// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package elliptic import ( "crypto/elliptic/internal/nistec" "crypto/rand" "errors" "math/big" ) var p224 = &nistCurve[*nistec.P224Point]{ newPoint: nistec.NewP224Point, newGenerator: nistec.NewP224Generator, } func initP224() { p224.params = &CurveParams{ Name: "P-224", BitSize: 224, // FIPS 186-4, section D.1.2.2 P: bigFromDecimal("26959946667150639794667015087019630673557916260026308143510066298881"), N: bigFromDecimal("26959946667150639794667015087019625940457807714424391721682722368061"), B: bigFromHex("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4"), Gx: bigFromHex("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21"), Gy: bigFromHex("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34"), } } var p384 = &nistCurve[*nistec.P384Point]{ newPoint: nistec.NewP384Point, newGenerator: nistec.NewP384Generator, } func initP384() { p384.params = &CurveParams{ Name: "P-384", BitSize: 384, // FIPS 186-4, section D.1.2.4 P: bigFromDecimal("394020061963944792122790401001436138050797392704654" + "46667948293404245721771496870329047266088258938001861606973112319"), N: bigFromDecimal("394020061963944792122790401001436138050797392704654" + "46667946905279627659399113263569398956308152294913554433653942643"), B: bigFromHex("b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088" + "f5013875ac656398d8a2ed19d2a85c8edd3ec2aef"), Gx: bigFromHex("aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741" + "e082542a385502f25dbf55296c3a545e3872760ab7"), Gy: bigFromHex("3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da31" + "13b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f"), } } var p521 = &nistCurve[*nistec.P521Point]{ newPoint: nistec.NewP521Point, newGenerator: nistec.NewP521Generator, } func initP521() { p521.params = &CurveParams{ Name: "P-521", BitSize: 521, // FIPS 186-4, section D.1.2.5 P: bigFromDecimal("68647976601306097149819007990813932172694353001433" + "0540939446345918554318339765605212255964066145455497729631139148" + "0858037121987999716643812574028291115057151"), N: bigFromDecimal("68647976601306097149819007990813932172694353001433" + "0540939446345918554318339765539424505774633321719753296399637136" + "3321113864768612440380340372808892707005449"), B: bigFromHex("0051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8" + "b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef" + "451fd46b503f00"), Gx: bigFromHex("00c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f8" + "28af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf9" + "7e7e31c2e5bd66"), Gy: bigFromHex("011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817" + "afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088" + "be94769fd16650"), } } // nistCurve is a Curve implementation based on a nistec Point. // // It's a wrapper that exposes the big.Int-based Curve interface and encodes the // legacy idiosyncrasies it requires, such as invalid and infinity point // handling. // // To interact with the nistec package, points are encoded into and decoded from // properly formatted byte slices. All big.Int use is limited to this package. // Encoding and decoding is 1/1000th of the runtime of a scalar multiplication, // so the overhead is acceptable. type nistCurve[Point nistPoint[Point]] struct { newPoint func() Point newGenerator func() Point params *CurveParams } // nistPoint is a generic constraint for the nistec Point types. type nistPoint[T any] interface { Bytes() []byte SetBytes([]byte) (T, error) Add(T, T) T Double(T) T ScalarMult(T, []byte) T } func (curve *nistCurve[Point]) Params() *CurveParams { return curve.params } func (curve *nistCurve[Point]) IsOnCurve(x, y *big.Int) bool { // IsOnCurve is documented to reject (0, 0), the conventional point at // infinity, which however is accepted by pointFromAffine. if x.Sign() == 0 && y.Sign() == 0 { return false } _, err := curve.pointFromAffine(x, y) return err == nil } func (curve *nistCurve[Point]) pointFromAffine(x, y *big.Int) (p Point, err error) { p = curve.newPoint() // (0, 0) is by convention the point at infinity, which can't be represented // in affine coordinates. See Issue 37294. if x.Sign() == 0 && y.Sign() == 0 { return p, nil } // Reject values that would not get correctly encoded. if x.Sign() < 0 || y.Sign() < 0 { return p, errors.New("negative coordinate") } if x.BitLen() > curve.params.BitSize || y.BitLen() > curve.params.BitSize { return p, errors.New("overflowing coordinate") } // Encode the coordinates and let SetBytes reject invalid points. byteLen := (curve.params.BitSize + 7) / 8 buf := make([]byte, 1+2*byteLen) buf[0] = 4 // uncompressed point x.FillBytes(buf[1 : 1+byteLen]) y.FillBytes(buf[1+byteLen : 1+2*byteLen]) return p.SetBytes(buf) } func (curve *nistCurve[Point]) pointToAffine(p Point) (x, y *big.Int) { out := p.Bytes() if len(out) == 1 && out[0] == 0 { // This is the correct encoding of the point at infinity, which // Unmarshal does not support. See Issue 37294. return new(big.Int), new(big.Int) } x, y = Unmarshal(curve, out) if x == nil { panic("crypto/elliptic: internal error: Unmarshal rejected a valid point encoding") } return x, y } // randomPoint returns a random point on the curve. It's used when Add, // Double, or ScalarMult are fed a point not on the curve, which is undefined // behavior. Originally, we used to do the math on it anyway (which allows // invalid curve attacks) and relied on the caller and Unmarshal to avoid this // happening in the first place. Now, we just can't construct a nistec Point // for an invalid pair of coordinates, because that API is safer. If we panic, // we risk introducing a DoS. If we return nil, we risk a panic. If we return // the input, ecdsa.Verify might fail open. The safest course seems to be to // return a valid, random point, which hopefully won't help the attacker. func (curve *nistCurve[Point]) randomPoint() (x, y *big.Int) { _, x, y, err := GenerateKey(curve, rand.Reader) if err != nil { panic("crypto/elliptic: failed to generate random point") } return x, y } func (curve *nistCurve[Point]) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { p1, err := curve.pointFromAffine(x1, y1) if err != nil { return curve.randomPoint() } p2, err := curve.pointFromAffine(x2, y2) if err != nil { return curve.randomPoint() } return curve.pointToAffine(p1.Add(p1, p2)) } func (curve *nistCurve[Point]) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { p, err := curve.pointFromAffine(x1, y1) if err != nil { return curve.randomPoint() } return curve.pointToAffine(p.Double(p)) } func (curve *nistCurve[Point]) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) { p, err := curve.pointFromAffine(Bx, By) if err != nil { return curve.randomPoint() } return curve.pointToAffine(p.ScalarMult(p, scalar)) } func (curve *nistCurve[Point]) ScalarBaseMult(scalar []byte) (*big.Int, *big.Int) { p := curve.newGenerator() return curve.pointToAffine(p.ScalarMult(p, scalar)) } func bigFromDecimal(s string) *big.Int { b, ok := new(big.Int).SetString(s, 10) if !ok { panic("invalid encoding") } return b } func bigFromHex(s string) *big.Int { b, ok := new(big.Int).SetString(s, 16) if !ok { panic("invalid encoding") } return b }