// Copyright 2019 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package loader import ( "bytes" "cmd/internal/bio" "cmd/internal/goobj2" "cmd/internal/obj" "cmd/internal/objabi" "cmd/internal/sys" "cmd/link/internal/sym" "debug/elf" "fmt" "log" "math/bits" "os" "sort" "strconv" "strings" ) var _ = fmt.Print // Sym encapsulates a global symbol index, used to identify a specific // Go symbol. The 0-valued Sym is corresponds to an invalid symbol. type Sym int // Relocs encapsulates the set of relocations on a given symbol; an // instance of this type is returned by the Loader Relocs() method. type Relocs struct { rs []goobj2.Reloc li int // local index of symbol whose relocs we're examining r *oReader // object reader for containing package l *Loader // loader } // Reloc contains the payload for a specific relocation. // TODO: replace this with sym.Reloc, once we change the // relocation target from "*sym.Symbol" to "loader.Sym" in sym.Reloc. type Reloc struct { Off int32 // offset to rewrite Size uint8 // number of bytes to rewrite: 0, 1, 2, or 4 Type objabi.RelocType // the relocation type Add int64 // addend Sym Sym // global index of symbol the reloc addresses } // ExtReloc contains the payload for an external relocation. type ExtReloc struct { Idx int // index of the original relocation Xsym Sym Xadd int64 } // ExtRelocView is a view of an external relocation. // It is intended to be constructed on the fly, such as ExtRelocs.At. // It is not the data structure used to store the payload internally. type ExtRelocView struct { Reloc2 *ExtReloc } // Reloc2 holds a "handle" to access a relocation record from an // object file. type Reloc2 struct { *goobj2.Reloc r *oReader l *Loader // External reloc types may not fit into a uint8 which the Go object file uses. // Store it here, instead of in the byte of goobj2.Reloc2. // For Go symbols this will always be zero. // goobj2.Reloc2.Type() + typ is always the right type, for both Go and external // symbols. typ objabi.RelocType } func (rel Reloc2) Type() objabi.RelocType { return objabi.RelocType(rel.Reloc.Type()) + rel.typ } func (rel Reloc2) Sym() Sym { return rel.l.resolve(rel.r, rel.Reloc.Sym()) } func (rel Reloc2) SetSym(s Sym) { rel.Reloc.SetSym(goobj2.SymRef{PkgIdx: 0, SymIdx: uint32(s)}) } func (rel Reloc2) SetType(t objabi.RelocType) { if t != objabi.RelocType(uint8(t)) { panic("SetType: type doesn't fit into Reloc2") } rel.Reloc.SetType(uint8(t)) if rel.typ != 0 { // should use SymbolBuilder.SetRelocType panic("wrong method to set reloc type") } } // Aux2 holds a "handle" to access an aux symbol record from an // object file. type Aux2 struct { *goobj2.Aux r *oReader l *Loader } func (a Aux2) Sym() Sym { return a.l.resolve(a.r, a.Aux.Sym()) } // oReader is a wrapper type of obj.Reader, along with some // extra information. // TODO: rename to objReader once the old one is gone? type oReader struct { *goobj2.Reader unit *sym.CompilationUnit version int // version of static symbol flags uint32 // read from object file pkgprefix string syms []Sym // Sym's global index, indexed by local index ndef int // cache goobj2.Reader.NSym() objidx uint32 // index of this reader in the objs slice } type objIdx struct { r *oReader i Sym // start index } // objSym represents a symbol in an object file. It is a tuple of // the object and the symbol's local index. // For external symbols, r is l.extReader, s is its index into the // payload array. // {nil, 0} represents the nil symbol. type objSym struct { r *oReader s int // local index } type nameVer struct { name string v int } type Bitmap []uint32 // set the i-th bit. func (bm Bitmap) Set(i Sym) { n, r := uint(i)/32, uint(i)%32 bm[n] |= 1 << r } // unset the i-th bit. func (bm Bitmap) Unset(i Sym) { n, r := uint(i)/32, uint(i)%32 bm[n] &^= (1 << r) } // whether the i-th bit is set. func (bm Bitmap) Has(i Sym) bool { n, r := uint(i)/32, uint(i)%32 return bm[n]&(1< curLen { b = append(b, MakeBitmap(reqLen+1-curLen)...) } return b } // A Loader loads new object files and resolves indexed symbol references. // // Notes on the layout of global symbol index space: // // - Go object files are read before host object files; each Go object // read adds its defined package symbols to the global index space. // Nonpackage symbols are not yet added. // // - In loader.LoadNonpkgSyms, add non-package defined symbols and // references in all object files to the global index space. // // - Host object file loading happens; the host object loader does a // name/version lookup for each symbol it finds; this can wind up // extending the external symbol index space range. The host object // loader stores symbol payloads in loader.payloads using SymbolBuilder. // // - For now, in loader.LoadFull we convert all symbols (Go + external) // to sym.Symbols. // // - At some point (when the wayfront is pushed through all of the // linker), all external symbols will be payload-based, and we can // get rid of the loader.Syms array. // // - Each symbol gets a unique global index. For duplicated and // overwriting/overwritten symbols, the second (or later) appearance // of the symbol gets the same global index as the first appearance. type Loader struct { start map[*oReader]Sym // map from object file to its start index objs []objIdx // sorted by start index (i.e. objIdx.i) extStart Sym // from this index on, the symbols are externally defined builtinSyms []Sym // global index of builtin symbols objSyms []objSym // global index mapping to local index symsByName [2]map[string]Sym // map symbol name to index, two maps are for ABI0 and ABIInternal extStaticSyms map[nameVer]Sym // externally defined static symbols, keyed by name extReader *oReader // a dummy oReader, for external symbols payloadBatch []extSymPayload payloads []*extSymPayload // contents of linker-materialized external syms values []int64 // symbol values, indexed by global sym index sects []*sym.Section // sections symSects []uint16 // symbol's section, index to sects array align []uint8 // symbol 2^N alignment, indexed by global index outdata [][]byte // symbol's data in the output buffer extRelocs [][]ExtReloc // symbol's external relocations itablink map[Sym]struct{} // itablink[j] defined if j is go.itablink.* deferReturnTramp map[Sym]bool // whether the symbol is a trampoline of a deferreturn call objByPkg map[string]*oReader // map package path to its Go object reader Syms []*sym.Symbol // indexed symbols. XXX we still make sym.Symbol for now. symBatch []sym.Symbol // batch of symbols. anonVersion int // most recently assigned ext static sym pseudo-version // Bitmaps and other side structures used to store data used to store // symbol flags/attributes; these are to be accessed via the // corresponding loader "AttrXXX" and "SetAttrXXX" methods. Please // visit the comments on these methods for more details on the // semantics / interpretation of the specific flags or attribute. attrReachable Bitmap // reachable symbols, indexed by global index attrOnList Bitmap // "on list" symbols, indexed by global index attrLocal Bitmap // "local" symbols, indexed by global index attrNotInSymbolTable Bitmap // "not in symtab" symbols, indexed by glob idx attrVisibilityHidden Bitmap // hidden symbols, indexed by ext sym index attrDuplicateOK Bitmap // dupOK symbols, indexed by ext sym index attrShared Bitmap // shared symbols, indexed by ext sym index attrExternal Bitmap // external symbols, indexed by ext sym index attrReadOnly map[Sym]bool // readonly data for this sym attrTopFrame map[Sym]struct{} // top frame symbols attrSpecial map[Sym]struct{} // "special" frame symbols attrCgoExportDynamic map[Sym]struct{} // "cgo_export_dynamic" symbols attrCgoExportStatic map[Sym]struct{} // "cgo_export_static" symbols // Outer and Sub relations for symbols. // TODO: figure out whether it's more efficient to just have these // as fields on extSymPayload (note that this won't be a viable // strategy if somewhere in the linker we set sub/outer for a // non-external sym). outer map[Sym]Sym sub map[Sym]Sym dynimplib map[Sym]string // stores Dynimplib symbol attribute dynimpvers map[Sym]string // stores Dynimpvers symbol attribute localentry map[Sym]uint8 // stores Localentry symbol attribute extname map[Sym]string // stores Extname symbol attribute elfType map[Sym]elf.SymType // stores elf type symbol property elfSym map[Sym]int32 // stores elf sym symbol property localElfSym map[Sym]int32 // stores "local" elf sym symbol property symPkg map[Sym]string // stores package for symbol, or library for shlib-derived syms plt map[Sym]int32 // stores dynimport for pe objects got map[Sym]int32 // stores got for pe objects dynid map[Sym]int32 // stores Dynid for symbol relocVariant map[relocId]sym.RelocVariant // stores variant relocs // Used to implement field tracking; created during deadcode if // field tracking is enabled. Reachparent[K] contains the index of // the symbol that triggered the marking of symbol K as live. Reachparent []Sym relocBatch []sym.Reloc // for bulk allocation of relocations relocExtBatch []sym.RelocExt // for bulk allocation of relocations flags uint32 strictDupMsgs int // number of strict-dup warning/errors, when FlagStrictDups is enabled elfsetstring elfsetstringFunc errorReporter *ErrorReporter SymLookup func(name string, ver int) *sym.Symbol } const ( pkgDef = iota nonPkgDef nonPkgRef ) type elfsetstringFunc func(s *sym.Symbol, str string, off int) // extSymPayload holds the payload (data + relocations) for linker-synthesized // external symbols (note that symbol value is stored in a separate slice). type extSymPayload struct { name string // TODO: would this be better as offset into str table? size int64 ver int kind sym.SymKind objidx uint32 // index of original object if sym made by cloneToExternal gotype Sym // Gotype (0 if not present) relocs []goobj2.Reloc reltypes []objabi.RelocType // relocation types data []byte auxs []goobj2.Aux } const ( // Loader.flags FlagStrictDups = 1 << iota ) func NewLoader(flags uint32, elfsetstring elfsetstringFunc, reporter *ErrorReporter) *Loader { nbuiltin := goobj2.NBuiltin() ldr := &Loader{ start: make(map[*oReader]Sym), objs: []objIdx{{}}, // reserve index 0 for nil symbol objSyms: []objSym{{}}, // reserve index 0 for nil symbol extReader: &oReader{}, symsByName: [2]map[string]Sym{make(map[string]Sym, 100000), make(map[string]Sym, 50000)}, // preallocate ~2MB for ABI0 and ~1MB for ABI1 symbols objByPkg: make(map[string]*oReader), outer: make(map[Sym]Sym), sub: make(map[Sym]Sym), dynimplib: make(map[Sym]string), dynimpvers: make(map[Sym]string), localentry: make(map[Sym]uint8), extname: make(map[Sym]string), attrReadOnly: make(map[Sym]bool), elfType: make(map[Sym]elf.SymType), elfSym: