// Inferno utils/5l/asm.c // https://bitbucket.org/inferno-os/inferno-os/src/master/utils/5l/asm.c // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package ppc64 import ( "cmd/internal/objabi" "cmd/internal/sys" "cmd/link/internal/ld" "cmd/link/internal/loader" "cmd/link/internal/sym" "debug/elf" "encoding/binary" "fmt" "log" "strings" ) func genplt(ctxt *ld.Link, ldr *loader.Loader) { // The ppc64 ABI PLT has similar concepts to other // architectures, but is laid out quite differently. When we // see an R_PPC64_REL24 relocation to a dynamic symbol // (indicating that the call needs to go through the PLT), we // generate up to three stubs and reserve a PLT slot. // // 1) The call site will be bl x; nop (where the relocation // applies to the bl). We rewrite this to bl x_stub; ld // r2,24(r1). The ld is necessary because x_stub will save // r2 (the TOC pointer) at 24(r1) (the "TOC save slot"). // // 2) We reserve space for a pointer in the .plt section (once // per referenced dynamic function). .plt is a data // section filled solely by the dynamic linker (more like // .plt.got on other architectures). Initially, the // dynamic linker will fill each slot with a pointer to the // corresponding x@plt entry point. // // 3) We generate the "call stub" x_stub (once per dynamic // function/object file pair). This saves the TOC in the // TOC save slot, reads the function pointer from x's .plt // slot and calls it like any other global entry point // (including setting r12 to the function address). // // 4) We generate the "symbol resolver stub" x@plt (once per // dynamic function). This is solely a branch to the glink // resolver stub. // // 5) We generate the glink resolver stub (only once). This // computes which symbol resolver stub we came through and // invokes the dynamic resolver via a pointer provided by // the dynamic linker. This will patch up the .plt slot to // point directly at the function so future calls go // straight from the call stub to the real function, and // then call the function. // NOTE: It's possible we could make ppc64 closer to other // architectures: ppc64's .plt is like .plt.got on other // platforms and ppc64's .glink is like .plt on other // platforms. // Find all R_PPC64_REL24 relocations that reference dynamic // imports. Reserve PLT entries for these symbols and // generate call stubs. The call stubs need to live in .text, // which is why we need to do this pass this early. // // This assumes "case 1" from the ABI, where the caller needs // us to save and restore the TOC pointer. var stubs []loader.Sym for _, s := range ctxt.Textp { relocs := ldr.Relocs(s) for i := 0; i < relocs.Count(); i++ { r := relocs.At(i) if r.Type() != objabi.ElfRelocOffset+objabi.RelocType(elf.R_PPC64_REL24) || ldr.SymType(r.Sym()) != sym.SDYNIMPORT { continue } // Reserve PLT entry and generate symbol // resolver addpltsym(ctxt, ldr, r.Sym()) // Generate call stub. Important to note that we're looking // up the stub using the same version as the parent symbol (s), // needed so that symtoc() will select the right .TOC. symbol // when processing the stub. In older versions of the linker // this was done by setting stub.Outer to the parent, but // if the stub has the right version initially this is not needed. n := fmt.Sprintf("%s.%s", ldr.SymName(s), ldr.SymName(r.Sym())) stub := ldr.CreateSymForUpdate(n, ldr.SymVersion(s)) if stub.Size() == 0 { stubs = append(stubs, stub.Sym()) gencallstub(ctxt, ldr, 1, stub, r.Sym()) } // Update the relocation to use the call stub r.SetSym(stub.Sym()) // Make the symbol writeable so we can fixup toc. su := ldr.MakeSymbolUpdater(s) su.MakeWritable() p := su.Data() // Check for toc restore slot (a nop), and replace with toc restore. var nop uint32 if len(p) >= int(r.Off()+8) { nop = ctxt.Arch.ByteOrder.Uint32(p[r.Off()+4:]) } if nop != 0x60000000 { ldr.Errorf(s, "Symbol %s is missing toc restoration slot at offset %d", ldr.SymName(s), r.Off()+4) } const o1 = 0xe8410018 // ld r2,24(r1) ctxt.Arch.ByteOrder.PutUint32(p[r.Off()+4:], o1) } } // Put call stubs at the beginning (instead of the end). // So when resolving the relocations to calls to the stubs, // the addresses are known and trampolines can be inserted // when necessary. ctxt.Textp = append(stubs, ctxt.Textp...) } func genaddmoduledata(ctxt *ld.Link, ldr *loader.Loader) { initfunc, addmoduledata := ld.PrepareAddmoduledata(ctxt) if initfunc == nil { return } o := func(op uint32) { initfunc.AddUint32(ctxt.Arch, op) } // addis r2, r12, .TOC.-func@ha toc := ctxt.DotTOC[0] rel1, _ := initfunc.AddRel(objabi.R_ADDRPOWER_PCREL) rel1.SetOff(0) rel1.SetSiz(8) rel1.SetSym(toc) o(0x3c4c0000) // addi r2, r2, .TOC.