { case m := <-ch: response = response + m case <-time.After(5 * time.Second): fmt.Fprintf(os.Stderr, "Child: Timeout reading from pipe: %d\n", i) os.Exit(1) } } fmt.Fprintf(os.Stderr, "child: %s", response) } func cmdStderrFail(...string) { fmt.Fprintf(os.Stderr, "some stderr text\n") os.Exit(1) } func cmdYes(args ...string) { if len(args) == 0 { args = []string{"y"} } s := strings.Join(args, " ") + "\n" for { _, err := os.Stdout.WriteString(s) if err != nil { os.Exit(1) } } } func TestEcho(t *testing.T) { bs, err := helperCommand(t, "echo", "foo bar", "baz").Output() if err != nil { t.Errorf("echo: %v", err) } if g, e := string(bs), "foo bar baz\n"; g != e { t.Errorf("echo: want %q, got %q", e, g) } } func TestCommandRelativeName(t *testing.T) { cmd := helperCommand(t, "echo", "foo") // Run our own binary as a relative path // (e.g. "_test/exec.test") our parent directory. base := filepath.Base(os.Args[0]) // "exec.test" dir := filepath.Dir(os.Args[0]) // "/tmp/go-buildNNNN/os/exec/_test" if dir == "." { t.Skip("skipping; running test at root somehow") } parentDir := filepath.Dir(dir) // "/tmp/go-buildNNNN/os/exec" dirBase := filepath.Base(dir) // "_test" if dirBase == "." { t.Skipf("skipping; unexpected shallow dir of %q", dir) } cmd.Path = filepath.Join(dirBase, base) cmd.Dir = parentDir out, err := cmd.Output() if err != nil { t.Errorf("echo: %v", err) } if g, e := string(out), "foo\n"; g != e { t.Errorf("echo: want %q, got %q", e, g) } } func TestCatStdin(t *testing.T) { // Cat, testing stdin and stdout. input := "Input string\nLine 2" p := helperCommand(t, "cat") p.Stdin = strings.NewReader(input) bs, err := p.Output() if err != nil { t.Errorf("cat: %v", err) } s := string(bs) if s != input { t.Errorf("cat: want %q, got %q", input, s) } } func TestEchoFileRace(t *testing.T) { cmd := helperCommand(t, "echo") stdin, err := cmd.StdinPipe() if err != nil { t.Fatalf("StdinPipe: %v", err) } if err := cmd.Start(); err != nil { t.Fatalf("Start: %v", err) } wrote := make(chan bool) go func() { defer close(wrote) fmt.Fprint(stdin, "echo\n") }() if err := cmd.Wait(); err != nil { t.Fatalf("Wait: %v", err) } <-wrote } func TestCatGoodAndBadFile(t *testing.T) { // Testing combined output and error values. bs, err := helperCommand(t, "cat", "/bogus/file.foo", "exec_test.go").CombinedOutput() if _, ok := err.(*exec.ExitError); !ok { t.Errorf("expected *exec.ExitError from cat combined; got %T: %v", err, err) } errLine, body, ok := strings.Cut(string(bs), "\n") if !ok { t.Fatalf("expected two lines from cat; got %q", bs) } if !strings.HasPrefix(errLine, "Error: open /bogus/file.foo") { t.Errorf("expected stderr to complain about file; got %q", errLine) } if !strings.Contains(body, "func TestCatGoodAndBadFile(t *testing.T)") { t.Errorf("expected test code; got %q (len %d)", body, len(body)) } } func TestNoExistExecutable(t *testing.T) { // Can't run a non-existent executable err := exec.Command("/no-exist-executable").Run() if err == nil { t.Error("expected error from /no-exist-executable") } } func TestExitStatus(t *testing.T) { // Test that exit values are returned correctly cmd := helperCommand(t, "exit", "42") err := cmd.Run() want := "exit status 42" switch runtime.GOOS { case "plan9": want = fmt.Sprintf("exit status: '%s %d: 42'", filepath.Base(cmd.Path), cmd.ProcessState.Pid()) } if werr, ok := err.