// Copyright 2024 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package concurrent import ( "internal/abi" "internal/goarch" "math/rand/v2" "sync" "sync/atomic" "unsafe" ) // HashTrieMap is an implementation of a concurrent hash-trie. The implementation // is designed around frequent loads, but offers decent performance for stores // and deletes as well, especially if the map is larger. It's primary use-case is // the unique package, but can be used elsewhere as well. type HashTrieMap[K, V comparable] struct { root *indirect[K, V] keyHash hashFunc keyEqual equalFunc valEqual equalFunc seed uintptr } // NewHashTrieMap creates a new HashTrieMap for the provided key and value. func NewHashTrieMap[K, V comparable]() *HashTrieMap[K, V] { var m map[K]V mapType := abi.TypeOf(m).MapType() ht := &HashTrieMap[K, V]{ root: newIndirectNode[K, V](nil), keyHash: mapType.Hasher, keyEqual: mapType.Key.Equal, valEqual: mapType.Elem.Equal, seed: uintptr(rand.Uint64()), } return ht } type hashFunc func(unsafe.Pointer, uintptr) uintptr type equalFunc func(unsafe.Pointer, unsafe.Pointer) bool // Load returns the value stored in the map for a key, or nil if no // value is present. // The ok result indicates whether value was found in the map. func (ht *HashTrieMap[K, V]) Load(key K) (value V, ok bool) { hash := ht.keyHash(abi.NoEscape(unsafe.Pointer(&key)), ht.seed) i := ht.root hashShift := 8 * goarch.PtrSize for hashShift != 0 { hashShift -= nChildrenLog2 n := i.children[(hash>>hashShift)&nChildrenMask].Load() if n == nil { return *new(V), false } if n.isEntry { return n.entry().lookup(key, ht.keyEqual) } i = n.indirect() } panic("internal/concurrent.HashMapTrie: ran out of hash bits while iterating") } // LoadOrStore returns the existing value for the key if present. // Otherwise, it stores and returns the given value. // The loaded result is true if the value was loaded, false if stored. func (ht *HashTrieMap[K, V]) LoadOrStore(key K, value V) (result V, loaded bool) { hash := ht.keyHash(abi.NoEscape(unsafe.Pointer(&key)), ht.seed) var i *indirect[K, V] var hashShift uint var slot *atomic.Pointer[node[K, V]] var n *node[K, V] for { // Find the key or a candidate location for insertion. i = ht.root hashShift = 8 * goarch.PtrSize haveInsertPoint := false for hashShift != 0 { hashShift -= nChildrenLog2 slot = &i.children[(hash>>hashShift)&nChildrenMask] n = slot.Load() if n == nil { // We found a nil slot which is a candidate for insertion. haveInsertPoint = true break } if n.isEntry { // We found an existing entry, which is as far as we can go. // If it stays this way, we'll have to replace it with an // indirect node. if v, ok := n.entry().lookup(key, ht.keyEqual); ok { return v, true } haveInsertPoint = true break } i = n.indirect() } if !haveInsertPoint { panic("internal/concurrent.HashMapTrie: ran out of hash bits while iterating") } // Grab the lock and double-check what we saw. i.mu.Lock() n = slot.Load() if (n == nil || n.isEntry) && !i.dead.Load() { // What we saw is still true, so we can continue with the insert. break } // We have to start over. i.mu.Unlock() } // N.B. This lock is held from when we broke out of the outer loop above. // We specifically break this out so that we can use defer here safely. // One option is to break this out into a new function instead, but // there's so much local iteration state used below that this turns out // to be cleaner. defer i.mu.Unlock() var oldEntry *entry[K, V] if n != nil { oldEntry = n.entry() if v, ok := oldEntry.lookup(key, ht.keyEqual); ok { // Easy case: by loading again, it turns out exactly what we wanted is here! return v, true } } newEntry := newEntryNode(key, value) if oldEntry == nil { // Easy case: create a new entry and store