-func@l o(0x38420000) // mflr r31 o(0x7c0802a6) // stdu r31, -32(r1) o(0xf801ffe1) // addis r3, r2, local.moduledata@got@ha var tgt loader.Sym if s := ldr.Lookup("local.moduledata", 0); s != 0 { tgt = s } else if s := ldr.Lookup("local.pluginmoduledata", 0); s != 0 { tgt = s } else { tgt = ldr.LookupOrCreateSym("runtime.firstmoduledata", 0) } rel2, _ := initfunc.AddRel(objabi.R_ADDRPOWER_GOT) rel2.SetOff(int32(initfunc.Size())) rel2.SetSiz(8) rel2.SetSym(tgt) o(0x3c620000) // ld r3, local.moduledata@got@l(r3) o(0xe8630000) // bl runtime.addmoduledata rel3, _ := initfunc.AddRel(objabi.R_CALLPOWER) rel3.SetOff(int32(initfunc.Size())) rel3.SetSiz(4) rel3.SetSym(addmoduledata) o(0x48000001) // nop o(0x60000000) // ld r31, 0(r1) o(0xe8010000) // mtlr r31 o(0x7c0803a6) // addi r1,r1,32 o(0x38210020) // blr o(0x4e800020) } func gentext(ctxt *ld.Link, ldr *loader.Loader) { if ctxt.DynlinkingGo() { genaddmoduledata(ctxt, ldr) } if ctxt.LinkMode == ld.LinkInternal { genplt(ctxt, ldr) } } // Construct a call stub in stub that calls symbol targ via its PLT // entry. func gencallstub(ctxt *ld.Link, ldr *loader.Loader, abicase int, stub *loader.SymbolBuilder, targ loader.Sym) { if abicase != 1 { // If we see R_PPC64_TOCSAVE or R_PPC64_REL24_NOTOC // relocations, we'll need to implement cases 2 and 3. log.Fatalf("gencallstub only implements case 1 calls") } plt := ctxt.PLT stub.SetType(sym.STEXT) // Save TOC pointer in TOC save slot stub.AddUint32(ctxt.Arch, 0xf8410018) // std r2,24(r1) // Load the function pointer from the PLT. rel, ri1 := stub.AddRel(objabi.R_POWER_TOC) rel.SetOff(int32(stub.Size())) rel.SetSiz(2) rel.SetAdd(int64(ldr.SymPlt(targ))) rel.SetSym(plt) if ctxt.Arch.ByteOrder == binary.BigEndian { rel.SetOff(rel.Off() + int32(rel.Siz())) } ldr.SetRelocVariant(stub.Sym(), int(ri1), sym.RV_POWER_HA) stub.AddUint32(ctxt.Arch, 0x3d820000) // addis r12,r2,targ@plt@toc@ha rel2, ri2 := stub.AddRel(objabi.R_POWER_TOC) rel2.SetOff(int32(stub.Size())) rel2.SetSiz(2) rel2.SetAdd(int64(ldr.SymPlt(targ))) rel2.SetSym(plt) if ctxt.Arch.ByteOrder == binary.BigEndian { rel2.SetOff(rel2.Off() + int32(rel2.Siz())) } ldr.SetRelocVariant(stub.Sym(), int(ri2), sym.RV_POWER_LO) stub.AddUint32(ctxt.Arch, 0xe98c0000) // ld r12,targ@plt@toc@l(r12) // Jump to the loaded pointer stub.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12 stub.AddUint32(ctxt.Arch, 0x4e800420) // bctr } func adddynrel(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym, r loader.Reloc, rIdx int) bool { if target.IsElf() { return addelfdynrel(target, ldr, syms, s, r, rIdx) } else if target.IsAIX() { return ld.Xcoffadddynrel(target, ldr, syms, s, r, rIdx) } return false } func addelfdynrel(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym, r loader.Reloc, rIdx int) bool { targ := r.Sym() var targType sym.SymKind if targ != 0 { targType = ldr.SymType(targ) } switch r.Type() { default: if r.Type() >= objabi.ElfRelocOffset { ldr.Errorf(s, "unexpected relocation type %d (%s)", r.Type(), sym.RelocName(target.Arch, r.Type())) return false } // Handle relocations found in ELF object files. case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL24): su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_CALLPOWER) // This is a local call, so the caller isn't setting // up r12 and r2 is the same for the caller and // callee. Hence, we need to go to the local entry // point. (If we don't do this, the callee will try // to use r12 to compute r2.) su.SetRelocAdd(rIdx, r.Add()+int64(ldr.SymLocalentry(targ))*4) if targType == sym.SDYNIMPORT { // Should have been handled in elfsetupplt ldr.Errorf(s, "unexpected R_PPC64_REL24 for dyn import") } return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC_REL32): su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_PCREL) su.SetRelocAdd(rIdx, r.Add()+4) if targType == sym.SDYNIMPORT { ldr.Errorf(s, "unexpected R_PPC_REL32 for dyn import") } return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_ADDR64): su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_ADDR) if targType == sym.SDYNIMPORT { // These happen in .toc sections ld.Adddynsym(ldr, target, syms, targ) rela := ldr.MakeSymbolUpdater(syms.Rela) rela.AddAddrPlus(target.Arch, s, int64(r.Off())) rela.AddUint64(target.Arch, elf.R_INFO(uint32(ldr.SymDynid(targ)), uint32(elf.R_PPC64_ADDR64))) rela.AddUint64(target.Arch, uint64(r.Add())) su.SetRelocType(rIdx, objabi.ElfRelocOffset) // ignore during relocsym } else if target.IsPIE() && target.IsInternal() { // For internal linking PIE, this R_ADDR relocation cannot // be resolved statically. We need to generate a dynamic // relocation. Let the code below handle it. break } return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16): su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_POWER_TOC) ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_LO|sym.RV_CHECK_OVERFLOW) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_LO): su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_POWER_TOC) ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_LO) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_HA): su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_POWER_TOC) ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HA|sym.RV_CHECK_OVERFLOW) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_HI): su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_POWER_TOC) ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HI|sym.RV_CHECK_OVERFLOW) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_DS): su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_POWER_TOC) ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_DS|sym.RV_CHECK_OVERFLOW) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_LO_DS): su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_POWER_TOC) ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_DS) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_LO): su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_PCREL) ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_LO) su.SetRelocAdd(rIdx, r.Add()+2) // Compensate for relocation size of 2 return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_HI): su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_PCREL) ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HI|sym.RV_CHECK_OVERFLOW) su.SetRelocAdd(rIdx, r.Add()+2) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_HA): su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_PCREL) ldr.SetRelocVariant(s, rIdx, sym.RV_POWER_HA|sym.RV_CHECK_OVERFLOW) su.SetRelocAdd(rIdx, r.Add()+2) return true } // Handle references to ELF symbols from our own object files. relocs := ldr.Relocs(s) r = relocs.At(rIdx) switch r.Type() { case objabi.R_ADDR: if ldr.SymType(s) == sym.STEXT { log.Fatalf("R_ADDR relocation in text symbol %s is unsupported\n", ldr.SymName(s)) } if target.IsPIE() && target.IsInternal() { // When internally linking, generate dynamic relocations // for all typical R_ADDR relocations. The exception // are those R_ADDR that are created as part of generating // the dynamic relocations and must be resolved statically. // // There are three phases relevant to understanding this: // // dodata() // we are here // address() // symbol address assignment // reloc() // resolution of static R_ADDR relocs // // At this point symbol addresses have not been // assigned yet (as the final size of the .rela section // will affect the addresses), and so we cannot write // the Elf64_Rela.r_offset now. Instead we delay it // until after the 'address' phase of the linker is // complete. We do this via Addaddrplus, which creates // a new R_ADDR relocation which will be resolved in // the 'reloc' phase. // // These synthetic static R_ADDR relocs must be skipped // now, or else we will be caught in an infinite loop // of generating synthetic relocs for our synthetic // relocs. // // Furthermore, the rela sections contain dynamic // relocations with R_ADDR relocations on // Elf64_Rela.r_offset. This field should contain the // symbol offset as determined by reloc(), not the // final dynamically linked address as a dynamic // relocation would provide. switch ldr.SymName(s) { case ".dynsym", ".rela", ".rela.plt", ".got.plt", ".dynamic": return false } } else { // Either internally linking a static executable, // in which case we can resolve these relocations // statically in the 'reloc' phase, or externally // linking, in which case the relocation will be // prepared in the 'reloc' phase and passed to the // external linker in the 'asmb' phase. if ldr.SymType(s) != sym.SDATA && ldr.SymType(s) != sym.SRODATA { break } } // Generate R_PPC64_RELATIVE relocations for best // efficiency in the dynamic linker. // // As noted above, symbol addresses have not been // assigned yet, so we can't generate the final reloc // entry yet. We ultimately want: // // r_offset = s + r.Off // r_info = R_PPC64_RELATIVE // r_addend = targ + r.Add // // The dynamic linker will set *offset = base address + // addend. // // AddAddrPlus is used for r_offset and r_addend to // generate new R_ADDR relocations that will update // these fields in the 'reloc' phase. rela := ldr.MakeSymbolUpdater(syms.Rela) rela.AddAddrPlus(target.Arch, s, int64(r.Off())) if r.Siz() == 8 { rela.AddUint64(target.Arch, elf.R_INFO(0, uint32(elf.R_PPC64_RELATIVE))) } else { ldr.Errorf(s, "unexpected relocation for dynamic symbol %s", ldr.SymName(targ)) } rela.AddAddrPlus(target.Arch, targ, int64(r.Add())) // Not mark r done here. So we still apply it statically, // so in the file content we'll also have the right offset // to the relocation target. So it can be examined statically // (e.g. go version). return true } return false } func xcoffreloc1(arch *sys.Arch, out *ld.OutBuf, ldr *loader.Loader, s loader.Sym, r loader.ExtReloc, sectoff int64) bool { rs := r.Xsym emitReloc := func(v uint16, off