// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package types import ( "go/token" "sync" ) // A Named represents a named (defined) type. type Named struct { check *Checker info typeInfo // for cycle detection obj *TypeName // corresponding declared object for declared types; placeholder for instantiated types orig *Named // original, uninstantiated type fromRHS Type // type (on RHS of declaration) this *Named type is derived of (for cycle reporting) underlying Type // possibly a *Named during setup; never a *Named once set up completely tparams *TypeParamList // type parameters, or nil targs *TypeList // type arguments (after instantiation), or nil methods []*Func // methods declared for this type (not the method set of this type); signatures are type-checked lazily // resolver may be provided to lazily resolve type parameters, underlying, and methods. resolver func(*Environment, *Named) (tparams *TypeParamList, underlying Type, methods []*Func) once sync.Once // ensures that tparams, underlying, and methods are resolved before accessing } // NewNamed returns a new named type for the given type name, underlying type, and associated methods. // If the given type name obj doesn't have a type yet, its type is set to the returned named type. // The underlying type must not be a *Named. func NewNamed(obj *TypeName, underlying Type, methods []*Func) *Named { if _, ok := underlying.(*Named); ok { panic("underlying type must not be *Named") } return (*Checker)(nil).newNamed(obj, nil, underlying, nil, methods) } func (t *Named) resolve(env *Environment) *Named { if t.resolver == nil { return t } t.once.Do(func() { // TODO(mdempsky): Since we're passing t to the resolver anyway // (necessary because types2 expects the receiver type for methods // on defined interface types to be the Named rather than the // underlying Interface), maybe it should just handle calling // SetTypeParams, SetUnderlying, and AddMethod instead? Those // methods would need to support reentrant calls though. It would // also make the API more future-proof towards further extensions // (like SetTypeParams). t.tparams, t.underlying, t.methods = t.resolver(env, t) t.fromRHS = t.underlying // for cycle detection }) return t } // newNamed is like NewNamed but with a *Checker receiver and additional orig argument. func (check *Checker) newNamed(obj *TypeName, orig *Named, underlying Type, tparams *TypeParamList, methods []*Func) *Named { typ := &Named{check: check, obj: obj, orig: orig, fromRHS: underlying, underlying: underlying, tparams: tparams, methods: methods} if typ.orig == nil { typ.orig = typ } if obj.typ == nil { obj.typ = typ } // Ensure that typ is always expanded, at which point the check field can be // nilled out. // // Note that currently we cannot nil out check inside typ.under(), because // it's possible that typ is expanded multiple times. // // TODO(rFindley): clean this up so that under is the only function mutating // named types. if check != nil { check.later(func() { switch typ.under().(type) { case *Named: panic("unexpanded underlying type") } typ.check = nil }) } return typ } // Obj returns the type name for the declaration defining the named type t. For // instantiated types, this is the type name of the base type. func (t *Named) Obj() *TypeName { return t.orig.obj // for non-instances this is the same as t.obj } // Origin returns the parameterized type from which the named type t is // instantiated. If t is not an instantiated type, the result is t. func (t *Named) Origin() *Named { return t.orig } // TODO(gri) Come up with a better representation and API to distinguish // between parameterized instantiated and non-instantiated types. // TypeParams returns the type parameters of the named type t, or nil. // The result is non-nil for an (originally) parameterized type even if it is instantiated. func (t *Named) TypeParams() *TypeParamList { return t.resolve(nil).tparams } // SetTypeParams sets the type parameters of the named type t. func (t *Named) SetTypeParams(tparams []*TypeParam) { t.resolve(nil).tparams = bindTParams(tparams) } // TypeArgs returns the type arguments used to instantiate the named type t. func (t *Named) TypeArgs() *TypeList { return t.targs } // NumMethods returns the number of explicit methods whose receiver is named type t. func (t *Named) NumMethods() int { return len(t.resolve(nil).methods) } // Method returns the i'th method of named type t for 0 <= i < t.NumMethods(). func (t *Named) Method(i int) *Func { return t.resolve(nil).methods[i] } // SetUnderlying sets the underlying type and marks t as complete. func (t *Named) SetUnderlying(underlying Type) { if underlying == nil { panic("underlying type must not be nil") } if _, ok := underlying.