(*exec.ExitError); ok { if s := werr.Error(); s != want { t.Errorf("from exit 42 got exit %q, want %q", s, want) } } else { t.Fatalf("expected *exec.ExitError from exit 42; got %T: %v", err, err) } } func TestExitCode(t *testing.T) { // Test that exit code are returned correctly cmd := helperCommand(t, "exit", "42") cmd.Run() want := 42 if runtime.GOOS == "plan9" { want = 1 } got := cmd.ProcessState.ExitCode() if want != got { t.Errorf("ExitCode got %d, want %d", got, want) } cmd = helperCommand(t, "/no-exist-executable") cmd.Run() want = 2 if runtime.GOOS == "plan9" { want = 1 } got = cmd.ProcessState.ExitCode() if want != got { t.Errorf("ExitCode got %d, want %d", got, want) } cmd = helperCommand(t, "exit", "255") cmd.Run() want = 255 if runtime.GOOS == "plan9" { want = 1 } got = cmd.ProcessState.ExitCode() if want != got { t.Errorf("ExitCode got %d, want %d", got, want) } cmd = helperCommand(t, "cat") cmd.Run() want = 0 got = cmd.ProcessState.ExitCode() if want != got { t.Errorf("ExitCode got %d, want %d", got, want) } // Test when command does not call Run(). cmd = helperCommand(t, "cat") want = -1 got = cmd.ProcessState.ExitCode() if want != got { t.Errorf("ExitCode got %d, want %d", got, want) } } func TestPipes(t *testing.T) { check := func(what string, err error) { if err != nil { t.Fatalf("%s: %v", what, err) } } // Cat, testing stdin and stdout. c := helperCommand(t, "pipetest") stdin, err := c.StdinPipe() check("StdinPipe", err) stdout, err := c.StdoutPipe() check("StdoutPipe", err) stderr, err := c.StderrPipe() check("StderrPipe", err) outbr := bufio.NewReader(stdout) errbr := bufio.NewReader(stderr) line := func(what string, br *bufio.Reader) string { line, _, err := br.ReadLine() if err != nil { t.Fatalf("%s: %v", what, err) } return string(line) } err = c.Start() check("Start", err) _, err = stdin.Write([]byte("O:I am output\n")) check("first stdin Write", err) if g, e := line("first output line", outbr), "O:I am output"; g != e { t.Errorf("got %q, want %q", g, e) } _, err = stdin.Write([]byte("E:I am error\n")) check("second stdin Write", err) if g, e := line("first error line", errbr), "E:I am error"; g != e { t.Errorf("got %q, want %q", g, e) } _, err = stdin.Write([]byte("O:I am output2\n")) check("third stdin Write 3", err) if g, e := line("second output line", outbr), "O:I am output2"; g != e { t.Errorf("got %q, want %q", g, e) } stdin.Close() err = c.Wait() check("Wait", err) } const stdinCloseTestString = "Some test string." // Issue 6270. func TestStdinClose(t *testing.T) { check := func(what string, err error) { if err != nil { t.Fatalf("%s: %v", what, err) } } cmd := helperCommand(t, "stdinClose") stdin, err := cmd.StdinPipe() check("StdinPipe", err) // Check that we can access methods of the underlying os.File.` if _, ok := stdin.(interface { Fd() uintptr }); !ok { t.Error("can't access methods of underlying *os.File") } check("Start", cmd.Start()) go func() { _, err := io.Copy(stdin, strings.NewReader(stdinCloseTestString)) check("Copy", err) // Before the fix, this next line would race with cmd.Wait. check("Close", stdin.Close()) }() check("Wait", cmd.Wait()) } // Issue 17647. // It used to be the case that TestStdinClose, above, would fail when // run under the race detector. This test is a variant of TestStdinClose // that also used to fail when run under the race detector. // This test is run by cmd/dist under the race detector to verify that // the race detector no longer reports any problems. func TestStdinCloseRace(t *testing.T) { cmd := helperCommand(t, "stdinClose") stdin, err := cmd.StdinPipe() if err != nil { t.Fatalf("StdinPipe: %v", err) } if err := cmd.Start(); err != nil { t.Fatalf("Start: %v", err) } go func() { // We don't check the error return of Kill. It is // possible that the process has already exited, in // which case Kill will return an error "process // already finished". The purpose of this test is to // see whether the race detector reports an error; it // doesn't matter whether this Kill succeeds or not. cmd.Process.Kill() }() go func() { // Send the wrong string, so that the child fails even // if the other goroutine doesn't manage to kill it first. // This test is to check that the race detector does not // falsely report an error, so it doesn't matter how the // child process fails. io.Copy(stdin, strings.NewReader("unexpected string")) if err := stdin.Close(); err != nil { t.Errorf("stdin.Close: %v", err) } }() if err := cmd.Wait(); err == nil { t.Fatalf("Wait: succeeded unexpectedly") } } // Issue 5071 func TestPipeLookPathLeak(t *testing.T) { if runtime.GOOS == "windows" { t.Skip("we don't currently suppore counting open handles on windows") } openFDs := func() []uintptr { var fds []uintptr for i := uintptr(0); i < 100; i++ { if fdtest.Exists(i) { fds = append(fds, i) } } return fds } want := openFDs() for i := 0; i < 6; i++ { cmd := exec.Command("something-that-does-not-exist-executable") cmd.StdoutPipe() cmd.StderrPipe() cmd.StdinPipe() if err := cmd.Run(); err == nil { t.Fatal("unexpected success") } } got := openFDs() if !reflect.DeepEqual(got, want) { t.Errorf("set of open file descriptors changed: got %v, want %v", got, want) } } func TestExtraFilesFDShuffle(t *testing.T) { maySkipHelperCommand("extraFilesAndPipes") testenv.SkipFlaky(t, 5780) switch runtime.GOOS { case "windows": t.Skip("no operating system support; skipping") } // syscall.StartProcess maps all the FDs passed to it in // ProcAttr.Files (the concatenation of stdin,stdout,stderr and // ExtraFiles) into consecutive FDs in the child, that is: // Files{11, 12, 6, 7, 9, 3} should result in the file // represented by FD 11 in the parent being made available as 0 // in the child, 12 as 1, etc. // // We want to test that FDs in the child do not get overwritten // by one another as this shuffle occurs. The original implementation // was buggy in that in some data dependent cases it would overwrite // stderr in the child with one of the ExtraFile members. // Testing for this case is difficult because it relies on using // the same FD values as that case. In particular, an FD of 3 // must be at an index of 4 or higher in ProcAttr.Files and // the FD of the write end of the Stderr pipe (as obtained by // StderrPipe()) must be the same as the size of ProcAttr.Files; // therefore we test that the read end of this pipe (which is what // is returned to the parent by StderrPipe() being one less than // the size of ProcAttr.Files, i.e. 3+len(cmd.ExtraFiles). // // Moving this test case around within the overall tests may // affect the FDs obtained and hence the checks to catch these cases. npipes := 2 c := helperCommand(t, "extraFilesAndPipes", strconv.Itoa(npipes+1)) rd, wr, _ := os.Pipe() defer rd.Close() if rd.Fd() != 3 { t.Errorf("bad test value for test pipe: fd %d", rd.Fd()) } stderr, _ := c.StderrPipe() wr.WriteString("_LAST") wr.Close() pipes := make([]struct { r, w *os.File }, npipes) data := []string{"a", "b"} for i := 0; i < npipes; i++ { r, w, err := os.Pipe() if err != nil { t.Fatalf("unexpected error creating pipe: %s", err) } pipes[i].r = r pipes[i].w = w w.WriteString(data[i]) c.ExtraFiles = append(c.ExtraFiles, pipes[i].r) defer func() { r.Close() w.Close() }() } // Put fd 3 at the end. c.ExtraFiles = append(c.ExtraFiles, rd) stderrFd := int(stderr.