uint64) { out.Write64(uint64(sectoff) + off) out.Write32(uint32(ldr.SymDynid(rs))) out.Write16(v) } var v uint16 switch r.Type { default: return false case objabi.R_ADDR, objabi.R_DWARFSECREF: v = ld.XCOFF_R_POS if r.Size == 4 { v |= 0x1F << 8 } else { v |= 0x3F << 8 } emitReloc(v, 0) case objabi.R_ADDRPOWER_TOCREL: case objabi.R_ADDRPOWER_TOCREL_DS: emitReloc(ld.XCOFF_R_TOCU|(0x0F<<8), 2) emitReloc(ld.XCOFF_R_TOCL|(0x0F<<8), 6) case objabi.R_POWER_TLS_LE: // This only supports 16b relocations. It is fixed up in archreloc. emitReloc(ld.XCOFF_R_TLS_LE|0x0F<<8, 2) case objabi.R_CALLPOWER: if r.Size != 4 { return false } emitReloc(ld.XCOFF_R_RBR|0x19<<8, 0) case objabi.R_XCOFFREF: emitReloc(ld.XCOFF_R_REF|0x3F<<8, 0) } return true } func elfreloc1(ctxt *ld.Link, out *ld.OutBuf, ldr *loader.Loader, s loader.Sym, r loader.ExtReloc, ri int, sectoff int64) bool { // Beware that bit0~bit15 start from the third byte of a instruction in Big-Endian machines. rt := r.Type if rt == objabi.R_ADDR || rt == objabi.R_POWER_TLS || rt == objabi.R_CALLPOWER { } else { if ctxt.Arch.ByteOrder == binary.BigEndian { sectoff += 2 } } out.Write64(uint64(sectoff)) elfsym := ld.ElfSymForReloc(ctxt, r.Xsym) switch rt { default: return false case objabi.R_ADDR, objabi.R_DWARFSECREF: switch r.Size { case 4: out.Write64(uint64(elf.R_PPC64_ADDR32) | uint64(elfsym)<<32) case 8: out.Write64(uint64(elf.R_PPC64_ADDR64) | uint64(elfsym)<<32) default: return false } case objabi.R_POWER_TLS: out.Write64(uint64(elf.R_PPC64_TLS) | uint64(elfsym)<<32) case objabi.R_POWER_TLS_LE: out.Write64(uint64(elf.R_PPC64_TPREL16_HA) | uint64(elfsym)<<32) out.Write64(uint64(r.Xadd)) out.Write64(uint64(sectoff + 4)) out.Write64(uint64(elf.R_PPC64_TPREL16_LO) | uint64(elfsym)<<32) case objabi.R_POWER_TLS_IE: out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_HA) | uint64(elfsym)<<32) out.Write64(uint64(r.Xadd)) out.Write64(uint64(sectoff + 4)) out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_LO_DS) | uint64(elfsym)<<32) case objabi.R_ADDRPOWER: out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32) out.Write64(uint64(r.Xadd)) out.Write64(uint64(sectoff + 4)) out.Write64(uint64(elf.R_PPC64_ADDR16_LO) | uint64(elfsym)<<32) case objabi.R_ADDRPOWER_DS: out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32) out.Write64(uint64(r.Xadd)) out.Write64(uint64(sectoff + 4)) out.Write64(uint64(elf.R_PPC64_ADDR16_LO_DS) | uint64(elfsym)<<32) case objabi.R_ADDRPOWER_GOT: out.Write64(uint64(elf.R_PPC64_GOT16_HA) | uint64(elfsym)<<32) out.Write64(uint64(r.Xadd)) out.Write64(uint64(sectoff + 4)) out.Write64(uint64(elf.R_PPC64_GOT16_LO_DS) | uint64(elfsym)<<32) case objabi.R_ADDRPOWER_PCREL: out.Write64(uint64(elf.R_PPC64_REL16_HA) | uint64(elfsym)<<32) out.Write64(uint64(r.Xadd)) out.Write64(uint64(sectoff + 4)) out.Write64(uint64(elf.R_PPC64_REL16_LO) | uint64(elfsym)<<32) r.Xadd += 4 case objabi.R_ADDRPOWER_TOCREL: out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32) out.Write64(uint64(r.Xadd)) out.Write64(uint64(sectoff + 4)) out.Write64(uint64(elf.R_PPC64_TOC16_LO) | uint64(elfsym)<<32) case objabi.R_ADDRPOWER_TOCREL_DS: out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32) out.Write64(uint64(r.Xadd)) out.Write64(uint64(sectoff + 4)) out.Write64(uint64(elf.R_PPC64_TOC16_LO_DS) | uint64(elfsym)<<32) case objabi.R_CALLPOWER: if r.Size != 4 { return false } out.Write64(uint64(elf.R_PPC64_REL24) | uint64(elfsym)<<32) } out.Write64(uint64(r.Xadd)) return true } func elfsetupplt(ctxt *ld.Link, plt, got *loader.SymbolBuilder, dynamic loader.Sym) { if plt.Size() == 0 { // The dynamic linker stores the address of the // dynamic resolver and the DSO identifier in the two // doublewords at the beginning of the .plt section // before the PLT array. Reserve space for these. plt.SetSize(16) } } func machoreloc1(*sys.Arch, *ld.OutBuf, *loader.Loader, loader.Sym, loader.ExtReloc, int64) bool { return false } // Return the value of .TOC. for symbol s func symtoc(ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym) int64 { v := ldr.SymVersion(s) if out := ldr.OuterSym(s); out != 0 { v = ldr.SymVersion(out) } toc := syms.DotTOC[v] if toc == 0 { ldr.Errorf(s, "TOC-relative relocation in object without .TOC.") return 0 } return ldr.SymValue(toc) } // archreloctoc relocates a TOC relative symbol. func archreloctoc(ldr *loader.Loader, target *ld.Target, syms *ld.ArchSyms, r loader.Reloc, s loader.Sym, val int64) int64 { rs := r.Sym() var o1, o2 uint32 var t int64 useAddi := false if target.IsBigEndian() { o1 = uint32(val >> 32) o2 = uint32(val) } else { o1 = uint32(val) o2 = uint32(val >> 32) } // On AIX, TOC data accesses are always made indirectly against R2 (a sequence of addis+ld+load/store). If the // The target of the load is known, the sequence can be written into addis+addi+load/store. On Linux, // TOC