// Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build ignore package main import ( "crypto/elliptic" "encoding/binary" "log" "os" ) func main() { // Generate precomputed p256 tables. var pre [43][32 * 8]uint64 basePoint := []uint64{ 0x79e730d418a9143c, 0x75ba95fc5fedb601, 0x79fb732b77622510, 0x18905f76a53755c6, 0xddf25357ce95560a, 0x8b4ab8e4ba19e45c, 0xd2e88688dd21f325, 0x8571ff1825885d85, 0x0000000000000001, 0xffffffff00000000, 0xffffffffffffffff, 0x00000000fffffffe, } t1 := make([]uint64, 12) t2 := make([]uint64, 12) copy(t2, basePoint) zInv := make([]uint64, 4) zInvSq := make([]uint64, 4) for j := 0; j < 32; j++ { copy(t1, t2) for i := 0; i < 43; i++ { // The window size is 6 so we need to double 6 times. if i != 0 { for k := 0; k < 6; k++ { elliptic.P256PointDoubleAsm(t1, t1) } } // Convert the point to affine form. (Its values are // still in Montgomery form however.) elliptic.P256Inverse(zInv, t1[8:12]) elliptic.P256Sqr(zInvSq, zInv, 1) elliptic.P256Mul(zInv, zInv, zInvSq) elliptic.P256Mul(t1[:4], t1[:4], zInvSq) elliptic.P256Mul(t1[4:8], t1[4:8], zInv) copy(t1[8:12], basePoint[8:12]) // Update the table entry copy(pre[i][j*8:], t1[:8]) } if j == 0 { elliptic.P256PointDoubleAsm(t2, basePoint) } else { elliptic.P256PointAddAsm(t2, t2, basePoint) } } var bin []byte // Dump the precomputed tables, flattened, little-endian. // These tables are used directly by assembly on little-endian platforms. // go:embedding the data into a string lets it be stored readonly. for i := range &pre { for _, v := range &pre[i] { var u8 [8]byte binary.LittleEndian.PutUint64(u8[:], v) bin = append(bin, u8[:]...) } } err := os.WriteFile("p256_asm_table.bin", bin, 0644) if err != nil { log.Fatal(err) } }