(*os.File).Fd()) if stderrFd != ((len(c.ExtraFiles) + 3) - 1) { t.Errorf("bad test value for stderr pipe") } expected := "child: " + strings.Join(data, "") + "_LAST" err := c.Start() if err != nil { t.Fatalf("Run: %v", err) } ch := make(chan string, 1) go func(ch chan string) { buf := make([]byte, 512) n, err := stderr.Read(buf) if err != nil { t.Errorf("Read: %s", err) ch <- err.Error() } else { ch <- string(buf[:n]) } close(ch) }(ch) select { case m := <-ch: if m != expected { t.Errorf("Read: '%s' not '%s'", m, expected) } case <-time.After(5 * time.Second): t.Errorf("Read timedout") } c.Wait() } func TestExtraFiles(t *testing.T) { if haveUnexpectedFDs { // The point of this test is to make sure that any // descriptors we open are marked close-on-exec. // If haveUnexpectedFDs is true then there were other // descriptors open when we started the test, // so those descriptors are clearly not close-on-exec, // and they will confuse the test. We could modify // the test to expect those descriptors to remain open, // but since we don't know where they came from or what // they are doing, that seems fragile. For example, // perhaps they are from the startup code on this // system for some reason. Also, this test is not // system-specific; as long as most systems do not skip // the test, we will still be testing what we care about. t.Skip("skipping test because test was run with FDs open") } testenv.MustHaveExec(t) testenv.MustHaveGoBuild(t) // This test runs with cgo disabled. External linking needs cgo, so // it doesn't work if external linking is required. testenv.MustInternalLink(t) if runtime.GOOS == "windows" { t.Skipf("skipping test on %q", runtime.GOOS) } // Force network usage, to verify the epoll (or whatever) fd // doesn't leak to the child, ln, err := net.Listen("tcp", "127.0.0.1:0") if err != nil { t.Fatal(err) } defer ln.Close() // Make sure duplicated fds don't leak to the child. f, err := ln.(*net.TCPListener).File() if err != nil { t.Fatal(err) } defer f.Close() ln2, err := net.FileListener(f) if err != nil { t.Fatal(err) } defer ln2.Close() // Force TLS root certs to be loaded (which might involve // cgo), to make sure none of that potential C code leaks fds. ts := httptest.NewUnstartedServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {})) // quiet expected TLS handshake error "remote error: bad certificate" ts.Config.ErrorLog = log.New(io.Discard, "", 0) ts.StartTLS() defer ts.Close() _, err = http.Get(ts.URL) if err == nil { t.Errorf("success trying to fetch %s; want an error", ts.URL) } tf, err := os.CreateTemp("", "") if err != nil { t.Fatalf("TempFile: %v", err) } defer os.Remove(tf.Name()) defer tf.Close() const text = "Hello, fd 3!" _, err = tf.Write([]byte(text)) if err != nil { t.Fatalf("Write: %v", err) } _, err = tf.Seek(0, io.SeekStart) if err != nil { t.Fatalf("Seek: %v", err) } tempdir := t.TempDir() exe := filepath.Join(tempdir, "read3.exe") c := exec.Command(testenv.GoToolPath(t), "build", "-o", exe, "read3.go") // Build the test without cgo, so that C library functions don't // open descriptors unexpectedly. See issue 25628. c.Env = append(os.Environ(), "CGO_ENABLED=0") if output, err := c.CombinedOutput(); err != nil { t.Logf("go build -o %s read3.go\n%s", exe, output) t.Fatalf("go build failed: %v", err) } // Use a deadline to try to get some output even if the program hangs. ctx := context.Background() if deadline, ok := t.Deadline(); ok { // Leave a 20% grace period to flush output, which may be large on the // linux/386 builders because we're running the subprocess under strace. deadline = deadline.Add(-time.Until(deadline) / 5) var cancel context.CancelFunc ctx, cancel = context.WithDeadline(ctx, deadline) defer cancel() } c = exec.CommandContext(ctx, exe) var