data accesses are always made directly against R2 (e.g addis+load/store). if target.IsAIX() { if !strings.HasPrefix(ldr.SymName(rs), "TOC.") { ldr.Errorf(s, "archreloctoc called for a symbol without TOC anchor") } relocs := ldr.Relocs(rs) tarSym := relocs.At(0).Sym() if target.IsInternal() && tarSym != 0 && ldr.AttrReachable(tarSym) && ldr.SymSect(tarSym).Seg == &ld.Segdata { t = ldr.SymValue(tarSym) + r.Add() - ldr.SymValue(syms.TOC) // change ld to addi in the second instruction o2 = (o2 & 0x03FF0000) | 0xE<<26 useAddi = true } else { t = ldr.SymValue(rs) + r.Add() - ldr.SymValue(syms.TOC) } } else { t = ldr.SymValue(rs) + r.Add() - symtoc(ldr, syms, s) } if t != int64(int32(t)) { ldr.Errorf(s, "TOC relocation for %s is too big to relocate %s: 0x%x", ldr.SymName(s), rs, t) } if t&0x8000 != 0 { t += 0x10000 } o1 |= uint32((t >> 16) & 0xFFFF) switch r.Type() { case objabi.R_ADDRPOWER_TOCREL_DS: if useAddi { o2 |= uint32(t) & 0xFFFF } else { if t&3 != 0 { ldr.Errorf(s, "bad DS reloc for %s: %d", ldr.SymName(s), ldr.SymValue(rs)) } o2 |= uint32(t) & 0xFFFC } case objabi.R_ADDRPOWER_TOCREL: o2 |= uint32(t) & 0xffff default: return -1 } if target.IsBigEndian() { return int64(o1)<<32 | int64(o2) } return int64(o2)<<32 | int64(o1) } // archrelocaddr relocates a symbol address. // This code is for linux only. func archrelocaddr(ldr *loader.Loader, target *ld.Target, syms *ld.ArchSyms, r loader.Reloc, s loader.Sym, val int64) int64 { rs := r.Sym() if target.IsAIX() { ldr.Errorf(s, "archrelocaddr called for %s relocation\n", ldr.SymName(rs)) } var o1, o2 uint32 if target.IsBigEndian() { o1 = uint32(val >> 32) o2 = uint32(val) } else { o1 = uint32(val) o2 = uint32(val >> 32) } // We are spreading a 31-bit address across two instructions, putting the // high (adjusted) part in the low 16 bits of the first instruction and the // low part in the low 16 bits of the second instruction, or, in the DS case, // bits 15-2 (inclusive) of the address into bits 15-2 of the second // instruction (it is an error in this case if the low 2 bits of the address // are non-zero). t := ldr.SymAddr(rs) + r.Add() if t < 0 || t >= 1<<31 { ldr.Errorf(s, "relocation for %s is too big (>=2G): 0x%x", ldr.SymName(s), ldr.SymValue(rs)) } if t&0x8000 != 0 { t += 0x10000 } switch r.Type() { case objabi.R_ADDRPOWER: o1 |= (uint32(t) >> 16) & 0xffff o2 |= uint32(t) & 0xffff case objabi.R_ADDRPOWER_DS: o1 |= (uint32(t) >> 16) & 0xffff if t&3 != 0 { ldr.Errorf(s, "bad DS reloc for %s: %d", ldr.SymName(s), ldr.SymValue(rs)) } o2 |= uint32(t) & 0xfffc default: return -1 } if target.IsBigEndian() { return int64(o1)<<32 | int64(o2) } return int64(o2)<<32 | int64(o1) } // Determine if the code was compiled so that the TOC register R2 is initialized and maintained func r2Valid(ctxt *ld.Link) bool { switch ctxt.BuildMode { case ld.BuildModeCArchive, ld.BuildModeCShared, ld.BuildModePIE, ld.BuildModeShared, ld.BuildModePlugin: return true } // -linkshared option return ctxt.IsSharedGoLink() } // resolve direct jump relocation r in s, and add trampoline if necessary func trampoline(ctxt *ld.Link, ldr *loader.Loader, ri int, rs, s loader.Sym) { // Trampolines are created if the branch offset is too large and the linker cannot insert a call stub to handle it. // For internal linking, trampolines are always created for long calls. // For external linking, the linker can insert a call stub to handle a long call, but depends on having the TOC address in // r2. For those build modes with external linking where the TOC address is not maintained in r2, trampolines must be created. if ctxt.IsExternal() && r2Valid(ctxt) { // The TOC pointer is valid. The external linker will insert trampolines. return } relocs := ldr.Relocs(s) r := relocs.At(ri) var t int64 // ldr.SymValue(rs) == 0 indicates a cross-package jump to a function that is not yet // laid out. Conservatively use a trampoline. This should be rare, as we lay out packages // in dependency order. if ldr.SymValue(rs) != 0 { t = ldr.SymValue(rs) + r.Add() - (ldr.SymValue(s) + int64(r.Off())) } switch r.Type() { case objabi.R_CALLPOWER: // If branch offset is too far then create a trampoline. if (ctxt.IsExternal() && ldr.SymSect(s) != ldr.SymSect(rs)) || (ctxt.IsInternal() && int64(int32(t<<6)>>6) != t) || ldr.SymValue(rs) == 0 || (*ld.FlagDebugTramp > 1 && ldr.SymPkg(s) != ldr.SymPkg(rs)) { var tramp loader.Sym for i := 0; ; i++ { // Using r.Add as part of the name is significant in functions like duffzero where the call // target is at some offset within the function. Calls to duff+8 and duff+256 must appear as // distinct trampolines. oName := ldr.SymName(rs) name := oName if r.Add() == 0 { name += fmt.Sprintf("-tramp%d", i) } else { name += fmt.Sprintf("%+x-tramp%d", r.Add(), i) } // Look up the trampoline in case it already exists tramp = ldr.LookupOrCreateSym(name, int(ldr.SymVersion(rs))) if