make(map[Sym]int32), localElfSym: make(map[Sym]int32), symPkg: make(map[Sym]string), plt: make(map[Sym]int32), got: make(map[Sym]int32), dynid: make(map[Sym]int32), attrTopFrame: make(map[Sym]struct{}), attrSpecial: make(map[Sym]struct{}), attrCgoExportDynamic: make(map[Sym]struct{}), attrCgoExportStatic: make(map[Sym]struct{}), itablink: make(map[Sym]struct{}), deferReturnTramp: make(map[Sym]bool), extStaticSyms: make(map[nameVer]Sym), builtinSyms: make([]Sym, nbuiltin), flags: flags, elfsetstring: elfsetstring, errorReporter: reporter, sects: []*sym.Section{nil}, // reserve index 0 for nil section } reporter.ldr = ldr return ldr } // Add object file r, return the start index. func (l *Loader) addObj(pkg string, r *oReader) Sym { if _, ok := l.start[r]; ok { panic("already added") } pkg = objabi.PathToPrefix(pkg) // the object file contains escaped package path if _, ok := l.objByPkg[pkg]; !ok { l.objByPkg[pkg] = r } i := Sym(len(l.objSyms)) l.start[r] = i l.objs = append(l.objs, objIdx{r, i}) return i } // Add a symbol from an object file, return the global index and whether it is added. // If the symbol already exist, it returns the index of that symbol. func (l *Loader) AddSym(name string, ver int, r *oReader, li int, kind int, dupok bool, typ sym.SymKind) (Sym, bool) { if l.extStart != 0 { panic("AddSym called after external symbol is created") } i := Sym(len(l.objSyms)) addToGlobal := func() { l.objSyms = append(l.objSyms, objSym{r, li}) } if name == "" { addToGlobal() return i, true // unnamed aux symbol } if ver == r.version { // Static symbol. Add its global index but don't // add to name lookup table, as it cannot be // referenced by name. addToGlobal() return i, true } if kind == pkgDef { // Defined package symbols cannot be dup to each other. // We load all the package symbols first, so we don't need // to check dup here. // We still add it to the lookup table, as it may still be // referenced by name (e.g. through linkname). l.symsByName[ver][name] = i addToGlobal() return i, true } // Non-package (named) symbol. Check if it already exists. oldi, existed := l.symsByName[ver][name] if !existed { l.symsByName[ver][name] = i addToGlobal() return i, true } // symbol already exists if dupok { if l.flags&FlagStrictDups != 0 { l.checkdup(name, r, li, oldi) } return oldi, false } oldr, oldli := l.toLocal(oldi) oldsym := oldr.Sym(oldli) if oldsym.Dupok() { return oldi, false } overwrite := r.DataSize(li) != 0 if overwrite { // new symbol overwrites old symbol. oldtyp := sym.AbiSymKindToSymKind[objabi.SymKind(oldsym.Type())] if !(oldtyp.IsData() && oldr.DataSize(oldli) == 0) { log.Fatalf("duplicated definition of symbol " + name) } l.objSyms[oldi] = objSym{r, li} } else { // old symbol overwrites new symbol. if !typ.IsData() { // only allow overwriting data symbol log.Fatalf("duplicated definition of symbol " + name) } } return oldi, true } // newExtSym creates a new external sym with the specified // name/version. func (l *Loader) newExtSym(name string, ver int) Sym { i := Sym(len(l.objSyms)) if l.extStart == 0 { l.extStart = i } l.growSyms(int(i)) pi := l.newPayload(name, ver) l.objSyms = append(l.objSyms, objSym{l.extReader, int(pi)}) l.extReader.syms = append(l.extReader.syms, i) return i } // LookupOrCreateSym looks up the symbol with the specified name/version, // returning its Sym index if found. If the lookup fails, a new external // Sym will be created, entered into the lookup tables, and returned. func (l *Loader) LookupOrCreateSym(name string, ver int) Sym { i := l.Lookup(name, ver) if i != 0 { return i } i = l.newExtSym(name, ver) static := ver >= sym.SymVerStatic || ver < 0 if static { l.extStaticSyms[nameVer{name, ver}] = i } else { l.symsByName[ver][name] = i } return i } func (l *Loader) IsExternal(i Sym) bool { r, _ := l.toLocal(i) return l.isExtReader(r) } func (l *Loader) isExtReader(r *oReader) bool { return r == l.extReader } // For external symbol, return its index in the payloads array. // XXX result is actually not a global index. We (ab)use the Sym type // so we don't need conversion for accessing bitmaps. func (l *Loader) extIndex(i Sym) Sym { _, li := l.toLocal(i) return Sym(li) } // Get a new payload for external symbol, return its index in // the payloads array. func (l *Loader) newPayload(name string, ver int) int { pi := len(l.payloads) pp := l.allocPayload() pp.name = name pp.ver = ver l.payloads = append(l.payloads, pp) l.growExtAttrBitmaps() return pi } // getPayload returns a pointer to the extSymPayload struct for an // external symbol if the symbol has a payload. Will panic if the // symbol in question is bogus (zero or not an external sym). func (l *Loader) getPayload(i Sym) *extSymPayload { if !l.IsExternal(i) { panic(fmt.Sprintf("bogus symbol index %d in getPayload", i)) } pi := l.extIndex(i) return l.payloads[pi] } // allocPayload allocates a new payload. func (l *Loader) allocPayload() *extSymPayload { batch := l.payloadBatch if len(batch) == 0 { batch = make([]extSymPayload, 1000) } p := &batch[0] l.payloadBatch = batch[1:] return p } func (ms *extSymPayload) Grow(siz int64) { if int64(int(siz)) != siz { log.Fatalf("symgrow size %d too long", siz) } if int64(len(ms.data)) >= siz { return } if cap(ms.data) < int(siz) { cl := len(ms.data) ms.data = append(ms.data, make([]byte, int(siz)+1-cl)...) ms.data = ms.data[0:cl] } ms.data = ms.data[:siz] } // Ensure Syms slice has enough space. func (l *Loader) growSyms(i int) { n := len(l.Syms) if n > i { return } l.Syms = append(l.Syms, make([]*sym.Symbol, i+1-n)...) l.growValues(int(i) + 1) l.growAttrBitmaps(int(i) + 1) } // Convert a local index to a global index. func (l *Loader) toGlobal(r *oReader, i int) Sym { return r.syms[i] } // Convert a global index to a local index. func (l *Loader) toLocal(i Sym) (*oReader, int) { return l.objSyms[i].r, int(l.objSyms[i].s) } // Resolve a local symbol reference. Return global index. func (l *Loader) resolve(r *oReader, s goobj2.SymRef) Sym { var rr *oReader switch p := s.PkgIdx; p { case goobj2.PkgIdxInvalid: // {0, X} with non-zero X is never a valid sym reference from a Go object. // We steal this space for symbol references from external objects. // In this case, X is just the global index. if l.isExtReader(r) { return Sym(s.SymIdx) } if s.SymIdx != 0 { panic("bad sym ref") } return 0 case goobj2.PkgIdxNone: i := int(s.SymIdx) + r.ndef return r.syms[i] case goobj2.PkgIdxBuiltin: return l.builtinSyms[s.SymIdx] case goobj2.PkgIdxSelf: rr = r default: pkg := r.Pkg(int(p)) var ok bool rr, ok = l.objByPkg[pkg] if !ok { log.Fatalf("reference of nonexisted package %s, from %v", pkg, r.unit.Lib) } } return l.toGlobal(rr, int(s.SymIdx)) } // Look up a symbol by name, return global index, or 0 if not found. // This is more like Syms.ROLookup than Lookup -- it doesn't create // new symbol. func (l *Loader) Lookup(name string, ver int) Sym { if ver >= sym.SymVerStatic || ver < 0 { return l.extStaticSyms[nameVer{name, ver}] } return l.symsByName[ver][name] } // Check that duplicate symbols have same contents. func (l *Loader) checkdup(name string, r *oReader, li int, dup Sym) { p := r.Data(li) rdup, ldup := l.toLocal(dup) pdup := rdup.Data(ldup) if bytes.Equal(p, pdup) { return } reason := "same length but different contents" if len(p) != len(pdup) { reason = fmt.Sprintf("new length %d != old length %d", len(p), len(pdup)) } fmt.Fprintf(os.Stderr, "cmd/link: while reading object for '%v': duplicate symbol '%s', previous def at '%v', with mismatched payload: %s\n", r.unit.Lib, name, rdup.unit.Lib, reason) // For the moment, allow DWARF subprogram DIEs for // auto-generated wrapper functions. What seems to happen // here is that we get different line numbers on formal // params; I am guessing that the pos is being inherited // from the spot where the wrapper is needed. allowed := strings.HasPrefix(name, "go.info.go.interface") || strings.HasPrefix(name, "go.info.go.builtin") || strings.HasPrefix(name, "go.debuglines") if !allowed { l.strictDupMsgs++ } } func (l *Loader) NStrictDupMsgs() int { return l.strictDupMsgs } // Number of total symbols. func (l *Loader) NSym() int { return len(l.objSyms) } // Number of defined Go symbols. func (l *Loader) NDef() int { return int(l.extStart) } // Number of reachable symbols. func (l *Loader) NReachableSym() int { return l.attrReachable.Count() } // Returns the raw (unpatched) name of the i-th symbol. func (l *Loader) RawSymName(i Sym) string { if l.IsExternal(i) { pp := l.getPayload(i) return pp.name } r, li := l.toLocal(i) return r.Sym(li).Name(r.Reader) } // Returns the (patched) name of the i-th symbol. func (l *Loader) SymName(i Sym) string { if l.IsExternal(i) { pp := l.getPayload(i) return pp.name } r, li := l.toLocal(i) return strings.Replace(r.Sym(li).Name(r.Reader), "\"\".", r.pkgprefix, -1) } // Returns the version of the i-th symbol. func (l *Loader) SymVersion(i Sym) int { if l.IsExternal(i) { pp := l.getPayload(i) return pp.ver } r, li := l.toLocal(i) return int(abiToVer(r.Sym(li).ABI(), r.version)) } // Returns the type of the i-th symbol. func (l *Loader) SymType(i Sym) sym.SymKind { if l.IsExternal(i) { pp := l.getPayload(i) if pp != nil { return pp.kind } return 0 } r, li := l.toLocal(i) return sym.AbiSymKindToSymKind[objabi.SymKind(r.Sym(li).Type())] } // Returns the attributes of the i-th symbol. func (l *Loader) SymAttr(i Sym) uint8 { if l.IsExternal(i) { // TODO: do something? External symbols have different representation of attributes. // For now, ReflectMethod, NoSplit, GoType, and Typelink are used and they cannot be // set by external symbol. return 0 } r, li := l.toLocal(i) return r.Sym(li).Flag() } // Returns the size of the i-th symbol. func (l *Loader) SymSize(i Sym) int64 { if l.IsExternal(i) { pp := l.getPayload(i) return pp.size } r, li := l.toLocal(i) return int64(r.Sym(li).Siz()) } // AttrReachable returns true for symbols that are transitively // referenced from the entry points. Unreachable symbols are not // written to the output. func (l *Loader) AttrReachable(i Sym) bool { return l.attrReachable.Has(i) } // SetAttrReachable sets the reachability property for a symbol (see // AttrReachable). func (l *Loader) SetAttrReachable(i Sym, v bool) { if v { l.attrReachable.Set(i) } else { l.attrReachable.Unset(i) } } // AttrOnList returns true for symbols that are on some list (such as // the list of all text symbols, or one of the lists of data symbols) // and is consulted to avoid bugs where a symbol is put on a list // twice. func (l *Loader) AttrOnList(i Sym) bool { return l.attrOnList.Has(i) } // SetAttrOnList sets the "on list" property for a symbol (see // AttrOnList). func (l *Loader) SetAttrOnList(i Sym, v bool) { if v { l.attrOnList.Set(i) } else { l.attrOnList.Unset(i) } } // AttrLocal returns true for symbols that are only visible within the // module (executable or shared library) being linked. This attribute // is applied to thunks and certain other linker-generated symbols. func (l *Loader) AttrLocal(i Sym) bool { return l.attrLocal.Has(i) } // SetAttrLocal the "local" property for a symbol (see AttrLocal above). func (l *Loader) SetAttrLocal(i Sym, v bool) { if v { l.attrLocal.Set(i) } else { l.attrLocal.Unset(i) } } // SymAddr checks that a symbol is reachable, and returns its value. func (l *Loader) SymAddr(i Sym) int64 { if !l.AttrReachable(i) { panic("unreachable symbol in symaddr") } return l.values[i] } // AttrNotInSymbolTable returns true for symbols that should not be // added to the symbol table of the final generated load module. func (l *Loader) AttrNotInSymbolTable(i Sym) bool { return l.attrNotInSymbolTable.Has(i) } // SetAttrNotInSymbolTable the "not in symtab" property for a symbol // (see AttrNotInSymbolTable above). func (l *Loader) SetAttrNotInSymbolTable(i Sym, v bool) { if v { l.attrNotInSymbolTable.Set(i) } else { l.attrNotInSymbolTable.Unset(i) } } // AttrVisibilityHidden symbols returns true for ELF symbols with // visibility set to STV_HIDDEN. They become local symbols in // the final executable. Only relevant when internally linking // on an ELF platform. func (l *Loader) AttrVisibilityHidden(i Sym) bool { if !l.IsExternal(i) { return false } return l.attrVisibilityHidden.Has(l.extIndex(i)) } // SetAttrVisibilityHidden sets the "hidden visibility" property for a // symbol (see AttrVisibilityHidden). func (l *Loader) SetAttrVisibilityHidden(i Sym, v bool) { if !l.IsExternal(i) { panic("tried to set visibility attr on non-external symbol") } if v { l.attrVisibilityHidden.Set(l.extIndex(i)) } else { l.attrVisibilityHidden.Unset(l.extIndex(i)) } } // AttrDuplicateOK returns true for a symbol that can be present in // multiple object files. func (l *Loader) AttrDuplicateOK(i Sym) bool { if !l.IsExternal(i) { // TODO: if this path winds up being taken frequently, it // might make more sense to copy the flag value out of the object // into a larger bitmap during preload. r, li := l.toLocal(i) return r.Sym(li).Dupok() } return l.attrDuplicateOK.Has(l.extIndex(i)) } // SetAttrDuplicateOK sets the "duplicate OK" property for an external // symbol (see AttrDuplicateOK). func (l *Loader) SetAttrDuplicateOK(i Sym, v bool) { if !l.IsExternal(i) { panic("tried to set dupok attr on non-external symbol") } if v { l.attrDuplicateOK.Set(l.extIndex(i)) } else { l.attrDuplicateOK.Unset(l.extIndex(i)) } } // AttrShared returns true for symbols compiled with the -shared option. func (l *Loader) AttrShared(i Sym) bool { if !l.IsExternal(i) { // TODO: if this path winds up being taken frequently, it // might make more sense to copy the flag value out of the // object into a larger bitmap during preload. r, _ := l.toLocal(i) return (r.Flags() & goobj2.ObjFlagShared) != 0 } return l.attrShared.Has(l.extIndex(i)) } // SetAttrShared sets the "shared" property for an external // symbol (see AttrShared). func (l *Loader) SetAttrShared(i Sym, v bool) { if !l.IsExternal(i) { panic(fmt.Sprintf("tried to set shared attr on non-external symbol %d %s", i, l.SymName(i))) } if v { l.attrShared.Set(l.extIndex(i)) } else { l.attrShared.Unset(l.extIndex(i)) } } // AttrExternal returns true for function symbols loaded from host // object files. func (l *Loader) AttrExternal(i Sym) bool { if !l.IsExternal(i) { return false } return l.attrExternal.Has(l.extIndex(i)) } // SetAttrExternal sets the "external" property for an host object // symbol (see AttrExternal). func (l *Loader) SetAttrExternal(i Sym, v bool) { if !l.IsExternal(i) { panic(fmt.Sprintf("tried to set external attr on non-external symbol %q", l.RawSymName(i))) } if v { l.attrExternal.Set(l.extIndex(i)) } else { l.attrExternal.Unset(l.extIndex(i)) } } // AttrTopFrame returns true for a function symbol that is an entry // point, meaning that unwinders should stop when they hit this // function. func (l *Loader) AttrTopFrame(i Sym) bool { _, ok := l.attrTopFrame[i] return ok } // SetAttrTopFrame sets the "top frame" property for a symbol (see // AttrTopFrame). func (l *Loader) SetAttrTopFrame(i Sym, v bool) { if v { l.attrTopFrame[i] = struct{}{} } else { delete(l.attrTopFrame, i) } } // AttrSpecial returns true for a symbols that do not have their // address (i.e. Value) computed by the usual mechanism of // data.go:dodata() & data.go:address(). func (l *Loader) AttrSpecial(i Sym) bool { _, ok := l.attrSpecial[i] return ok } // SetAttrSpecial sets the "special" property for a symbol (see // AttrSpecial). func (l *Loader) SetAttrSpecial(i Sym, v bool) { if v { l.attrSpecial[i] = struct{}{} } else { delete(l.attrSpecial, i) } } // AttrCgoExportDynamic returns true for a symbol that has been // specially marked via the "cgo_export_dynamic" compiler directive // written by cgo (in response to //export directives in the source). func (l *Loader) AttrCgoExportDynamic(i Sym) bool { _, ok := l.attrCgoExportDynamic[i] return ok } // SetAttrCgoExportDynamic sets the "cgo_export_dynamic" for a symbol // (see AttrCgoExportDynamic). func (l *Loader) SetAttrCgoExportDynamic(i Sym, v bool) { if v { l.attrCgoExportDynamic[i] = struct{}{} } else { delete(l.attrCgoExportDynamic, i) } } // AttrCgoExportStatic returns true for a symbol that has been // specially marked via the "cgo_export_static" directive // written by cgo. func (l *Loader) AttrCgoExportStatic(i Sym) bool { _, ok := l.attrCgoExportStatic[i] return ok } // SetAttrCgoExportStatic sets the "cgo_export_static" for a symbol // (see AttrCgoExportStatic). func (l *Loader) SetAttrCgoExportStatic(i Sym, v bool) { if v { l.attrCgoExportStatic[i] = struct{}{} } else { delete(l.attrCgoExportStatic, i) } } func (l *Loader) AttrCgoExport(i Sym) bool { return l.AttrCgoExportDynamic(i) || l.AttrCgoExportStatic(i) } // AttrReadOnly returns true for a symbol whose underlying data // is stored via a read-only mmap. func (l *Loader) AttrReadOnly(i Sym) bool { if v, ok := l.attrReadOnly[i]; ok { return v } if l.IsExternal(i) { pp := l.getPayload(i) if pp.objidx != 0 { return l.objs[pp.objidx].r.ReadOnly() } return false } r, _ := l.toLocal(i) return r.ReadOnly() } // SetAttrReadOnly sets the "data is read only" property for a symbol // (see AttrReadOnly). func (l *Loader) SetAttrReadOnly(i Sym, v bool) { l.attrReadOnly[i] = v } // AttrSubSymbol returns true for symbols that are listed as a // sub-symbol of some other outer symbol. The sub/outer mechanism is // used when loading host objects (sections from the host object // become regular linker symbols and symbols go on the Sub list of // their section) and for constructing the global offset table when // internally linking a dynamic executable. // // Note that in later stages of the linker, we set Outer(S) to some // container symbol C, but don't set Sub(C). Thus we have two // distinct scenarios: // // - Outer symbol covers the address ranges of its sub-symbols. // Outer.Sub is set in this case. // - Outer symbol doesn't conver the address ranges. It is zero-sized // and doesn't have sub-symbols. In the case, the inner symbol is // not actually a "SubSymbol". (Tricky!) // // This method returns TRUE only for sub-symbols in the first scenario. // // FIXME: would be better to do away with this and have a better way // to represent container symbols. func (l *Loader) AttrSubSymbol(i Sym) bool { // we don't explicitly store this attribute any more -- return // a value based on the sub-symbol setting. o := l.OuterSym(i) if o == 0 { return false } return l.SubSym(o) != 0 } // Note that we don't have a 'SetAttrSubSymbol' method in the loader; // clients should instead use the PrependSub method to establish // outer/sub relationships for host object symbols. // Returns whether the i-th symbol has ReflectMethod attribute set. func (l *Loader) IsReflectMethod(i Sym) bool { return l.SymAttr(i)&goobj2.SymFlagReflectMethod != 0 } // Returns whether the i-th symbol is nosplit. func (l *Loader) IsNoSplit(i Sym) bool { return l.SymAttr(i)&goobj2.SymFlagNoSplit != 0 } // Returns whether this is a Go type symbol. func (l *Loader) IsGoType(i Sym) bool { return l.SymAttr(i)&goobj2.SymFlagGoType != 0 } // Returns whether this symbol should be included in typelink. func (l *Loader) IsTypelink(i Sym) bool { return l.SymAttr(i)&goobj2.SymFlagTypelink != 0 } // Returns whether this is a "go.itablink.*" symbol. func (l *Loader) IsItabLink(i Sym) bool { if _, ok := l.itablink[i]; ok { return true } return false } // Return whether this is a trampoline of a deferreturn call. func (l *Loader) IsDeferReturnTramp(i Sym) bool { return l.deferReturnTramp[i] } // Set that i is a trampoline of a deferreturn call. func (l *Loader) SetIsDeferReturnTramp(i Sym, v bool) { l.deferReturnTramp[i] = v } // growValues grows the slice used to store symbol values. func (l *Loader) growValues(reqLen int) { curLen := len(l.values) if reqLen > curLen { l.values = append(l.values, make([]int64, reqLen+1-curLen)...) } } // SymValue returns the value of the i-th symbol. i is global index. func (l *Loader) SymValue(i Sym) int64 { return l.values[i] } // SetSymValue sets the value of the i-th symbol. i is global index. func (l *Loader) SetSymValue(i Sym, val int64) { l.values[i] = val } // AddToSymValue adds to the value of the i-th symbol. i is the global index. func (l *Loader) AddToSymValue(i Sym, val int64) { l.values[i] += val } // Returns the symbol content of the i-th symbol. i is global index. func (l *Loader) Data(i Sym) []byte { if l.IsExternal(i) { pp := l.getPayload(i) if pp != nil { return pp.data } return nil } r, li := l.toLocal(i) return r.Data(li) } // Returns the data of the i-th symbol in the output buffer. func (l *Loader) OutData(i Sym) []byte { if int(i) < len(l.outdata) && l.outdata[i] != nil { return l.outdata[i] } return l.Data(i) } // SetOutData sets the position of the data of the i-th symbol in the output buffer. // i is global index. func (l *Loader) SetOutData(i Sym, data []byte) { if l.IsExternal(i) { pp := l.getPayload(i) if pp != nil { pp.data = data return } } l.outdata[i] = data } // InitOutData initializes the slice used to store symbol output data. func (l *Loader) InitOutData() { l.outdata = make([][]byte, l.extStart) } // SetExtRelocs sets the external relocations of the i-th symbol. i is global index. func (l *Loader) SetExtRelocs(i Sym, relocs []ExtReloc) { l.extRelocs[i] = relocs } // InitExtRelocs initialize the slice used to store external relocations. func (l *Loader) InitExtRelocs() { l.extRelocs = make([][]ExtReloc, l.NSym()) } // SymAlign returns the alignment for a symbol. func (l *Loader) SymAlign(i Sym) int32 { if int(i) >= len(l.align) { // align is extended lazily -- it the sym in question is // outside the range of the existing slice, then we assume its // alignment has not yet been set. return 0 } // TODO: would it make sense to return an arch-specific // alignment depending on section type? E.g. STEXT => 32, // SDATA => 1, etc? abits := l.align[i] if abits == 0 { return 0 } return int32(1 << (abits - 1)) } // SetSymAlign sets the alignment for a symbol. func (l *Loader) SetSymAlign(i Sym, align int32) { // Reject nonsense alignments. if align < 0 || align&(align-1) != 0 { panic("bad alignment value") } if int(i) >= len(l.align) { l.align = append(l.align, make([]uint8, l.NSym()-len(l.align))...) } if align == 0 { l.align[i] = 0 } l.align[i] = uint8(bits.Len32(uint32(align))) } // SymValue returns the section of the i-th symbol. i is global index. func (l *Loader) SymSect(i Sym) *sym.Section { if int(i) >= len(l.symSects) { // symSects is extended lazily -- it the sym in question is // outside the range of the existing slice, then we assume its // section has not yet been set. return nil } return l.sects[l.symSects[i]] } // SetSymValue sets the section of the i-th symbol. i is global index. func (l *Loader) SetSymSect(i Sym, sect *sym.Section) { if int(i) >= len(l.symSects) { l.symSects = append(l.symSects, make([]uint16, l.NSym()-len(l.symSects))...) } l.symSects[i] = sect.Index } // growSects grows the slice used to store symbol sections. func (l *Loader) growSects(reqLen int) { curLen := len(l.symSects) if reqLen > curLen { l.symSects = append(l.symSects, make([]uint16, reqLen+1-curLen)...) } } // NewSection creates a new (output) section. func (l *Loader) NewSection() *sym.Section { sect := new(sym.Section) idx := len(l.sects) if idx != int(uint16(idx)) { panic("too many sections created") } sect.Index = uint16(idx) l.sects = append(l.sects, sect) return sect } // SymDynImplib returns the "dynimplib" attribute for the specified // symbol, making up a portion of the info for a symbol specified // on a "cgo_import_dynamic" compiler directive. func (l *Loader) SymDynimplib(i Sym) string { return l.dynimplib[i] } // SetSymDynimplib sets the "dynimplib" attribute for a symbol. func (l *Loader) SetSymDynimplib(i Sym, value string) { // reject bad symbols if i >= Sym(len(l.objSyms)) || i == 0 { panic("bad symbol index in SetDynimplib") } if value == "" { delete(l.dynimplib, i) } else { l.dynimplib[i] = value } } // SymDynimpvers returns the "dynimpvers" attribute for the specified // symbol, making up a portion of the info for a symbol specified // on a "cgo_import_dynamic" compiler directive. func (l *Loader) SymDynimpvers(i Sym) string { return l.dynimpvers[i] } // SetSymDynimpvers sets the "dynimpvers" attribute for a symbol. func (l *Loader) SetSymDynimpvers(i Sym, value string) { // reject bad symbols if i >= Sym(len(l.objSyms)) || i == 0 { panic("bad symbol index in SetDynimpvers") } if value == "" { delete(l.dynimpvers, i) } else { l.dynimpvers[i] = value } } // SymExtname returns the "extname" value for the specified // symbol. func (l *Loader) SymExtname(i Sym) string { if s, ok := l.extname[i]; ok { return s } return l.SymName(i) } // SetSymExtname sets the "extname" attribute for a symbol. func (l *Loader) SetSymExtname(i Sym, value string) { // reject bad symbols if i >= Sym(len(l.objSyms)) || i == 0 { panic("bad symbol index in SetExtname") } if value == "" { delete(l.extname, i) } else { l.extname[i] = value } } // SymElfType returns the previously recorded ELF type for a symbol // (used only for symbols read from shared libraries by ldshlibsyms). // It is not set for symbols defined by the packages being linked or // by symbols read by ldelf (and so is left as elf.STT_NOTYPE). func (l *Loader) SymElfType(i Sym) elf.SymType { if et, ok := l.elfType[i]; ok { return et } return elf.STT_NOTYPE } // SetSymElfType sets the elf type attribute for a symbol. func (l *Loader) SetSymElfType(i Sym, et elf.SymType) { // reject bad symbols if i >= Sym(len(l.objSyms)) || i == 0 { panic("bad symbol index in SetSymElfType") } if et == elf.STT_NOTYPE { delete(l.elfType, i) } else { l.elfType[i] = et } } // SymElfSym returns the ELF symbol index for a given loader // symbol, assigned during ELF symtab generation. func (l *Loader) SymElfSym(i Sym) int32 { return l.elfSym[i] } // SetSymElfSym sets the elf symbol index for a symbol. func (l *Loader) SetSymElfSym(i Sym, es int32) { if i == 0 { panic("bad sym index") } if es == 0 { delete(l.elfSym, i) } else { l.elfSym[i] = es } } // SymLocalElfSym returns the "local" ELF symbol index for a given loader // symbol, assigned during ELF symtab generation. func (l *Loader) SymLocalElfSym(i Sym) int32 { return l.localElfSym[i] } // SetSymLocalElfSym sets the "local" elf symbol index for a symbol. func (l *Loader) SetSymLocalElfSym(i Sym, es int32) { if i == 0 { panic("bad sym index") } if es == 0 { delete(l.localElfSym, i) } else { l.localElfSym[i] = es } } // SymPlt returns the plt value for pe symbols. func (l *Loader) SymPlt(s Sym) int32 { if v, ok := l.plt[s]; ok { return v } return -1 } // SetPlt sets the plt value for pe symbols. func (l *Loader) SetPlt(i Sym, v int32) { if i >= Sym(len(l.objSyms)) || i == 0 { panic("bad symbol for SetPlt") } if v == -1 { delete(l.plt, i) } else { l.plt[i] = v } } // SymGot returns the got value for pe symbols. func (l *Loader) SymGot(s Sym) int32 { if v, ok := l.got[s]; ok { return v } return -1 } // SetGot sets the got value for pe symbols. func (l *Loader) SetGot(i Sym, v int32) { if i >= Sym(len(l.objSyms)) || i == 0 { panic("bad symbol for SetGot") } if v == -1 { delete(l.got, i) } else { l.got[i] = v } } // SymDynid returns the "dynid" property for the specified symbol. func (l *Loader) SymDynid(i Sym) int32 { if s, ok := l.dynid[i]; ok { return s } return -1 } // SetSymDynid sets the "dynid" property for a symbol. func (l *Loader) SetSymDynid(i Sym, val int32) { // reject bad symbols if i >= Sym(len(l.objSyms)) || i == 0 { panic("bad symbol index in SetSymDynid") } if val == -1 { delete(l.dynid, i) } else { l.dynid[i] = val } } // DynIdSyms returns the set of symbols for which dynID is set to an // interesting (non-default) value. This is expected to be a fairly // small set. func (l *Loader) DynidSyms() []Sym { sl := make([]Sym, 0, len(l.dynid)) for s := range l.dynid { sl = append(sl, s) } sort.Slice(sl, func(i, j int) bool { return sl[i] < sl[j] }) return sl } // SymGoType returns the 'Gotype' property for a given symbol (set by // the Go compiler for variable symbols). This version relies on // reading aux symbols for the target sym -- it could be that a faster // approach would be to check for gotype during preload and copy the // results in to a map (might want to try this at some point and see // if it helps speed things up). func (l *Loader) SymGoType(i Sym) Sym { if l.IsExternal(i) { pp := l.getPayload(i) return pp.gotype } r, li := l.toLocal(i) auxs := r.Auxs(li) for j := range auxs { a := &auxs[j] switch a.Type() { case goobj2.AuxGotype: return l.resolve(r, a.Sym()) } } return 0 } // SymUnit returns the compilation unit for a given symbol (which will // typically be nil for external or linker-manufactured symbols). func (l *Loader) SymUnit(i Sym) *sym.CompilationUnit { if l.IsExternal(i) { pp := l.getPayload(i) if pp.objidx != 0 { r := l.objs[pp.objidx].r return r.unit } return nil } r, _ := l.toLocal(i) return r.unit } // SymPkg returns the package where the symbol came from (for // regular compiler-generated Go symbols), but in the case of // building with "-linkshared" (when a symbol is read from a // shared library), will hold the library name. // NOTE: this correspondes to sym.Symbol.File field. func (l *Loader) SymPkg(i Sym) string { if f, ok := l.symPkg[i]; ok { return f } if l.IsExternal(i) { pp := l.getPayload(i) if pp.objidx != 0 { r := l.objs[pp.objidx].r return r.unit.Lib.Pkg } return "" } r, _ := l.toLocal(i) return r.unit.Lib.Pkg } // SetSymPkg sets the package/library for a symbol. This is // needed mainly for external symbols, specifically those imported // from shared libraries. func (l *Loader) SetSymPkg(i Sym, pkg string) { // reject bad symbols if i >= Sym(len(l.objSyms)) || i == 0 { panic("bad symbol index in SetSymPkg") } l.symPkg[i] = pkg } // SymLocalentry returns the "local entry" value for the specified // symbol. func (l *Loader) SymLocalentry(i Sym) uint8 { return l.localentry[i] } // SetSymLocalentry sets the "local entry" attribute for a symbol. func (l *Loader) SetSymLocalentry(i Sym, value uint8) { // reject bad symbols if i >= Sym(len(l.objSyms)) || i == 0 { panic("bad symbol index in SetSymLocalentry") } if value == 0 { delete(l.localentry, i) } else { l.localentry[i] = value } } // Returns the number of aux symbols given a global index. func (l *Loader) NAux(i Sym) int { if l.IsExternal(i) { return 0 } r, li := l.toLocal(i) return r.NAux(li) } // Returns the "handle" to the j-th aux symbol of the i-th symbol. func (l *Loader) Aux2(i Sym, j int) Aux2 { if l.IsExternal(i) { return Aux2{} } r, li := l.toLocal(i) if j >= r.NAux(li) { return Aux2{} } return Aux2{r.Aux(li, j), r, l} } // GetFuncDwarfAuxSyms collects and returns the auxiliary DWARF // symbols associated with a given function symbol. Prior to the // introduction of the loader, this was done purely using name // lookups, e.f. for function with name XYZ we would then look up // go.info.XYZ, etc. // FIXME: once all of dwarfgen is converted over to the loader, // it would save some space to make these aux symbols nameless. func (l *Loader) GetFuncDwarfAuxSyms(fnSymIdx Sym) (auxDwarfInfo, auxDwarfLoc, auxDwarfRanges, auxDwarfLines Sym) { if l.SymType(fnSymIdx) != sym.STEXT { log.Fatalf("error: non-function sym %d/%s t=%s passed to GetFuncDwarfAuxSyms", fnSymIdx, l.SymName(fnSymIdx), l.SymType(fnSymIdx).String()) } if l.IsExternal(fnSymIdx) { // Current expectation is that any external function will // not have auxsyms. return } r, li := l.toLocal(fnSymIdx) auxs := r.Auxs(li) for i := range auxs { a := &auxs[i] switch a.Type() { case goobj2.AuxDwarfInfo: auxDwarfInfo = l.resolve(r, a.Sym()) if l.SymType(auxDwarfInfo) != sym.SDWARFINFO { panic("aux dwarf info sym with wrong type") } case goobj2.AuxDwarfLoc: auxDwarfLoc = l.resolve(r, a.Sym()) if l.SymType(auxDwarfLoc) != sym.SDWARFLOC { panic("aux dwarf loc sym with wrong type") } case goobj2.AuxDwarfRanges: auxDwarfRanges = l.resolve(r, a.Sym()) if l.SymType(auxDwarfRanges) != sym.SDWARFRANGE { panic("aux dwarf ranges sym with wrong type") } case goobj2.AuxDwarfLines: auxDwarfLines = l.resolve(r, a.Sym()) if l.SymType(auxDwarfLines) != sym.SDWARFLINES { panic("aux dwarf lines sym with