stdout, stderr bytes.Buffer c.Stdout = &stdout c.Stderr = &stderr c.ExtraFiles = []*os.File{tf} if runtime.GOOS == "illumos" { // Some facilities in illumos are implemented via access // to /proc by libc; such accesses can briefly occupy a // low-numbered fd. If this occurs concurrently with the // test that checks for leaked descriptors, the check can // become confused and report a spurious leaked descriptor. // (See issue #42431 for more detailed analysis.) // // Attempt to constrain the use of additional threads in the // child process to make this test less flaky: c.Env = append(os.Environ(), "GOMAXPROCS=1") } err = c.Run() if err != nil { t.Fatalf("Run: %v\n--- stdout:\n%s--- stderr:\n%s", err, stdout.Bytes(), stderr.Bytes()) } if stdout.String() != text { t.Errorf("got stdout %q, stderr %q; want %q on stdout", stdout.String(), stderr.String(), text) } } func TestExtraFilesRace(t *testing.T) { if runtime.GOOS == "windows" { maySkipHelperCommand("describefiles") t.Skip("no operating system support; skipping") } listen := func() net.Listener { ln, err := net.Listen("tcp", "127.0.0.1:0") if err != nil { t.Fatal(err) } return ln } listenerFile := func(ln net.Listener) *os.File { f, err := ln.(*net.TCPListener).File() if err != nil { t.Fatal(err) } return f } runCommand := func(c *exec.Cmd, out chan<- string) { bout, err := c.CombinedOutput() if err != nil { out <- "ERROR:" + err.Error() } else { out <- string(bout) } } for i := 0; i < 10; i++ { if testing.Short() && i >= 3 { break } la := listen() ca := helperCommand(t, "describefiles") ca.ExtraFiles = []*os.File{listenerFile(la)} lb := listen() cb := helperCommand(t, "describefiles") cb.ExtraFiles = []*os.File{listenerFile(lb)} ares := make(chan string) bres := make(chan string) go runCommand(ca, ares) go runCommand(cb, bres) if got, want := <-ares, fmt.Sprintf("fd3: listener %s\n", la.Addr()); got != want { t.Errorf("iteration %d, process A got:\n%s\nwant:\n%s\n", i, got, want) } if got, want := <-bres, fmt.Sprintf("fd3: listener %s\n", lb.Addr()); got != want { t.Errorf("iteration %d, process B got:\n%s\nwant:\n%s\n", i, got, want) } la.Close() lb.Close() for _, f := range ca.ExtraFiles { f.Close() } for _, f := range cb.ExtraFiles { f.Close() } } } type delayedInfiniteReader struct{} func (delayedInfiniteReader) Read(b []byte) (int, error) { time.Sleep(100 * time.Millisecond) for i := range b { b[i] = 'x' } return len(b), nil } // Issue 9173: ignore stdin pipe writes if the program completes successfully. func TestIgnorePipeErrorOnSuccess(t *testing.T) { testWith := func(r io.Reader) func(*testing.T) { return func(t *testing.T) { cmd := helperCommand(t, "echo", "foo") var out bytes.Buffer cmd.Stdin = r cmd.Stdout = &out if err := cmd.Run(); err != nil { t.Fatal(err) } if got, want := out.String(), "foo\n"; got != want { t.Errorf("output = %q; want %q", got, want) } } } t.Run("10MB", testWith(strings.NewReader(strings.Repeat("x", 10<<20)))) t.Run("Infinite", testWith(delayedInfiniteReader{})) } type badWriter struct{} func (w *badWriter) Write(data []byte) (int, error) { return 0, io.ErrUnexpectedEOF } func TestClosePipeOnCopyError(t *testing.T) { cmd := helperCommand(t, "yes") cmd.Stdout = new(badWriter) c := make(chan int, 1) go func() { err := cmd.Run() if err == nil { t.Errorf("yes completed successfully") } c <- 1 }() select { case <-c: // ok case <-time.After(5 * time.Second): t.Fatalf("yes got stuck writing to bad writer") } } func TestOutputStderrCapture(t *testing.T) { cmd := helperCommand(t, "stderrfail") _, err := cmd.Output() ee, ok := err.