// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package elliptic import ( "crypto/elliptic/internal/nistec" "crypto/rand" "math/big" ) // p384Curve is a Curve implementation based on nistec.P384Point. // // It's a wrapper that exposes the big.Int-based Curve interface and encodes the // legacy idiosyncrasies it requires, such as invalid and infinity point // handling. // // To interact with the nistec package, points are encoded into and decoded from // properly formatted byte slices. All big.Int use is limited to this package. // Encoding and decoding is 1/1000th of the runtime of a scalar multiplication, // so the overhead is acceptable. type p384Curve struct { params *CurveParams } var p384 p384Curve var _ Curve = p384 func initP384() { p384.params = &CurveParams{ Name: "P-384", BitSize: 384, // FIPS 186-4, section D.1.2.4 P: bigFromDecimal("394020061963944792122790401001436138050797392704654" + "46667948293404245721771496870329047266088258938001861606973112319"), N: bigFromDecimal("394020061963944792122790401001436138050797392704654" + "46667946905279627659399113263569398956308152294913554433653942643"), B: bigFromHex("b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088" + "f5013875ac656398d8a2ed19d2a85c8edd3ec2aef"), Gx: bigFromHex("aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741" + "e082542a385502f25dbf55296c3a545e3872760ab7"), Gy: bigFromHex("3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da31" + "13b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f"), } } func (curve p384Curve) Params() *CurveParams { return curve.params } func (curve p384Curve) IsOnCurve(x, y *big.Int) bool { // IsOnCurve is documented to reject (0, 0), the conventional point at // infinity, which however is accepted by p384PointFromAffine. if x.Sign() == 0 && y.Sign() == 0 { return false } _, ok := p384PointFromAffine(x, y) return ok } func p384PointFromAffine(x, y *big.Int) (p *nistec.P384Point, ok bool) { // (0, 0) is by convention the point at infinity, which can't be represented // in affine coordinates. Marshal incorrectly encodes it as an uncompressed // point, which SetBytes would correctly reject. See Issue 37294. if x.Sign() == 0 && y.Sign() == 0 { return nistec.NewP384Point(), true } if x.Sign() < 0 || y.Sign() < 0 { return nil, false } if x.BitLen() > 384 || y.BitLen() > 384 { return nil, false } p, err := nistec.NewP384Point().SetBytes(Marshal(P384(), x, y)) if err != nil { return nil, false } return p, true } func p384PointToAffine(p *nistec.P384Point) (x, y *big.Int) { out := p.Bytes() if len(out) == 1 && out[0] == 0 { // This is the correct encoding of the point at infinity, which // Unmarshal does not support. See Issue 37294. return new(big.Int), new(big.Int) } x, y = Unmarshal(P384(), out) if x == nil { panic("crypto/elliptic: internal error: Unmarshal rejected a valid point encoding") } return x, y } // p384RandomPoint returns a random point on the curve. It's used when Add, // Double, or ScalarMult are fed a point not on the curve, which is undefined // behavior. Originally, we used to do the math on it anyway (which allows // invalid curve attacks) and relied on the caller and Unmarshal to avoid this // happening in the first place. Now, we just can't construct a nistec.P384Point // for an invalid pair of coordinates, because that API is safer. If we panic, // we risk introducing a DoS. If we return nil, we risk a panic. If we return // the input, ecdsa.Verify might fail open. The safest course seems to be to // return a valid, random point, which hopefully won't help the attacker. func p384RandomPoint() (x, y *big.Int) { _, x, y, err := GenerateKey(P384(), rand.Reader) if err != nil { panic("crypto/elliptic: failed to generate random point") } return x, y } func (p384Curve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { p1, ok := p384PointFromAffine(x1, y1) if !ok { return p384RandomPoint() } p2, ok := p384PointFromAffine(x2, y2) if !ok { return p384RandomPoint() } return p384PointToAffine(p1.Add(p1, p2)) } func (p384Curve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { p, ok := p384PointFromAffine(x1, y1) if !ok { return p384RandomPoint() } return p384PointToAffine(p.Double(p)) } func (p384Curve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) { p, ok := p384PointFromAffine(Bx, By) if !ok { return p384RandomPoint() } return p384PointToAffine(p.ScalarMult(p, scalar)) } func (p384Curve) ScalarBaseMult(scalar []byte) (*big.Int, *big.Int) { p := nistec.NewP384Generator() return p384PointToAffine(p.ScalarMult(p, scalar)) }