it. slot.Store(&newEntry.node) } else { // We possibly need to expand the entry already there into one or more new nodes. // // Publish the node last, which will make both oldEntry and newEntry visible. We // don't want readers to be able to observe that oldEntry isn't in the tree. slot.Store(ht.expand(oldEntry, newEntry, hash, hashShift, i)) } return value, false } // expand takes oldEntry and newEntry whose hashes conflict from bit 64 down to hashShift and // produces a subtree of indirect nodes to hold the two new entries. func (ht *HashTrieMap[K, V]) expand(oldEntry, newEntry *entry[K, V], newHash uintptr, hashShift uint, parent *indirect[K, V]) *node[K, V] { // Check for a hash collision. oldHash := ht.keyHash(unsafe.Pointer(&oldEntry.key), ht.seed) if oldHash == newHash { // Store the old entry in the new entry's overflow list, then store // the new entry. newEntry.overflow.Store(oldEntry) return &newEntry.node } // We have to add an indirect node. Worse still, we may need to add more than one. newIndirect := newIndirectNode(parent) top := newIndirect for { if hashShift == 0 { panic("internal/concurrent.HashMapTrie: ran out of hash bits while inserting") } hashShift -= nChildrenLog2 // hashShift is for the level parent is at. We need to go deeper. oi := (oldHash >> hashShift) & nChildrenMask ni := (newHash >> hashShift) & nChildrenMask if oi != ni { newIndirect.children[oi].Store(&oldEntry.node) newIndirect.children[ni].Store(&newEntry.node) break } nextIndirect := newIndirectNode(newIndirect) newIndirect.children[oi].Store(&nextIndirect.node) newIndirect = nextIndirect } return &top.node } // CompareAndDelete deletes the entry for key if its value is equal to old. // // If there is no current value for key in the map, CompareAndDelete returns false // (even if the old value is the nil interface value). func (ht *HashTrieMap[K, V]) CompareAndDelete(key K, old V) (deleted bool) { hash := ht.keyHash(abi.NoEscape(unsafe.Pointer(&key)), ht.seed) var i *indirect[K, V] var hashShift uint var slot *atomic.Pointer[node[K, V]] var n *node[K, V] for { // Find the key or return when there's nothing to delete. i = ht.root hashShift = 8 * goarch.PtrSize found := false for hashShift != 0 { hashShift -= nChildrenLog2 slot = &i.children[(hash>>hashShift)&nChildrenMask] n = slot.Load() if n == nil { // Nothing to delete. Give up. return } if n.isEntry { // We found an entry. Check if it matches. if _, ok := n.entry().lookup(key, ht.keyEqual); !ok { // No match, nothing to delete. return } // We've got something to delete. found = true break } i = n.indirect() } if !found { panic("internal/concurrent.HashMapTrie: ran out of hash bits while iterating") } // Grab the lock and double-check what we saw. i.mu.Lock() n = slot.Load() if !i.dead.Load() { if n == nil { // Valid node that doesn't contain what we need. Nothing to delete. i.mu.Unlock() return } if n.isEntry { // What we saw is still true, so we can continue with the delete. break } } // We have to start over. i.mu.Unlock() } // Try to delete the entry. e, deleted := n.entry().compareAndDelete(key, old, ht.keyEqual, ht.valEqual) if !deleted { // Nothing was actually deleted, which means the node is no longer there. i.mu.Unlock() return false } if e != nil { // We didn't actually delete the whole entry, just one entry in the chain. // Nothing else to do, since the parent is definitely not empty. slot.Store(&e.node) i.mu.Unlock() return true } // Delete the entry. slot.Store(nil) // Check if the node is now empty (and isn't the root), and delete it if able. for i.parent != nil && i.empty() { if hashShift == 8*goarch.PtrSize { panic("internal/concurrent.HashMapTrie: ran out of hash bits while iterating") } hashShift += nChildrenLog2 // Delete