(*exec.ExitError) if !ok { t.Fatalf("Output error type = %T; want ExitError", err) } got := string(ee.Stderr) want := "some stderr text\n" if got != want { t.Errorf("ExitError.Stderr = %q; want %q", got, want) } } func TestContext(t *testing.T) { ctx, cancel := context.WithCancel(context.Background()) c := helperCommandContext(t, ctx, "pipetest") stdin, err := c.StdinPipe() if err != nil { t.Fatal(err) } stdout, err := c.StdoutPipe() if err != nil { t.Fatal(err) } if err := c.Start(); err != nil { t.Fatal(err) } if _, err := stdin.Write([]byte("O:hi\n")); err != nil { t.Fatal(err) } buf := make([]byte, 5) n, err := io.ReadFull(stdout, buf) if n != len(buf) || err != nil || string(buf) != "O:hi\n" { t.Fatalf("ReadFull = %d, %v, %q", n, err, buf[:n]) } waitErr := make(chan error, 1) go func() { waitErr <- c.Wait() }() cancel() select { case err := <-waitErr: if err == nil { t.Fatal("expected Wait failure") } case <-time.After(3 * time.Second): t.Fatal("timeout waiting for child process death") } } func TestContextCancel(t *testing.T) { if runtime.GOOS == "netbsd" && runtime.GOARCH == "arm64" { maySkipHelperCommand("cat") testenv.SkipFlaky(t, 42061) } // To reduce noise in the final goroutine dump, // let other parallel tests complete if possible. t.Parallel() ctx, cancel := context.WithCancel(context.Background()) defer cancel() c := helperCommandContext(t, ctx, "cat") stdin, err := c.StdinPipe() if err != nil { t.Fatal(err) } defer stdin.Close() if err := c.Start(); err != nil { t.Fatal(err) } // At this point the process is alive. Ensure it by sending data to stdin. if _, err := io.WriteString(stdin, "echo"); err != nil { t.Fatal(err) } cancel() // Calling cancel should have killed the process, so writes // should now fail. Give the process a little while to die. start := time.Now() delay := 1 * time.Millisecond for { if _, err := io.WriteString(stdin, "echo"); err != nil { break } if time.Since(start) > time.Minute { // Panic instead of calling t.Fatal so that we get a goroutine dump. // We want to know exactly what the os/exec goroutines got stuck on. panic("canceling context did not stop program") } // Back off exponentially (up to 1-second sleeps) to give the OS time to // terminate the process. delay *= 2 if delay > 1*time.Second { delay = 1 * time.Second } time.Sleep(delay) } if err := c.Wait(); err == nil { t.Error("program unexpectedly exited successfully") } else { t.Logf("exit status: %v", err) } } // test that environment variables are de-duped. func TestDedupEnvEcho(t *testing.T) { cmd := helperCommand(t, "echoenv", "FOO") cmd.Env = append(cmd.Environ(), "FOO=bad", "FOO=good") out, err := cmd.CombinedOutput() if err != nil { t.Fatal(err) } if got, want := strings.TrimSpace(string(out)), "good"; got != want { t.Errorf("output = %q; want %q", got, want) } } func TestString(t *testing.T) { echoPath, err := exec.LookPath("echo") if err != nil { t.Skip(err) } tests := [...]struct { path string args []string want string }{ {"echo", nil, echoPath}, {"echo", []string{"a"}, echoPath + " a"}, {"echo", []string{"a", "b"}, echoPath + " a b"}, } for _, test := range tests { cmd := exec.Command(test.path, test.args...) if got := cmd.String(); got != test.want { t.Errorf("String(%q, %q) = %q, want %q", test.path, test.args, got, test.want) } } } func TestStringPathNotResolved(t *testing.T) { _, err := exec.LookPath("makemeasandwich") if err == nil { t.Skip("wow, thanks") } cmd := exec.Command("makemeasandwich", "-lettuce") want := "makemeasandwich -lettuce" if got := cmd.String(); got != want { t.Errorf("String(%q, %q) = %q, want %q", "makemeasandwich", "-lettuce", got, want) } }