wrong type") } } } return } // PrependSub prepends 'sub' onto the sub list for outer symbol 'outer'. // Will panic if 'sub' already has an outer sym or sub sym. // FIXME: should this be instead a method on SymbolBuilder? func (l *Loader) PrependSub(outer Sym, sub Sym) { // NB: this presupposes that an outer sym can't be a sub symbol of // some other outer-outer sym (I'm assuming this is true, but I // haven't tested exhaustively). if l.OuterSym(outer) != 0 { panic("outer has outer itself") } if l.SubSym(sub) != 0 { panic("sub set for subsym") } if l.OuterSym(sub) != 0 { panic("outer already set for subsym") } l.sub[sub] = l.sub[outer] l.sub[outer] = sub l.outer[sub] = outer } // OuterSym gets the outer symbol for host object loaded symbols. func (l *Loader) OuterSym(i Sym) Sym { // FIXME: add check for isExternal? return l.outer[i] } // SubSym gets the subsymbol for host object loaded symbols. func (l *Loader) SubSym(i Sym) Sym { // NB: note -- no check for l.isExternal(), since I am pretty sure // that later phases in the linker set subsym for "type." syms return l.sub[i] } // SetOuterSym sets the outer symbol of i to o (without setting // sub symbols). func (l *Loader) SetOuterSym(i Sym, o Sym) { if o != 0 { l.outer[i] = o } else { delete(l.outer, i) } } // Initialize Reachable bitmap and its siblings for running deadcode pass. func (l *Loader) InitReachable() { l.growAttrBitmaps(l.NSym() + 1) } type symWithVal struct { s Sym v int64 } type bySymValue []symWithVal func (s bySymValue) Len() int { return len(s) } func (s bySymValue) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func (s bySymValue) Less(i, j int) bool { return s[i].v < s[j].v } // SortSub walks through the sub-symbols for 's' and sorts them // in place by increasing value. Return value is the new // sub symbol for the specified outer symbol. func (l *Loader) SortSub(s Sym) Sym { if s == 0 || l.sub[s] == 0 { return s } // Sort symbols using a slice first. Use a stable sort on the off // chance that there's more than once symbol with the same value, // so as to preserve reproducible builds. sl := []symWithVal{} for ss := l.sub[s]; ss != 0; ss = l.sub[ss] { sl = append(sl, symWithVal{s: ss, v: l.SymValue(ss)}) } sort.Stable(bySymValue(sl)) // Then apply any changes needed to the sub map. ns := Sym(0) for i := len(sl) - 1; i >= 0; i-- { s := sl[i].s l.sub[s] = ns ns = s } // Update sub for outer symbol, then return l.sub[s] = sl[0].s return sl[0].s } // Insure that reachable bitmap and its siblings have enough size. func (l *Loader) growAttrBitmaps(reqLen int) { if reqLen > l.attrReachable.Len() { // These are indexed by global symbol l.attrReachable = growBitmap(reqLen, l.attrReachable) l.attrOnList = growBitmap(reqLen, l.attrOnList) l.attrLocal = growBitmap(reqLen, l.attrLocal) l.attrNotInSymbolTable = growBitmap(reqLen, l.attrNotInSymbolTable) } l.growExtAttrBitmaps() } func (l *Loader) growExtAttrBitmaps() { // These are indexed by external symbol index (e.g. l.extIndex(i)) extReqLen := len(l.payloads) if extReqLen > l.attrVisibilityHidden.Len() { l.attrVisibilityHidden = growBitmap(extReqLen, l.attrVisibilityHidden) l.attrDuplicateOK = growBitmap(extReqLen, l.attrDuplicateOK) l.attrShared = growBitmap(extReqLen, l.attrShared) l.attrExternal = growBitmap(extReqLen, l.attrExternal) } } func (relocs *Relocs) Count() int { return len(relocs.rs) } // At2 returns the j-th reloc for a global symbol. func (relocs *Relocs) At2(j int) Reloc2 { if relocs.l.isExtReader(relocs.r) { pp := relocs.l.payloads[relocs.li] return Reloc2{&relocs.rs[j], relocs.r, relocs.l, pp.reltypes[j]} } return Reloc2{&relocs.rs[j], relocs.r, relocs.l, 0} } // Relocs returns a Relocs object for the given global sym. func (l *Loader) Relocs(i Sym) Relocs { r, li := l.toLocal(i) if r == nil { panic(fmt.Sprintf("trying to get oreader for invalid sym %d\n\n", i)) } return l.relocs(r, li) } // Relocs returns a Relocs object given a local sym index and reader. func (l *Loader) relocs(r *oReader, li int) Relocs { var rs []goobj2.Reloc if l.isExtReader(r) { pp := l.payloads[li] rs = pp.relocs } else { rs = r.Relocs(li) } return Relocs{ rs: rs, li: li, r: r, l: l, } } // ExtRelocs returns the external relocations of the i-th symbol. func (l *Loader) ExtRelocs(i Sym) ExtRelocs { return ExtRelocs{l.Relocs(i), l.extRelocs[i]} } // ExtRelocs represents the set of external relocations of a symbol. type ExtRelocs struct { rs Relocs es []ExtReloc } func (ers ExtRelocs) Count() int { return len(ers.es) } func (ers ExtRelocs) At(j int) ExtRelocView { i := ers.es[j].Idx return ExtRelocView{ers.rs.At2(i), &ers.es[j]} } // RelocByOff implements sort.Interface for sorting relocations by offset. type RelocByOff []Reloc func (x RelocByOff) Len() int { return len(x) } func (x RelocByOff) Swap(i, j int) { x[i], x[j] = x[j], x[i] } func (x RelocByOff) Less(i, j int) bool { return x[i].Off < x[j].Off } // FuncInfo provides hooks to access goobj2.FuncInfo in the objects. type FuncInfo struct { l *Loader r *oReader data []byte auxs []goobj2.Aux lengths goobj2.FuncInfoLengths } func (fi *FuncInfo) Valid() bool { return fi.r != nil } func (fi *FuncInfo) Args() int { return int((*goobj2.FuncInfo)(nil).ReadArgs(fi.data)) } func (fi *FuncInfo) Locals() int { return int((*goobj2.FuncInfo)(nil).ReadLocals(fi.data)) } func (fi *FuncInfo) Pcsp() []byte { pcsp, end := (*goobj2.FuncInfo)(nil).ReadPcsp(fi.data) return fi.r.BytesAt(fi.r.PcdataBase()+pcsp, int(end-pcsp)) } func (fi *FuncInfo) Pcfile() []byte { pcf, end := (*goobj2.FuncInfo)(nil).ReadPcfile(fi.data) return fi.r.BytesAt(fi.r.PcdataBase()+pcf, int(end-pcf)) } func (fi *FuncInfo) Pcline() []byte { pcln, end := (*goobj2.FuncInfo)(nil).ReadPcline(fi.data) return fi.r.BytesAt(fi.r.PcdataBase()+pcln, int(end-pcln)) } // Preload has to be called prior to invoking the various methods // below related to pcdata, funcdataoff, files, and inltree nodes. func (fi *FuncInfo) Preload() { fi.lengths = (*goobj2.FuncInfo)(nil).ReadFuncInfoLengths(fi.data) } func (fi *FuncInfo) Pcinline() []byte { if !fi.lengths.Initialized { panic("need to call Preload first") } pcinl, end := (*goobj2.FuncInfo)(nil).ReadPcinline(fi.data, fi.lengths.PcdataOff) return fi.r.BytesAt(fi.r.PcdataBase()+pcinl, int(end-pcinl)) } func (fi *FuncInfo) NumPcdata() uint32 { if !fi.lengths.Initialized { panic("need to call Preload first") } return fi.lengths.NumPcdata } func (fi *FuncInfo) Pcdata(k int) []byte { if !fi.lengths.Initialized { panic("need to call Preload first") } pcdat, end := (*goobj2.FuncInfo)(nil).ReadPcdata(fi.data, fi.lengths.PcdataOff, uint32(k)) return fi.r.BytesAt(fi.r.PcdataBase()+pcdat, int(end-pcdat)) } func (fi *FuncInfo) NumFuncdataoff() uint32 { if !fi.lengths.Initialized { panic("need to call Preload first") } return fi.lengths.NumFuncdataoff } func (fi *FuncInfo) Funcdataoff(k int) int64 { if !fi.lengths.Initialized { panic("need to call Preload first") } return (*goobj2.FuncInfo)(nil).ReadFuncdataoff(fi.data, fi.lengths.FuncdataoffOff, uint32(k)) } func (fi *FuncInfo) Funcdata(syms []Sym) []Sym { if !fi.lengths.Initialized { panic("need to call Preload first") } if int(fi.lengths.NumFuncdataoff) > cap(syms) { syms = make([]Sym, 0, fi.lengths.NumFuncdataoff) } else { syms = syms[:0] } for j := range fi.auxs { a := &fi.auxs[j] if a.Type() == goobj2.AuxFuncdata { syms = append(syms, fi.l.resolve(fi.r, a.Sym())) } } return syms } func (fi *FuncInfo) NumFile() uint32 { if !fi.lengths.Initialized { panic("need to call Preload first") } return fi.lengths.NumFile } func (fi *FuncInfo) File(k int) Sym { if !fi.lengths.Initialized { panic("need to call Preload first") } sr := (*goobj2.FuncInfo)(nil).ReadFile(fi.data, fi.lengths.FileOff, uint32(k)) return fi.l.resolve(fi.r, sr) } type InlTreeNode struct { Parent int32 File Sym Line int32 Func Sym ParentPC int32 } func (fi *FuncInfo) NumInlTree() uint32 { if !fi.lengths.Initialized { panic("need to call Preload first") } return fi.lengths.NumInlTree } func (fi *FuncInfo) InlTree(k int) InlTreeNode { if !fi.lengths.Initialized { panic("need to call Preload first") } node := (*goobj2.FuncInfo)(nil).ReadInlTree(fi.data, fi.lengths.InlTreeOff, uint32(k)) return InlTreeNode{ Parent: node.Parent, File: fi.l.resolve(fi.r, node.File), Line: node.Line, Func: fi.l.resolve(fi.r, node.Func), ParentPC: node.ParentPC, } } func (l *Loader) FuncInfo(i Sym) FuncInfo { var r *oReader var auxs []goobj2.Aux if l.IsExternal(i) { pp := l.getPayload(i) if pp.objidx == 0 { return FuncInfo{} } r = l.objs[pp.objidx].r auxs = pp.auxs } else { var li int r, li = l.toLocal(i) auxs = r.Auxs(li) } for j := range auxs { a := &auxs[j] if a.Type() == goobj2.AuxFuncInfo { b := r.Data(int(a.Sym().SymIdx)) return FuncInfo{l, r, b, auxs, goobj2.FuncInfoLengths{}} } } return FuncInfo{} } // Preload a package: add autolibs, add defined package symbols to the symbol table. // Does not add non-package symbols yet, which will be done in LoadNonpkgSyms. // Does not read symbol data. // Returns the fingerprint of the object. func (l *Loader) Preload(syms *sym.Symbols, f *bio.Reader, lib *sym.Library, unit *sym.CompilationUnit, length int64) goobj2.FingerprintType { roObject, readonly, err := f.Slice(uint64(length)) // TODO: no need to map blocks that are for tools only (e.g. RefName) if err != nil { log.Fatal("cannot read object file:", err) } r := goobj2.NewReaderFromBytes(roObject, readonly) if r == nil { if len(roObject) >= 8 && bytes.Equal(roObject[:8], []byte("\x00go114ld")) { log.Fatalf("found object file %s in old format, but -go115newobj is true\nset -go115newobj consistently in all -gcflags, -asmflags, and -ldflags", f.File().Name()) } panic("cannot read object file") } localSymVersion := syms.IncVersion() pkgprefix := objabi.PathToPrefix(lib.Pkg) + "." ndef := r.NSym() nnonpkgdef := r.NNonpkgdef() or := &oReader{r, unit, localSymVersion, r.Flags(), pkgprefix, make([]Sym, ndef+nnonpkgdef+r.NNonpkgref()), ndef, uint32(len(l.objs))} // Autolib lib.Autolib = append(lib.Autolib, r.Autolib()...) // DWARF file table nfile := r.NDwarfFile() unit.DWARFFileTable = make([]string, nfile) for i := range unit.DWARFFileTable { unit.DWARFFileTable[i] = r.DwarfFile(i) } l.addObj(lib.Pkg, or) l.preloadSyms(or, pkgDef) // The caller expects us consuming all the data f.MustSeek(length, os.SEEK_CUR) return r.Fingerprint() } // Preload symbols of given kind from an object. func (l *Loader) preloadSyms(r *oReader, kind int) { ndef := r.NSym() nnonpkgdef := r.NNonpkgdef() var start, end int switch kind { case pkgDef: start = 0 end = ndef case nonPkgDef: start = ndef end = ndef + nnonpkgdef default: panic("preloadSyms: bad kind") } l.growSyms(len(l.objSyms) + end - start) l.growAttrBitmaps(len(l.objSyms) + end - start) for i := start; i < end; i++ { osym := r.Sym(i) name := strings.Replace(osym.Name(r.Reader), "\"\".", r.pkgprefix, -1) v := abiToVer(osym.ABI(), r.version) dupok := osym.Dupok() gi, added := l.AddSym(name, v, r, i, kind, dupok, sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type())]) r.syms[i] = gi if !added { continue } if osym.TopFrame() { l.SetAttrTopFrame(gi, true) } if osym.Local() { l.SetAttrLocal(gi, true) } if strings.HasPrefix(name, "go.itablink.") { l.itablink[gi] = struct{}{} } if strings.HasPrefix(name, "runtime.") { if bi := goobj2.BuiltinIdx(name, v); bi != -1 { // This is a definition of a builtin symbol. Record where it is. l.builtinSyms[bi] = gi } } if strings.HasPrefix(name, "go.string.") || strings.HasPrefix(name, "gclocals·") || strings.HasPrefix(name, "runtime.gcbits.") { l.SetAttrNotInSymbolTable(gi, true) } if a := osym.Align(); a != 0 { l.SetSymAlign(gi, int32(a)) } } } // Add non-package symbols and references to external symbols (which are always // named). func (l *Loader) LoadNonpkgSyms(arch *sys.Arch) { for _, o := range l.objs[1:] { l.preloadSyms(o.r, nonPkgDef) } for _, o := range l.objs[1:] { loadObjRefs(l, o.r, arch) } } func loadObjRefs(l *Loader, r *oReader, arch *sys.Arch) { ndef := r.NSym() + r.NNonpkgdef() for i, n := 0, r.NNonpkgref(); i < n; i++ { osym := r.Sym(ndef + i) name := strings.Replace(osym.Name(r.Reader), "\"\".", r.pkgprefix, -1) v := abiToVer(osym.ABI(), r.version) r.syms[ndef+i] = l.LookupOrCreateSym(name, v) gi := r.syms[ndef+i] if osym.Local() { l.SetAttrLocal(gi, true) } l.preprocess(arch, gi, name) } } func abiToVer(abi uint16, localSymVersion int) int { var v int if abi == goobj2.SymABIstatic { // Static v = localSymVersion } else if abiver := sym.ABIToVersion(obj.ABI(abi)); abiver != -1 { // Note that data symbols are "ABI0", which maps to version 0. v = abiver } else { log.Fatalf("invalid symbol ABI: %d", abi) } return v } // preprocess looks for integer/floating point constant symbols whose // content is encoded into the symbol name, and promotes them into // real symbols with RODATA type and a payload that matches the // encoded content. func (l *Loader) preprocess(arch *sys.Arch, s Sym, name string) { if name != "" && name[0] == '$' && len(name) > 5 && l.SymType(s) == 0 && len(l.Data(s)) == 0 { x, err := strconv.ParseUint(name[5:], 16, 64) if err != nil { log.Panicf("failed to parse $-symbol %s: %v", name, err) } su := l.MakeSymbolUpdater(s) su.SetType(sym.SRODATA) su.SetLocal(true) switch name[:5] { case "$f32.": if uint64(uint32(x)) != x { log.Panicf("$-symbol %s too large: %d", name, x) } su.AddUint32(arch, uint32(x)) case "$f64.", "$i64.": su.AddUint64(arch, x) default: log.Panicf("unrecognized $-symbol: %s", name) } } } // Load full contents. func (l *Loader) LoadFull(arch *sys.Arch, syms *sym.Symbols, needReloc, needExtReloc bool) { // create all Symbols first. l.growSyms(l.NSym()) l.growSects(l.NSym()) if needReloc && len(l.extRelocs) != 0 { // If needReloc is true, we are going to convert the loader's // "internal" relocations to sym.Relocs. In this case, external // relocations shouldn't be used. panic("phase error") } nr := 0 // total number of sym.Reloc's we'll need for _, o := range l.objs[1:] { nr += loadObjSyms(l, syms, o.r, needReloc, needExtReloc) } // Make a first pass through the external symbols, making // sure that each external symbol has a non-nil entry in // l.Syms (note that relocations and symbol content will // be copied in a later loop). toConvert := make([]Sym, 0, len(l.payloads)) for _, i := range l.extReader.syms { if !l.attrReachable.Has(i) { continue } pp := l.getPayload(i) if needReloc { nr += len(pp.relocs) } if needExtReloc && int(i) < len(l.extRelocs) { nr += len(l.extRelocs[i]) } // create and install the sym.Symbol here so that l.Syms will // be fully populated when we do relocation processing and // outer/sub processing below. Note that once we do this, // we'll need to get at the payload for a symbol with direct // reference to l.payloads[] as opposed to calling l.getPayload(). s := l.allocSym(pp.name, 0) l.installSym(i, s) toConvert = append(toConvert, i) } // allocate a single large slab of relocations for all live symbols if nr != 0 { l.relocBatch = make([]sym.Reloc, nr) if needExtReloc { l.relocExtBatch = make([]sym.RelocExt, nr) } } // convert payload-based external symbols into sym.Symbol-based for _, i := range toConvert { // Copy kind/size/value etc. pp := l.payloads[l.extIndex(i)] s := l.Syms[i] s.Version = int16(pp.ver) s.Type = pp.kind s.Size = pp.size // Copy relocations if needReloc { batch := l.relocBatch s.R = batch[:len(pp.relocs):len(pp.relocs)] l.relocBatch = batch[len(pp.relocs):] relocs := l.Relocs(i) l.convertRelocations(i, &relocs, s, false) } if needExtReloc { l.convertExtRelocs(s, i) } // Copy data s.P = pp.data // Transfer over attributes. l.migrateAttributes(i, s) } // load contents of defined symbols for _, o := range l.objs[1:] { loadObjFull(l, o.r, needReloc, needExtReloc) } // Sanity check: we should have consumed all batched allocations. if len(l.relocBatch) != 0 || len(l.relocExtBatch) != 0 { panic("batch allocation mismatch") } // Note: resolution of ABI aliases is now also handled in // loader.convertRelocations, so once the host object loaders move // completely to loader.Sym, we can remove the code below. // Resolve ABI aliases for external symbols. This is only // needed for internal cgo linking. if needReloc { for _, i := range l.extReader.syms { if s := l.Syms[i]; s != nil && s.Attr.Reachable() { for ri := range s.R { r := &s.R[ri] if r.Sym != nil && r.Sym.Type == sym.SABIALIAS { r.Sym = r.Sym.R[0].Sym } } } } } // Free some memory. // At this point we still need basic index mapping, and some fields of // external symbol payloads, but not much else. l.values = nil l.symSects = nil l.outdata = nil l.itablink = nil l.attrOnList = nil l.attrLocal = nil l.attrNotInSymbolTable = nil l.attrVisibilityHidden = nil l.attrDuplicateOK = nil l.attrShared = nil l.attrExternal = nil l.attrReadOnly = nil l.attrTopFrame = nil l.attrSpecial = nil l.attrCgoExportDynamic = nil l.attrCgoExportStatic = nil l.outer = nil l.align = nil l.dynimplib = nil l.dynimpvers = nil l.localentry = nil l.extname = nil l.elfType = nil l.plt = nil l.got = nil l.dynid = nil if needExtReloc { // converted to sym.Relocs, drop loader references l.relocVariant = nil l.extRelocs = nil } // Drop fields that are no longer needed. for _, i := range l.extReader.syms { pp := l.getPayload(i) pp.name = "" pp.auxs = nil pp.data = nil if needExtReloc { pp.relocs = nil pp.reltypes = nil } } } // ResolveABIAlias given a symbol returns the ABI alias target of that // symbol. If the sym in question is not an alias, the sym itself is // returned. func (l *Loader) ResolveABIAlias(s Sym) Sym { if s == 0 { return 0 } if l.SymType(s) != sym.SABIALIAS { return s } relocs := l.Relocs(s) target := relocs.At2(0).Sym() if l.SymType(target) == sym.SABIALIAS { panic(fmt.Sprintf("ABI alias %s references another ABI alias %s", l.SymName(s), l.SymName(target))) } return target } // PropagateSymbolChangesBackToLoader is a temporary shim function // that copies over a given sym.Symbol into the equivalent representation // in the loader world. The intent is to enable converting a given // linker phase/pass from dealing with sym.Symbol's to a modernized // pass that works with loader.Sym, in cases where the "loader.Sym // wavefront" has not yet reached the pass in question. For such work // the recipe is to first call PropagateSymbolChangesBackToLoader(), // then exexute the pass working with the loader, then call // PropagateLoaderChangesToSymbols to copy the changes made by the // pass back to the sym.Symbol world. func (l *Loader) PropagateSymbolChangesBackToLoader() { // For the moment we only copy symbol values, and we don't touch // any new sym.Symbols created since loadlibfull() was run. This // seems to be what's needed for DWARF gen. for i := Sym(1); i < Sym(len(l.objSyms)); i++ { s := l.Syms[i] if s != nil { if s.Value != l.SymValue(i) { l.SetSymValue(i, s.Value) } } } } // PropagateLoaderChangesToSymbols is a temporary shim function that // takes a list of loader.Sym symbols and works to copy their contents // and attributes over to a corresponding sym.Symbol. The parameter // anonVerReplacement specifies a version number for any new anonymous // symbols encountered on the list, when creating sym.Symbols for them // (or zero if we don't expect to encounter any new anon symbols). See // the PropagateSymbolChangesBackToLoader header comment for more // info. // // WARNING: this function is brittle and depends heavily on loader // implementation. A key problem with doing this is that as things // stand at the moment, some sym.Symbol contents/attributes are // populated only when converting from loader.Sym to sym.Symbol in // loadlibfull, meaning we may wipe out some information when copying // back. func (l *Loader) PropagateLoaderChangesToSymbols(toconvert []Sym, anonVerReplacement int) []*sym.Symbol { result := []*sym.Symbol{} relocfixup := []Sym{} // Note: this loop needs to allow for the possibility that we may // see "new" symbols on the 'toconvert' list that come from object // files (for example, DWARF location lists), as opposed to just // newly manufactured symbols (ex: DWARF section symbols such as // ".debug_info"). This means that we have to be careful not to // stomp on sym.Symbol attributes/content that was set up in // in loadlibfull(). // Also note that in order for the relocation fixup to work, we // have to do this in two passes -- one pass to create the symbols, // and then a second fix up the relocations once all necessary // sym.Symbols are created. // First pass, symbol creation and symbol data fixup. for _, cand := range toconvert { sn := l.SymName(cand) sv := l.SymVersion(cand) st := l.SymType(cand) if sv < 0 { if anonVerReplacement == 0 { panic("expected valid anon version replacement") } sv = anonVerReplacement } s := l.Syms[cand] isnew := false if sn == "" { // Don't install anonymous symbols in the lookup tab. if s == nil { s = l.allocSym(sn, sv) l.installSym(cand, s) } isnew = true } else { if s != nil { // Already have a symbol for this -- it must be // something that was previously processed by // loadObjFull. Note that the symbol in question may // or may not be in the name lookup map. } else { isnew = true s = l.SymLookup(sn, sv) } } result = append(result, s) // Always copy these from new to old. s.Value = l.SymValue(cand) s.Type = st // If the data for a symbol has increased in size, make sure // we bring the new content across. relfix := isnew if isnew || len(l.Data(cand)) > len(s.P) { s.P = l.Data(cand) s.Size = int64(len(s.P)) relfix = true } // For 'new' symbols, copy other content. if relfix { relocfixup = append(relocfixup, cand) } // If new symbol, call a helper to migrate attributes. // Otherwise touch only not-in-symbol-table, since there are // some attrs that are only set up at the point where we // convert loader.Sym to sym.Symbol. if isnew { l.migrateAttributes(cand, s) } else { if l.AttrNotInSymbolTable(cand) { s.Attr.Set(sym.AttrNotInSymbolTable, true) } } } // Second pass to fix up relocations. for _, cand := range relocfixup { s := l.Syms[cand] relocs := l.Relocs(cand) if len(s.R) != relocs.Count() { s.R = make([]sym.Reloc, relocs.Count()) } l.convertRelocations(cand, &relocs, s, true) } return result } // ExtractSymbols grabs the symbols out of the loader for work that hasn't been // ported to the new symbol type. func (l *Loader) ExtractSymbols(syms *sym.Symbols) { // Add symbols to the ctxt.Syms lookup table. This explicitly skips things // created via loader.Create (marked with versions less than zero), since // if we tried to add these we'd wind up with collisions. We do, however, // add these symbols to the list of global symbols so that other future // steps (like pclntab generation) can find these symbols if neceassary. // Along the way, update the version from the negative anon version to // something larger than sym.SymVerStatic (needed so that // sym.symbol.IsFileLocal() works properly). anonVerReplacement := syms.IncVersion() for _, s := range l.Syms { if s == nil { continue } if s.Version < 0 { s.Version = int16(anonVerReplacement) } } // Provide lookup functions for sym.Symbols. l.SymLookup = func(name string, ver int) *sym.Symbol { i := l.LookupOrCreateSym(name, ver) if s := l.Syms[i]; s != nil { return s } s := l.allocSym(name, ver) l.installSym(i, s) return s } syms.Lookup = l.SymLookup syms.ROLookup = func(name string, ver int) *sym.Symbol { i := l.Lookup(name, ver) return l.Syms[i] } } // allocSym allocates a new symbol backing. func (l *Loader) allocSym(name string, version int) *sym.Symbol { batch := l.symBatch if len(batch) == 0 { batch = make([]sym.Symbol, 1000) } s := &batch[0] l.symBatch = batch[1:] s.Dynid = -1 s.Name = name s.Version = int16(version) return s } // installSym sets the underlying sym.Symbol for the specified sym index. func (l *Loader) installSym(i Sym, s *sym.Symbol) { if s == nil { panic("installSym nil symbol") } if l.Syms[i] != nil { panic("sym already present in installSym") } l.Syms[i] = s s.SymIdx = sym.LoaderSym(i) } // addNewSym adds a new sym.Symbol to the i-th index in the list of symbols. func (l *Loader) addNewSym(i Sym, name string, ver int, unit *sym.CompilationUnit, t sym.SymKind) *sym.Symbol { s := l.allocSym(name, ver) if s.Type != 0 && s.Type != sym.SXREF { fmt.Println("symbol already processed:", unit.Lib, i, s) panic("symbol already processed") } if t == sym.SBSS && (s.Type == sym.SRODATA || s.Type == sym.SNOPTRBSS) { t = s.Type } s.Type = t l.growSyms(int(i)) l.installSym(i, s) return s } // TopLevelSym tests a symbol (by name and kind) to determine whether // the symbol first class sym (participating in the link) or is an // anonymous aux or sub-symbol containing some sub-part or payload of // another symbol. func (l *Loader) TopLevelSym(s Sym) bool { return topLevelSym(l.RawSymName(s), l.SymType(s)) } // topLevelSym tests a symbol name and kind to determine whether // the symbol first class sym (participating in the link) or is an // anonymous aux or sub-symbol containing some sub-part or payload of // another symbol. func topLevelSym(sname string, skind sym.SymKind) bool { if sname != "" { return true } switch skind { case sym.SDWARFINFO, sym.SDWARFRANGE, sym.SDWARFLOC, sym.SDWARFLINES, sym.SGOFUNC: return true default: return false } } // loadObjSyms creates sym.Symbol objects for the live Syms in the // object corresponding to object reader "r". Return value is the // number of sym.Reloc entries required for all the new symbols. func loadObjSyms(l *Loader, syms *sym.Symbols, r *oReader, needReloc, needExtReloc bool) int { nr := 0 for i, n := 0, r.NSym()+r.NNonpkgdef(); i < n; i++ { gi := r.syms[i] if r2, i2 := l.toLocal(gi); r2 != r || i2 != i { continue // come from a different object } osym := r.Sym(i) name := strings.Replace(osym.Name(r.Reader), "\"\".", r.pkgprefix, -1) t := sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type())] // Skip non-dwarf anonymous symbols (e.g. funcdata), // since they will never be turned into sym.Symbols. if !topLevelSym(name, t) { continue } ver := abiToVer(osym.ABI(), r.version) if t == sym.SXREF { log.Fatalf("bad sxref") } if t == 0 { log.Fatalf("missing type for %s in %s", name, r.unit.Lib) } if !l.attrReachable.Has(gi) && name != "runtime.addmoduledata" && name != "runtime.lastmoduledatap" { // No need to load unreachable symbols. // XXX reference to runtime.addmoduledata may be generated later by the linker in plugin mode. continue } l.addNewSym(gi, name, ver, r.unit, t) if needReloc { nr += r.NReloc(i) } if needExtReloc && int(gi) < len(l.extRelocs) { nr += len(l.extRelocs[gi]) } } return nr } // cloneToExternal takes the existing object file symbol (symIdx) // and creates a new external symbol payload that is a clone with // respect to name, version, type, relocations, etc. The idea here // is that if the linker decides it wants to update the contents of // a symbol originally discovered as part of an object file, it's // easier to do this if we make the updates to an external symbol // payload. // XXX maybe rename? makeExtPayload? func (l *Loader) cloneToExternal(symIdx Sym) { if l.IsExternal(symIdx) { panic("sym is already external, no need for clone") } l.growSyms(int(symIdx)) // Read the particulars from object. r, li := l.toLocal(symIdx) osym := r.Sym(li) sname := strings.Replace(osym.Name(r.Reader), "\"\".", r.pkgprefix, -1) sver := abiToVer(osym.ABI(), r.version) skind := sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type())] // Create new symbol, update version and kind. pi := l.newPayload(sname, sver) pp := l.payloads[pi] pp.kind = skind pp.ver = sver pp.size = int64(osym.Siz()) pp.objidx = r.objidx // If this is a def, then copy the guts. We expect this case // to be very rare (one case it may come up is with -X). if li < (r.NSym() + r.NNonpkgdef()) { // Copy relocations relocs := l.Relocs(symIdx) pp.relocs = make([]goobj2.Reloc, relocs.Count()) pp.reltypes = make([]objabi.RelocType, relocs.Count()) for i := range pp.relocs { // Copy the relocs slice. // Convert local reference to global reference. rel := relocs.At2(i) pp.relocs[i].Set(rel.Off(), rel.Siz(), 0, rel.Add(), goobj2.SymRef{PkgIdx: 0, SymIdx: uint32(rel.Sym())}) pp.reltypes[i] = rel.Type() } // Copy data pp.data = r.Data(li) } // If we're overriding a data symbol, collect the associated // Gotype, so as to propagate it to the new symbol. auxs := r.Auxs(li) pp.auxs = auxs loop: for j := range auxs { a := &auxs[j] switch a.Type() { case goobj2.AuxGotype: pp.gotype = l.resolve(r, a.Sym()) break loop default: // nothing to do } } // Install new payload to global index space. // (This needs to happen at the end, as the accessors above // need to access the old symbol content.) l.objSyms[symIdx] = objSym{l.extReader, pi} l.extReader.syms = append(l.extReader.syms, symIdx) } // Copy the payload of symbol src to dst. Both src and dst must be external // symbols. // The intended use case is that when building/linking against a shared library, // where we do symbol name mangling, the Go object file may have reference to // the original symbol name whereas the shared library provides a symbol with // the mangled name. When we do mangling, we copy payload of mangled to original. func (l *Loader) CopySym(src, dst Sym) { if !l.IsExternal(dst) { panic("dst is not external") //l.newExtSym(l.SymName(dst), l.SymVersion(dst)) } if !l.IsExternal(src) { panic("src is not external") //l.cloneToExternal(src) } l.payloads[l.extIndex(dst)] = l.payloads[l.extIndex(src)] l.SetSymPkg(dst, l.SymPkg(src)) // TODO: other attributes? } // CopyAttributes copies over all of the attributes of symbol 'src' to // symbol 'dst'. func (l *Loader) CopyAttributes(src Sym, dst Sym) { l.SetAttrReachable(dst, l.AttrReachable(src)) l.SetAttrOnList(dst, l.AttrOnList(src)) l.SetAttrLocal(dst, l.AttrLocal(src)) l.SetAttrNotInSymbolTable(dst, l.AttrNotInSymbolTable(src)) if l.IsExternal(dst) { l.SetAttrVisibilityHidden(dst, l.AttrVisibilityHidden(src)) l.SetAttrDuplicateOK(dst, l.AttrDuplicateOK(src)) l.SetAttrShared(dst, l.AttrShared(src)) l.SetAttrExternal(dst, l.AttrExternal(src)) } else { // Some attributes are modifiable only for external symbols. // In such cases, don't try to transfer over the attribute // from the source even if there is a clash. This comes up // when copying attributes from a dupOK ABI wrapper symbol to // the real target symbol (which may not be marked dupOK). } l.SetAttrTopFrame(dst, l.AttrTopFrame(src)) l.SetAttrSpecial(dst, l.AttrSpecial(src)) l.SetAttrCgoExportDynamic(dst, l.AttrCgoExportDynamic(src)) l.SetAttrCgoExportStatic(dst, l.AttrCgoExportStatic(src)) l.SetAttrReadOnly(dst, l.AttrReadOnly(src)) } // migrateAttributes copies over all of the attributes of symbol 'src' to // sym.Symbol 'dst'. func (l *Loader) migrateAttributes(src Sym, dst *sym.Symbol) { dst.Value = l.SymValue(src) dst.Align = l.SymAlign(src) dst.Sect = l.SymSect(src) dst.Attr.Set(sym.AttrReachable, l.AttrReachable(src)) dst.Attr.Set(sym.AttrOnList, l.AttrOnList(src)) dst.Attr.Set(sym.AttrLocal, l.AttrLocal(src)) dst.Attr.Set(sym.AttrNotInSymbolTable, l.AttrNotInSymbolTable(src)) dst.Attr.Set(sym.AttrNoSplit, l.IsNoSplit(src)) dst.Attr.Set(sym.AttrVisibilityHidden, l.AttrVisibilityHidden(src)) dst.Attr.Set(sym.AttrDuplicateOK, l.AttrDuplicateOK(src)) dst.Attr.Set(sym.AttrShared, l.AttrShared(src)) dst.Attr.Set(sym.AttrExternal, l.AttrExternal(src)) dst.Attr.Set(sym.AttrTopFrame, l.AttrTopFrame(src)) dst.Attr.Set(sym.AttrSpecial, l.AttrSpecial(src)) dst.Attr.Set(sym.AttrCgoExportDynamic, l.AttrCgoExportDynamic(src)) dst.Attr.Set(sym.AttrCgoExportStatic, l.AttrCgoExportStatic(src)) dst.Attr.Set(sym.AttrReadOnly, l.AttrReadOnly(src)) // Convert outer relationship if outer, ok := l.outer[src]; ok { dst.Outer = l.Syms[outer] } // Set sub-symbol attribute. See the comment on the AttrSubSymbol // method for more on this, there is some tricky stuff here. dst.Attr.Set(sym.AttrSubSymbol, l.outer[src] != 0 && l.sub[l.outer[src]] != 0) // Copy over dynimplib, dynimpvers, extname. if name, ok := l.extname[src]; ok { dst.SetExtname(name) } if l.SymDynimplib(src) != "" { dst.SetDynimplib(l.SymDynimplib(src)) } if l.SymDynimpvers(src) != "" { dst.SetDynimpvers(l.SymDynimpvers(src)) } // Copy ELF type if set. if et, ok := l.elfType[src]; ok { dst.SetElfType(et) } // Copy pe objects values if set. if plt, ok := l.plt[src]; ok { dst.SetPlt(plt) } if got, ok := l.got[src]; ok { dst.SetGot(got) } // Copy dynid if dynid, ok := l.dynid[src]; ok { dst.Dynid = dynid } } // CreateExtSym creates a new external symbol with the specified name // without adding it to any lookup tables, returning a Sym index for it. func (l *Loader) CreateExtSym(name string, ver int) Sym { return l.newExtSym(name, ver) } // CreateStaticSym creates a new static symbol with the specified name // without adding it to any lookup tables, returning a Sym index for it. func (l *Loader) CreateStaticSym(name string) Sym { // Assign a new unique negative version -- this is to mark the // symbol so that it can be skipped when ExtractSymbols is adding // ext syms to the sym.Symbols hash. l.anonVersion-- return l.newExtSym(name, l.anonVersion) } func (l *Loader) FreeSym(i Sym) { if l.IsExternal(i) { pp := l.getPayload(i) *pp = extSymPayload{} } } func loadObjFull(l *Loader, r *oReader, needReloc, needExtReloc bool) { for i, n := 0, r.NSym()+r.NNonpkgdef(); i < n; i++ { // A symbol may be a dup or overwritten. In this case, its // content will actually be provided by a different object // (to which its global index points). Skip those symbols. gi := l.toGlobal(r, i) if r2, i2 := l.toLocal(gi); r2 != r || i2 != i { continue } s := l.Syms[gi] if s == nil { continue } l.migrateAttributes(gi, s) // Be careful not to overwrite attributes set by the linker. // Don't use the attributes from the object file. osym := r.Sym(i) size := osym.Siz() // Symbol data s.P = l.OutData(gi) // Relocs if needReloc { relocs := l.relocs(r, i) batch := l.relocBatch s.R = batch[:relocs.Count():relocs.Count()] l.relocBatch = batch[relocs.Count():] l.convertRelocations(gi, &relocs, s, false) } if needExtReloc { l.convertExtRelocs(s, gi) } // Aux symbol info auxs := r.Auxs(i) for j := range auxs { a := &auxs[j] switch a.Type() { case goobj2.AuxFuncInfo, goobj2.AuxFuncdata, goobj2.AuxGotype: // already handled case goobj2.AuxDwarfInfo, goobj2.AuxDwarfLoc, goobj2.AuxDwarfRanges, goobj2.AuxDwarfLines: // ignored for now default: panic("unknown aux type") } } if s.Size < int64(size) { s.Size = int64(size) } } } // convertRelocations takes a vector of loader.Reloc relocations and // translates them into an equivalent set of sym.Reloc relocations on // the symbol "dst", performing fixups along the way for ABI aliases, // etc. It is assumed that the caller has pre-allocated the dst symbol // relocations slice. If 'strict' is set, then this method will // panic if it finds a relocation targeting a nil symbol. func (l *Loader) convertRelocations(symIdx Sym, src *Relocs, dst *sym.Symbol, strict bool) { for j := range dst.R { r := src.At2(j) rs := r.Sym() sz := r.Siz() rt := r.Type() if rt == objabi.R_METHODOFF { if l.attrReachable.Has(rs) { rt = objabi.R_ADDROFF } else { sz = 0 rs = 0 } } if rt == objabi.R_WEAKADDROFF && !l.attrReachable.Has(rs) { rs = 0 sz = 0 } if rs != 0 && l.Syms[rs] != nil && l.Syms[rs].Type == sym.SABIALIAS { rsrelocs := l.Relocs(rs) rs = rsrelocs.At2(0).Sym() } if strict && rs != 0 && l.Syms[rs] == nil && rt != objabi.R_USETYPE { panic("nil reloc target in convertRelocations") } dst.R[j] = sym.Reloc{ Off: r.Off(), Siz: sz, Type: rt, Add: r.Add(), Sym: l.Syms[rs], } if rv := l.RelocVariant(symIdx, j); rv != 0 { dst.R[j].InitExt() dst.R[j].Variant = rv } } } // Convert external relocations to sym.Relocs on symbol dst. func (l *Loader) convertExtRelocs(dst *sym.Symbol, src Sym) { if int(src) >= len(l.extRelocs) { return } extRelocs := l.extRelocs[src] if len(extRelocs) == 0 { return } if len(dst.R) != 0 { panic("bad") } n := len(extRelocs) batch := l.relocBatch dst.R = batch[:n:n] l.relocBatch = batch[n:] relocs := l.Relocs(src) for i := range dst.R { er := &extRelocs[i] sr := relocs.At2(er.Idx) r := &dst.R[i] r.RelocExt = &l.relocExtBatch[0] l.relocExtBatch = l.relocExtBatch[1:] r.Off = sr.Off() r.Siz = sr.Siz() r.Type = sr.Type() r.Sym = l.Syms[l.ResolveABIAlias(sr.Sym())] r.Add = sr.Add() r.Xsym = l.Syms[er.Xsym] r.Xadd = er.Xadd if rv := l.RelocVariant(src, er.Idx); rv != 0 { r.Variant = rv } } } // relocId is essentially a tuple identifying the Rth // relocation of symbol S. type relocId struct { sym Sym ridx int } // SetRelocVariant sets the 'variant' property of a relocation on // some specific symbol. func (l *Loader) SetRelocVariant(s Sym, ri int, v sym.RelocVariant) { // sanity check if relocs := l.Relocs(s); ri >= relocs.Count() { panic("invalid relocation ID") } if l.relocVariant == nil { l.relocVariant = make(map[relocId]sym.RelocVariant) } if v != 0 { l.relocVariant[relocId{s, ri}] = v } else { delete(l.relocVariant, relocId{s, ri}) } } // RelocVariant returns the 'variant' property of a relocation on // some specific symbol. func (l *Loader) RelocVariant(s Sym, ri int) sym.RelocVariant { return l.relocVariant[relocId{s, ri}] } // UndefinedRelocTargets iterates through the global symbol index // space, looking for symbols with relocations targeting undefined // references. The linker's loadlib method uses this to determine if // there are unresolved references to functions in system libraries // (for example, libgcc.a), presumably due to CGO code. Return // value is a list of loader.Sym's corresponding to the undefined // cross-refs. The "limit" param controls the maximum number of // results returned; if "limit" is -1, then all undefs are returned. func (l *Loader) UndefinedRelocTargets(limit int) []Sym { result := []Sym{} for si := Sym(1); si < Sym(len(l.objSyms)); si++ { relocs := l.Relocs(si) for ri := 0; ri < relocs.Count(); ri++ { r := relocs.At2(ri) rs := r.Sym() if rs != 0 && l.SymType(rs) == sym.SXREF && l.RawSymName(rs) != ".got" { result = append(result, rs) if limit != -1 && len(result) >= limit { break } } } } return result } // AssignTextSymbolOrder populates the Textp2 slices within each // library and compilation unit, insuring that packages are laid down // in dependency order (internal first, then everything else). Return value // is a slice of all text syms. func (l *Loader) AssignTextSymbolOrder(libs []*sym.Library, intlibs []bool, extsyms []Sym) []Sym { // Library Textp2 lists should be empty at this point. for _, lib := range libs { if len(lib.Textp2) != 0 { panic("expected empty Textp2 slice for library") } if len(lib.DupTextSyms2) != 0 { panic("expected empty DupTextSyms2 slice for library") } } // Used to record which dupok symbol we've assigned to a unit. // Can't use the onlist attribute here because it will need to // clear for the later assignment of the sym.Symbol to a unit. // NB: we can convert to using onList once we no longer have to // call the regular addToTextp. assignedToUnit := MakeBitmap(l.NSym() + 1) // Start off textp2 with reachable external syms. textp2 := []Sym{} for _, sym := range extsyms { if !l.attrReachable.Has(sym) { continue } textp2 = append(textp2, sym) } // Walk through all text symbols from Go object files and append // them to their corresponding library's textp2 list. for _, o := range l.objs[1:] { r := o.r lib := r.unit.Lib for i, n := 0, r.NSym()+r.NNonpkgdef(); i < n; i++ { gi := l.toGlobal(r, i) if !l.attrReachable.Has(gi) { continue } osym := r.Sym(i) st := sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type())] if st != sym.STEXT { continue } dupok := osym.Dupok() if r2, i2 := l.toLocal(gi); r2 != r || i2 != i { // A dupok text symbol is resolved to another package. // We still need to record its presence in the current // package, as the trampoline pass expects packages // are laid out in dependency order. lib.DupTextSyms2 = append(lib.DupTextSyms2, sym.LoaderSym(gi)) continue // symbol in different object } if dupok { lib.DupTextSyms2 = append(lib.DupTextSyms2, sym.LoaderSym(gi)) continue } lib.Textp2 = append(lib.Textp2, sym.LoaderSym(gi)) } } // Now assemble global textp, and assign text symbols to units. for _, doInternal := range [2]bool{true, false} { for idx, lib := range libs { if intlibs[idx] != doInternal { continue } lists := [2][]sym.LoaderSym{lib.Textp2, lib.DupTextSyms2} for i, list := range lists { for _, s := range list { sym := Sym(s) if l.attrReachable.Has(sym) && !assignedToUnit.Has(sym) { textp2 = append(textp2, sym) unit := l.SymUnit(sym) if unit != nil { unit.Textp2 = append(unit.Textp2, s) assignedToUnit.Set(sym) } // Dupok symbols may be defined in multiple packages; the // associated package for a dupok sym is chosen sort of // arbitrarily (the first containing package that the linker // loads). Canonicalizes its Pkg to the package with which // it will be laid down in text. if i == 1 /* DupTextSyms2 */ && l.SymPkg(sym) != lib.Pkg { l.SetSymPkg(sym, lib.Pkg) } } } } lib.Textp2 = nil lib.DupTextSyms2 = nil } } return textp2 } // ErrorReporter is a helper class for reporting errors. type ErrorReporter struct { ldr *Loader AfterErrorAction func() } // Errorf method logs an error message. // // After each error, the error actions function will be invoked; this // will either terminate the link immediately (if -h option given) // or it will keep a count and exit if more than 20 errors have been printed. // // Logging an error means that on exit cmd/link will delete any // output file and return a non-zero error code. // func (reporter *ErrorReporter) Errorf(s Sym, format string, args ...interface{}) { if s != 0 && reporter.ldr.SymName(s) != "" { format = reporter.ldr.SymName(s) + ": " + format } else { format = fmt.Sprintf("sym %d: %s", s, format) } format += "\n" fmt.Fprintf(os.Stderr, format, args...) reporter.AfterErrorAction() } // GetErrorReporter returns the loader's associated error reporter. func (l *Loader) GetErrorReporter() *ErrorReporter { return l.errorReporter } // Errorf method logs an error message. See ErrorReporter.Errorf for details. func (l *Loader) Errorf(s Sym, format string, args ...interface{}) { l.errorReporter.Errorf(s, format, args...) } // For debugging. func (l *Loader) Dump() { fmt.Println("objs") for _, obj := range l.objs { if obj.r != nil { fmt.Println(obj.i, obj.r.unit.Lib) } } fmt.Println("extStart:", l.extStart) fmt.Println("Nsyms:", len(l.objSyms)) fmt.Println("syms") for i := Sym(1); i < Sym(len(l.objSyms)); i++ { pi := interface{}("") if l.IsExternal(i) { pi = fmt.Sprintf("", l.extIndex(i)) } var s *sym.Symbol if int(i) < len(l.Syms) { s = l.Syms[i] } if s != nil { fmt.Println(i, s, s.Type, pi) } else { fmt.Println(i, l.SymName(i), "", pi) } } fmt.Println("symsByName") for name, i := range l.symsByName[0] { fmt.Println(i, name, 0) } for name, i := range l.symsByName[1] { fmt.Println(i, name, 1) } fmt.Println("payloads:") for i := range l.payloads { pp := l.payloads[i] fmt.Println(i, pp.name, pp.ver, pp.kind) } }