oName == "runtime.deferreturn" { ldr.SetIsDeferReturnTramp(tramp, true) } if ldr.SymValue(tramp) == 0 { break } t = ldr.SymValue(tramp) + r.Add() - (ldr.SymValue(s) + int64(r.Off())) // With internal linking, the trampoline can be used if it is not too far. // With external linking, the trampoline must be in this section for it to be reused. if (ctxt.IsInternal() && int64(int32(t<<6)>>6) == t) || (ctxt.IsExternal() && ldr.SymSect(s) == ldr.SymSect(tramp)) { break } } if ldr.SymType(tramp) == 0 { trampb := ldr.MakeSymbolUpdater(tramp) ctxt.AddTramp(trampb) gentramp(ctxt, ldr, trampb, rs, r.Add()) } sb := ldr.MakeSymbolUpdater(s) relocs := sb.Relocs() r := relocs.At(ri) r.SetSym(tramp) r.SetAdd(0) // This was folded into the trampoline target address } default: ctxt.Errorf(s, "trampoline called with non-jump reloc: %d (%s)", r.Type(), sym.RelocName(ctxt.Arch, r.Type())) } } func gentramp(ctxt *ld.Link, ldr *loader.Loader, tramp *loader.SymbolBuilder, target loader.Sym, offset int64) { tramp.SetSize(16) // 4 instructions P := make([]byte, tramp.Size()) var o1, o2 uint32 if ctxt.IsAIX() { // On AIX, the address is retrieved with a TOC symbol. // For internal linking, the "Linux" way might still be used. // However, all text symbols are accessed with a TOC symbol as // text relocations aren't supposed to be possible. // So, keep using the external linking way to be more AIX friendly. o1 = uint32(0x3c000000) | 12<<21 | 2<<16 // addis r12, r2, toctargetaddr hi o2 = uint32(0xe8000000) | 12<<21 | 12<<16 // ld r12, r12, toctargetaddr lo toctramp := ldr.CreateSymForUpdate("TOC."+ldr.SymName(tramp.Sym()), 0) toctramp.SetType(sym.SXCOFFTOC) toctramp.AddAddrPlus(ctxt.Arch, target, offset) r, _ := tramp.AddRel(objabi.R_ADDRPOWER_TOCREL_DS) r.SetOff(0) r.SetSiz(8) // generates 2 relocations: HA + LO r.SetSym(toctramp.Sym()) } else { // Used for default build mode for an executable // Address of the call target is generated using // relocation and doesn't depend on r2 (TOC). o1 = uint32(0x3c000000) | 12<<21 // lis r12,targetaddr hi o2 = uint32(0x38000000) | 12<<21 | 12<<16 // addi r12,r12,targetaddr lo t := ldr.SymValue(target) if t == 0 || r2Valid(ctxt) || ctxt.IsExternal() { // Target address is unknown, generate relocations r, _ := tramp.AddRel(objabi.R_ADDRPOWER) if r2Valid(ctxt) { // Use a TOC relative address if R2 holds the TOC pointer o1 |= uint32(2 << 16) // Transform lis r31,ha into addis r31,r2,ha r.SetType(objabi.R_ADDRPOWER_TOCREL) } r.SetOff(0) r.SetSiz(8) // generates 2 relocations: HA + LO r.SetSym(target) r.SetAdd(offset) } else { // The target address is known, resolve it t += offset o1 |= (uint32(t) + 0x8000) >> 16 // HA o2 |= uint32(t) & 0xFFFF // LO } } o3 := uint32(0x7c0903a6) | 12<<21 // mtctr r12 o4 := uint32(0x4e800420) // bctr ctxt.Arch.ByteOrder.PutUint32(P, o1) ctxt.Arch.ByteOrder.PutUint32(P[4:], o2) ctxt.Arch.ByteOrder.PutUint32(P[8:], o3) ctxt.Arch.ByteOrder.PutUint32(P[12:], o4) tramp.SetData(P) } func archreloc(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, r loader.Reloc, s loader.Sym, val int64) (relocatedOffset int64, nExtReloc int, ok bool) { rs := r.Sym() if target.IsExternal() { // On AIX, relocations (except TLS ones) must be also done to the // value with the current addresses. switch rt := r.Type(); rt { default: if !target.IsAIX() { return val, nExtReloc, false } case objabi.R_POWER_TLS: nExtReloc = 1 return val, nExtReloc, true case objabi.R_POWER_TLS_LE, objabi.R_POWER_TLS_IE: if target.IsAIX() && rt == objabi.R_POWER_TLS_LE { // Fixup val, an addis/addi pair of instructions, which generate a 32b displacement // from the threadpointer (R13), into a 16b relocation. XCOFF only supports 16b // TLS LE relocations. Likewise, verify this is an addis/addi sequence. const expectedOpcodes = 0x3C00000038000000 const expectedOpmasks = 0xFC000000FC000000 if uint64(val)&expectedOpmasks != expectedOpcodes { ldr.Errorf(s, "relocation for %s+%d is not an addis/addi pair: %16x", ldr.SymName(rs), r.Off(), uint64(val)) } nval := (int64(uint32(0x380d0000)) | val&0x03e00000) << 32 // addi rX, r13, $0 nval |= int64(0x60000000) // nop val = nval nExtReloc = 1 } else { nExtReloc = 2 } return val, nExtReloc, true case objabi.R_ADDRPOWER, objabi.R_ADDRPOWER_DS, objabi.R_ADDRPOWER_TOCREL, objabi.R_ADDRPOWER_TOCREL_DS, objabi.R_ADDRPOWER_GOT, objabi.R_ADDRPOWER_PCREL: nExtReloc = 2 // need two ELF relocations, see elfreloc1 if !target.IsAIX() { return val, nExtReloc, true } case objabi.R_CALLPOWER: nExtReloc = 1 if !target.IsAIX() { return val, nExtReloc, true } } } switch r.Type() { case objabi.R_ADDRPOWER_TOCREL, objabi.R_ADDRPOWER_TOCREL_DS: return archreloctoc(ldr, target, syms, r, s, val), nExtReloc, true case objabi.R_ADDRPOWER, objabi.R_ADDRPOWER_DS: return archrelocaddr(ldr, target, syms, r, s, val), nExtReloc, true case