the current node in the parent. parent := i.parent parent.mu.Lock() i.dead.Store(true) parent.children[(hash>>hashShift)&nChildrenMask].Store(nil) i.mu.Unlock() i = parent } i.mu.Unlock() return true } // Enumerate produces all key-value pairs in the map. The enumeration does // not represent any consistent snapshot of the map, but is guaranteed // to visit each unique key-value pair only once. It is safe to operate // on the tree during iteration. No particular enumeration order is // guaranteed. func (ht *HashTrieMap[K, V]) Enumerate(yield func(key K, value V) bool) { ht.iter(ht.root, yield) } func (ht *HashTrieMap[K, V]) iter(i *indirect[K, V], yield func(key K, value V) bool) bool { for j := range i.children { n := i.children[j].Load() if n == nil { continue } if !n.isEntry { if !ht.iter(n.indirect(), yield) { return false } continue } e := n.entry() for e != nil { if !yield(e.key, e.value) { return false } e = e.overflow.Load() } } return true } const ( // 16 children. This seems to be the sweet spot for // load performance: any smaller and we lose out on // 50% or more in CPU performance. Any larger and the // returns are minuscule (~1% improvement for 32 children). nChildrenLog2 = 4 nChildren = 1 << nChildrenLog2 nChildrenMask = nChildren - 1 ) // indirect is an internal node in the hash-trie. type indirect[K, V comparable] struct { node[K, V] dead atomic.Bool mu sync.Mutex // Protects mutation to children and any children that are entry nodes. parent *indirect[K, V] children [nChildren]atomic.Pointer[node[K, V]] } func newIndirectNode[K, V comparable](parent *indirect[K, V]) *indirect[K, V] { return &indirect[K, V]{node: node[K, V]{isEntry: false}, parent: parent} } func (i *indirect[K, V]) empty() bool { nc := 0 for j := range i.children { if i.children[j].Load() != nil { nc++ } } return nc == 0 } // entry is a leaf node in the hash-trie. type entry[K, V comparable] struct { node[K, V] overflow atomic.Pointer[entry[K, V]] // Overflow for hash collisions. key K value V } func newEntryNode[K, V comparable](key K, value V) *entry[K, V] { return &entry[K, V]{ node: node[K, V]{isEntry: true}, key: key, value: value, } } func (e *entry[K, V]) lookup(key K, equal equalFunc) (V, bool) { for e != nil { if equal(unsafe.Pointer(&e.key), abi.NoEscape(unsafe.Pointer(&key))) { return e.value, true } e = e.overflow.Load() } return *new(V), false } // compareAndDelete deletes an entry in the overflow chain if both the key and value compare // equal. Returns the new entry chain and whether or not anything was deleted. // // compareAndDelete must be called under the mutex of the indirect node which e is a child of. func (head *entry[K, V]) compareAndDelete(key K, value V, keyEqual, valEqual equalFunc) (*entry[K, V], bool) { if keyEqual(unsafe.Pointer(&head.key), abi.NoEscape(unsafe.Pointer(&key))) && valEqual(unsafe.Pointer(&head.value), abi.NoEscape(unsafe.Pointer(&value))) { // Drop the head of the list. return head.overflow.Load(), true } i := &head.overflow e := i.Load() for e != nil { if keyEqual(unsafe.Pointer(&e.key), abi.NoEscape(unsafe.Pointer(&key))) && valEqual(unsafe.Pointer(&e.value), abi.NoEscape(unsafe.Pointer(&value))) { i.Store(e.overflow.Load()) return head, true } i = &e.overflow e = e.overflow.Load() } return head, false } // node is the header for a node. It's polymorphic and // is actually either an entry or an indirect. type node[K, V comparable] struct { isEntry bool } func (n *node[K, V]) entry() *entry[K, V] { if !n.isEntry { panic("called entry on non-entry node") } return (*entry[K, V])(unsafe.Pointer(n)) } func (n *node[K, V]) indirect() *indirect[K, V] { if n.isEntry { panic("called indirect on entry node") } return (*indirect[K, V])(unsafe.Pointer(n)) }