(*Named); ok { panic("underlying type must not be *Named") } t.resolve(nil).underlying = underlying } // AddMethod adds method m unless it is already in the method list. func (t *Named) AddMethod(m *Func) { t.resolve(nil) if i, _ := lookupMethod(t.methods, m.pkg, m.name); i < 0 { t.methods = append(t.methods, m) } } func (t *Named) Underlying() Type { return t.resolve(nil).underlying } func (t *Named) String() string { return TypeString(t, nil) } // ---------------------------------------------------------------------------- // Implementation // under returns the expanded underlying type of n0; possibly by following // forward chains of named types. If an underlying type is found, resolve // the chain by setting the underlying type for each defined type in the // chain before returning it. If no underlying type is found or a cycle // is detected, the result is Typ[Invalid]. If a cycle is detected and // n0.check != nil, the cycle is reported. func (n0 *Named) under() Type { u := n0.Underlying() // If the underlying type of a defined type is not a defined // (incl. instance) type, then that is the desired underlying // type. var n1 *Named switch u1 := u.(type) { case nil: return Typ[Invalid] default: // common case return u case *Named: // handled below n1 = u1 } if n0.check == nil { panic("Named.check == nil but type is incomplete") } // Invariant: after this point n0 as well as any named types in its // underlying chain should be set up when this function exits. check := n0.check n := n0 seen := make(map[*Named]int) // types that need their underlying resolved var path []Object // objects encountered, for cycle reporting loop: for { seen[n] = len(seen) path = append(path, n.obj) n = n1 if i, ok := seen[n]; ok { // cycle check.cycleError(path[i:]) u = Typ[Invalid] break } u = n.Underlying() switch u1 := u.(type) { case nil: u = Typ[Invalid] break loop default: break loop case *Named: // Continue collecting *Named types in the chain. n1 = u1 } } for n := range seen { // We should never have to update the underlying type of an imported type; // those underlying types should have been resolved during the import. // Also, doing so would lead to a race condition (was issue #31749). // Do this check always, not just in debug mode (it's cheap). if n.obj.pkg != check.pkg { panic("imported type with unresolved underlying type") } n.underlying = u } return u } func (n *Named) setUnderlying(typ Type) { if n != nil { n.underlying = typ } } // bestEnv returns the best available environment. In order of preference: // - the given env, if non-nil // - the Checker env, if check is non-nil // - a new environment func (check *Checker) bestEnv(env *Environment) *Environment { if env != nil { return env } if check != nil { assert(check.conf.Environment != nil) return check.conf.Environment } return NewEnvironment() } // expandNamed ensures that the underlying type of n is instantiated. // The underlying type will be Typ[Invalid] if there was an error. func expandNamed(env *Environment, n *Named, instPos token.Pos) (tparams *TypeParamList, underlying Type, methods []*Func) { n.orig.resolve(env) check := n.check if check.validateTArgLen(instPos, n.orig.tparams.Len(), n.targs.Len()) { // We must always have an env, to avoid infinite recursion. env = check.bestEnv(env) h := env.typeHash(n.orig, n.targs.list()) // ensure that an instance is recorded for h to avoid infinite recursion. env.typeForHash(h, n) smap := makeSubstMap(n.orig.tparams.list(), n.targs.list()) underlying = n.check.subst(instPos, n.orig.underlying, smap, env) for i := 0; i < n.orig.NumMethods(); i++ { origm := n.orig.Method(i) // During type checking origm may not have a fully set up type, so defer // instantiation of its signature until later. m := NewFunc(origm.pos, origm.pkg, origm.name, nil) m.hasPtrRecv = origm.hasPtrRecv // Setting instRecv here allows us to complete later (we need the // instRecv to get targs and the original method). m.instRecv = n methods = append(methods, m) } } else { underlying = Typ[Invalid] } // Methods should not escape the type checker API without being completed. If // we're in the context of a type checking pass, we need to defer this until // later (not all methods may have types). completeMethods := func() { for _, m := range methods { if m.instRecv != nil { check.completeMethod(env, m) } } } if check != nil { check.later(completeMethods) } else { completeMethods() } return n.orig.tparams, underlying, methods } func (check *Checker) completeMethod(env *Environment, m *Func) { assert(m.instRecv != nil) rtyp := m.instRecv m.instRecv = nil m.setColor(black) assert(rtyp.TypeArgs().Len() > 0) // Look up the original method. _, orig := lookupMethod(rtyp.orig.methods, rtyp.obj.pkg, m.name) assert(orig != nil) if check != nil { check.objDecl(orig, nil) } origSig := orig.typ.(*Signature) if origSig.RecvTypeParams().Len() != rtyp.targs.Len() { m.typ = origSig // or new(Signature), but we can't use Typ[Invalid]: Funcs must have Signature type return // error reported elsewhere } smap := makeSubstMap(origSig.RecvTypeParams().list(), rtyp.targs.list()) sig := check.subst(orig.pos, origSig, smap, env).(*Signature) if sig == origSig { // No substitution occurred, but we still need to create a copy to hold the // instantiated receiver. copy := *origSig sig = © } sig.recv = NewParam(origSig.recv.pos, origSig.recv.pkg, origSig.recv.name, rtyp) m.typ = sig } // safeUnderlying returns the underlying of typ without expanding instances, to // avoid infinite recursion. // // TODO(rfindley): eliminate this function or give it a better name. func safeUnderlying(typ Type) Type { if t, _ := typ.(*Named); t != nil { return t.resolve(nil).underlying } return typ.Underlying() }