objabi.R_CALLPOWER: // Bits 6 through 29 = (S + A - P) >> 2 t := ldr.SymValue(rs) + r.Add() - (ldr.SymValue(s) + int64(r.Off())) tgtName := ldr.SymName(rs) // If we are linking PIE or shared code, all golang generated object files have an extra 2 instruction prologue // to regenerate the TOC pointer from R12. The exception are two special case functions tested below. Note, // local call offsets for externally generated objects are accounted for when converting into golang relocs. if !ldr.AttrExternal(rs) && ldr.AttrShared(rs) && tgtName != "runtime.duffzero" && tgtName != "runtime.duffcopy" { // Furthermore, only apply the offset if the target looks like the start of a function call. if r.Add() == 0 && ldr.SymType(rs) == sym.STEXT { t += 8 } } if t&3 != 0 { ldr.Errorf(s, "relocation for %s+%d is not aligned: %d", ldr.SymName(rs), r.Off(), t) } // If branch offset is too far then create a trampoline. if int64(int32(t<<6)>>6) != t { ldr.Errorf(s, "direct call too far: %s %x", ldr.SymName(rs), t) } return val | int64(uint32(t)&^0xfc000003), nExtReloc, true case objabi.R_POWER_TOC: // S + A - .TOC. return ldr.SymValue(rs) + r.Add() - symtoc(ldr, syms, s), nExtReloc, true case objabi.R_ADDRPOWER_PCREL: // S + A - P t := ldr.SymValue(rs) + r.Add() - (ldr.SymValue(s) + int64(r.Off())) ha := uint16(((t + 0x8000) >> 16) & 0xFFFF) l := uint16(t) if target.IsBigEndian() { val |= int64(l) val |= int64(ha) << 32 } else { val |= int64(ha) val |= int64(l) << 32 } return val, nExtReloc, true case objabi.R_POWER_TLS: const OP_ADD = 31<<26 | 266<<1 const MASK_OP_ADD = 0x3F<<26 | 0x1FF<<1 if val&MASK_OP_ADD != OP_ADD { ldr.Errorf(s, "R_POWER_TLS reloc only supports XO form ADD, not %08X", val) } // Verify RB is R13 in ADD RA,RB,RT. if (val>>11)&0x1F != 13 { // If external linking is made to support this, it may expect the linker to rewrite RB. ldr.Errorf(s, "R_POWER_TLS reloc requires R13 in RB (%08X).", uint32(val)) } return val, nExtReloc, true case objabi.R_POWER_TLS_IE: // Convert TLS_IE relocation to TLS_LE if supported. if !(target.IsPIE() && target.IsElf()) { log.Fatalf("cannot handle R_POWER_TLS_IE (sym %s) when linking non-PIE, non-ELF binaries internally", ldr.SymName(s)) } // We are an ELF binary, we can safely convert to TLS_LE from: // addis to, r2, x@got@tprel@ha // ld to, to, x@got@tprel@l(to) // // to TLS_LE by converting to: // addis to, r0, x@tprel@ha // addi to, to, x@tprel@l(to) const OP_ADDI = 14 << 26 const OP_MASK = 0x3F << 26 const OP_RA_MASK = 0x1F << 16 uval := uint64(val) // convert r2 to r0, and ld to addi if target.IsBigEndian() { uval = uval &^ (OP_RA_MASK << 32) uval = (uval &^ OP_MASK) | OP_ADDI } else { uval = uval &^ (OP_RA_MASK) uval = (uval &^ (OP_MASK << 32)) | (OP_ADDI << 32) } val = int64(uval) // Treat this like an R_POWER_TLS_LE relocation now. fallthrough case objabi.R_POWER_TLS_LE: // The thread pointer points 0x7000 bytes after the start of the // thread local storage area as documented in section "3.7.2 TLS // Runtime Handling" of "Power Architecture 64-Bit ELF V2 ABI // Specification". v := ldr.SymValue(rs) - 0x7000 if target.IsAIX() { // On AIX, the thread pointer points 0x7800 bytes after // the TLS. v -= 0x800 } var o1, o2 uint32 if int64(int32(v)) != v { ldr.Errorf(s, "TLS offset out of range %d", v) } if target.IsBigEndian() { o1 = uint32(val >> 32) o2 = uint32(val) } else { o1 = uint32(val) o2 = uint32(val >> 32) } o1 |= uint32(((v + 0x8000) >> 16) & 0xFFFF) o2 |= uint32(v & 0xFFFF) if target.IsBigEndian() { return int64(o1)<<32 | int64(o2), nExtReloc, true } return int64(o2)<<32 | int64(o1), nExtReloc, true } return val, nExtReloc, false } func archrelocvariant(target *ld.Target, ldr *loader.Loader, r loader.Reloc, rv sym.RelocVariant, s loader.Sym, t int64, p []byte) (relocatedOffset int64) { rs := r.Sym() switch rv & sym.RV_TYPE_MASK { default: ldr.Errorf(s, "unexpected relocation variant %d", rv) fallthrough case sym.RV_NONE: return t case sym.RV_POWER_LO: if rv&sym.RV_CHECK_OVERFLOW != 0 { // Whether to check for signed or unsigned // overflow depends on the instruction var o1 uint32 if target.IsBigEndian() { o1 = binary.BigEndian.Uint32(p[r.Off()-2:]) } else { o1 = binary.LittleEndian.Uint32(p[r.Off():]) } switch o1 >> 26 { case 24, // ori 26, // xori 28: // andi if t>>16 != 0 { goto overflow } default: if int64(int16(t)) != t { goto overflow } } } return int64(int16(t)) case sym.RV_POWER_HA: t += 0x8000 fallthrough // Fallthrough case sym.RV_POWER_HI: t >>= 16 if rv&sym.RV_CHECK_OVERFLOW != 0 { // Whether to check for signed or unsigned // overflow depends on the instruction var o1 uint32 if target.IsBigEndian() { o1 = binary.BigEndian.Uint32(p[r.Off()-2:]) } else { o1 = binary.LittleEndian.Uint32(p[r.Off():]) } switch o1 >> 26 { case 25, // oris 27, // xoris 29: // andis if t>>16 != 0 { goto overflow } default: if