// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package elliptic import ( "crypto/elliptic/internal/nistec" "crypto/rand" "math/big" ) // p521Curve is a Curve implementation based on nistec.P521Point. // // It's a wrapper that exposes the big.Int-based Curve interface and encodes the // legacy idiosyncrasies it requires, such as invalid and infinity point // handling. // // To interact with the nistec package, points are encoded into and decoded from // properly formatted byte slices. All big.Int use is limited to this package. // Encoding and decoding is 1/1000th of the runtime of a scalar multiplication, // so the overhead is acceptable. type p521Curve struct { params *CurveParams } var p521 p521Curve var _ Curve = p521 func initP521() { p521.params = &CurveParams{ Name: "P-521", BitSize: 521, // FIPS 186-4, section D.1.2.5 P: bigFromDecimal("68647976601306097149819007990813932172694353001433" + "0540939446345918554318339765605212255964066145455497729631139148" + "0858037121987999716643812574028291115057151"), N: bigFromDecimal("68647976601306097149819007990813932172694353001433" + "0540939446345918554318339765539424505774633321719753296399637136" + "3321113864768612440380340372808892707005449"), B: bigFromHex("0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8" + "b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef" + "451fd46b503f00"), Gx: bigFromHex("00c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f8" + "28af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf9" + "7e7e31c2e5bd66"), Gy: bigFromHex("011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817" + "afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088" + "be94769fd16650"), } } func (curve p521Curve) Params() *CurveParams { return curve.params } func (curve p521Curve) IsOnCurve(x, y *big.Int) bool { // IsOnCurve is documented to reject (0, 0), the conventional point at // infinity, which however is accepted by p521PointFromAffine. if x.Sign() == 0 && y.Sign() == 0 { return false } _, ok := p521PointFromAffine(x, y) return ok } func p521PointFromAffine(x, y *big.Int) (p *nistec.P521Point, ok bool) { // (0, 0) is by convention the point at infinity, which can't be represented // in affine coordinates. Marshal incorrectly encodes it as an uncompressed // point, which SetBytes would correctly reject. See Issue 37294. if x.Sign() == 0 && y.Sign() == 0 { return nistec.NewP521Point(), true } if x.Sign() < 0 || y.Sign() < 0 { return nil, false } if x.BitLen() > 521 || y.BitLen() > 521 { return nil, false } p, err := nistec.NewP521Point().SetBytes(Marshal(P521(), x, y)) if err != nil { return nil, false } return p, true } func p521PointToAffine(p *nistec.P521Point) (x, y *big.Int) { out := p.Bytes() if len(out) == 1 && out[0] == 0 { // This is the correct encoding of the point at infinity, which // Unmarshal does not support. See Issue 37294. return new(big.Int), new(big.Int) } x, y = Unmarshal(P521(), out) if x == nil { panic("crypto/elliptic: internal error: Unmarshal rejected a valid point encoding") } return x, y } // p521RandomPoint returns a random point on the curve. It's used when Add, // Double, or ScalarMult are fed a point not on the curve, which is undefined // behavior. Originally, we used to do the math on it anyway (which allows // invalid curve attacks) and relied on the caller and Unmarshal to avoid this // happening in the first place. Now, we just can't construct a nistec.P521Point // for an invalid pair of coordinates, because that API is safer. If we panic, // we risk introducing a DoS. If we return nil, we risk a panic. If we return // the input, ecdsa.Verify might fail open. The safest course seems to be to // return a valid, random point, which hopefully won't help the attacker. func p521RandomPoint() (x, y *big.Int) { _, x, y, err := GenerateKey(P521(), rand.Reader) if err != nil { panic("crypto/elliptic: failed to generate random point") } return x, y } func (p521Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { p1, ok := p521PointFromAffine(x1, y1) if !ok { return p521RandomPoint() } p2, ok := p521PointFromAffine(x2, y2) if !ok { return p521RandomPoint() } return p521PointToAffine(p1.Add(p1, p2)) } func (p521Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { p, ok := p521PointFromAffine(x1, y1) if !ok { return p521RandomPoint() } return p521PointToAffine(p.Double(p)) } func (p521Curve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) { p, ok := p521PointFromAffine(Bx, By) if !ok { return p521RandomPoint() } return p521PointToAffine(p.ScalarMult(p, scalar)) } func (p521Curve) ScalarBaseMult(scalar []byte) (*big.Int, *big.Int) { p := nistec.NewP521Generator() return p521PointToAffine(p.ScalarMult(p, scalar)) } func bigFromDecimal(s string) *big.Int { b, ok := new(big.Int).SetString(s, 10) if !ok { panic("invalid encoding") } return b } func bigFromHex(s string) *big.Int { b, ok := new(big.Int).SetString(s, 16) if !ok { panic("invalid encoding") } return b }