int64(int16(t)) != t { goto overflow } } } return int64(int16(t)) case sym.RV_POWER_DS: var o1 uint32 if target.IsBigEndian() { o1 = uint32(binary.BigEndian.Uint16(p[r.Off():])) } else { o1 = uint32(binary.LittleEndian.Uint16(p[r.Off():])) } if t&3 != 0 { ldr.Errorf(s, "relocation for %s+%d is not aligned: %d", ldr.SymName(rs), r.Off(), t) } if (rv&sym.RV_CHECK_OVERFLOW != 0) && int64(int16(t)) != t { goto overflow } return int64(o1)&0x3 | int64(int16(t)) } overflow: ldr.Errorf(s, "relocation for %s+%d is too big: %d", ldr.SymName(rs), r.Off(), t) return t } func extreloc(target *ld.Target, ldr *loader.Loader, r loader.Reloc, s loader.Sym) (loader.ExtReloc, bool) { switch r.Type() { case objabi.R_POWER_TLS, objabi.R_POWER_TLS_LE, objabi.R_POWER_TLS_IE, objabi.R_CALLPOWER: return ld.ExtrelocSimple(ldr, r), true case objabi.R_ADDRPOWER, objabi.R_ADDRPOWER_DS, objabi.R_ADDRPOWER_TOCREL, objabi.R_ADDRPOWER_TOCREL_DS, objabi.R_ADDRPOWER_GOT, objabi.R_ADDRPOWER_PCREL: return ld.ExtrelocViaOuterSym(ldr, r, s), true } return loader.ExtReloc{}, false } func addpltsym(ctxt *ld.Link, ldr *loader.Loader, s loader.Sym) { if ldr.SymPlt(s) >= 0 { return } ld.Adddynsym(ldr, &ctxt.Target, &ctxt.ArchSyms, s) if ctxt.IsELF { plt := ldr.MakeSymbolUpdater(ctxt.PLT) rela := ldr.MakeSymbolUpdater(ctxt.RelaPLT) if plt.Size() == 0 { panic("plt is not set up") } // Create the glink resolver if necessary glink := ensureglinkresolver(ctxt, ldr) // Write symbol resolver stub (just a branch to the // glink resolver stub) rel, _ := glink.AddRel(objabi.R_CALLPOWER) rel.SetOff(int32(glink.Size())) rel.SetSiz(4) rel.SetSym(glink.Sym()) glink.AddUint32(ctxt.Arch, 0x48000000) // b .glink // In the ppc64 ABI, the dynamic linker is responsible // for writing the entire PLT. We just need to // reserve 8 bytes for each PLT entry and generate a // JMP_SLOT dynamic relocation for it. // // TODO(austin): ABI v1 is different ldr.SetPlt(s, int32(plt.Size())) plt.Grow(plt.Size() + 8) plt.SetSize(plt.Size() + 8) rela.AddAddrPlus(ctxt.Arch, plt.Sym(), int64(ldr.SymPlt(s))) rela.AddUint64(ctxt.Arch, elf.R_INFO(uint32(ldr.SymDynid(s)), uint32(elf.R_PPC64_JMP_SLOT))) rela.AddUint64(ctxt.Arch, 0) } else { ctxt.Errorf(s, "addpltsym: unsupported binary format") } } // Generate the glink resolver stub if necessary and return the .glink section func ensureglinkresolver(ctxt *ld.Link, ldr *loader.Loader) *loader.SymbolBuilder { glink := ldr.CreateSymForUpdate(".glink", 0) if glink.Size() != 0 { return glink } // This is essentially the resolver from the ppc64 ELFv2 ABI. // At entry, r12 holds the address of the symbol resolver stub // for the target routine and the argument registers hold the // arguments for the target routine. // // PC-rel offsets are computed once the final codesize of the // resolver is known. // // This stub is PIC, so first get the PC of label 1 into r11. glink.AddUint32(ctxt.Arch, 0x7c0802a6) // mflr r0 glink.AddUint32(ctxt.Arch, 0x429f0005) // bcl 20,31,1f glink.AddUint32(ctxt.Arch, 0x7d6802a6) // 1: mflr r11 glink.AddUint32(ctxt.Arch, 0x7c0803a6) // mtlr r0 // Compute the .plt array index from the entry point address // into r0. This is computed relative to label 1 above. glink.AddUint32(ctxt.Arch, 0x38000000) // li r0,-(res_0-1b) glink.AddUint32(ctxt.Arch, 0x7c006214) // add r0,r0,r12 glink.AddUint32(ctxt.Arch, 0x7c0b0050) // sub r0,r0,r11 glink.AddUint32(ctxt.Arch, 0x7800f082) // srdi r0,r0,2 // Load the PC-rel offset of ".plt - 1b", and add it to 1b. // This is stored after this stub and before the resolvers. glink.AddUint32(ctxt.Arch, 0xe98b0000) // ld r12,res_0-1b-8(r11) glink.AddUint32(ctxt.Arch, 0x7d6b6214) // add r11,r11,r12 // Load r12 = dynamic resolver address and r11 = DSO // identifier from the first two doublewords of the PLT. glink.AddUint32(ctxt.Arch, 0xe98b0000) // ld r12,0(r11) glink.AddUint32(ctxt.Arch, 0xe96b0008) // ld r11,8(r11) // Jump to the dynamic resolver glink.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12 glink.AddUint32(ctxt.Arch, 0x4e800420) // bctr // Store the PC-rel offset to the PLT r, _ := glink.AddRel(objabi.R_PCREL) r.SetSym(ctxt.PLT) r.SetSiz(8) r.SetOff(int32(glink.Size())) r.SetAdd(glink.Size()) // Adjust the offset to be relative to label 1 above. glink.AddUint64(ctxt.Arch, 0) // The offset to the PLT. // Resolve PC-rel offsets above now the final size of the stub is known. res0m1b := glink.Size() - 8 // res_0 - 1b glink.SetUint32(ctxt.Arch, 16, 0x38000000|uint32(uint16(-res0m1b))) glink.SetUint32(ctxt.Arch, 32, 0xe98b0000|uint32(uint16(res0m1b-8))) // The symbol resolvers must immediately follow. // res_0: // Add DT_PPC64_GLINK .dynamic entry, which points to 32 bytes // before the first symbol resolver stub. du := ldr.MakeSymbolUpdater(ctxt.Dynamic) ld.Elfwritedynentsymplus(ctxt, du, elf.DT_PPC64_GLINK, glink.Sym(), glink.Size()-32) return glink }