// Derived from Inferno utils/6l/obj.c and utils/6l/span.c // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/obj.c // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/span.c // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package ld import ( "cmd/internal/gcprog" "cmd/internal/objabi" "cmd/internal/sys" "fmt" "log" "os" "sort" "strconv" "strings" "sync" ) func Symgrow(s *Symbol, siz int64) { if int64(int(siz)) != siz { log.Fatalf("symgrow size %d too long", siz) } if int64(len(s.P)) >= siz { return } if cap(s.P) < int(siz) { p := make([]byte, 2*(siz+1)) s.P = append(p[:0], s.P...) } s.P = s.P[:siz] } func Addrel(s *Symbol) *Reloc { s.R = append(s.R, Reloc{}) return &s.R[len(s.R)-1] } func setuintxx(ctxt *Link, s *Symbol, off int64, v uint64, wid int64) int64 { if s.Type == 0 { s.Type = SDATA } s.Attr |= AttrReachable if s.Size < off+wid { s.Size = off + wid Symgrow(s, s.Size) } switch wid { case 1: s.P[off] = uint8(v) case 2: ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(v)) case 4: ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(v)) case 8: ctxt.Arch.ByteOrder.PutUint64(s.P[off:], v) } return off + wid } func Addbytes(s *Symbol, bytes []byte) int64 { if s.Type == 0 { s.Type = SDATA } s.Attr |= AttrReachable s.P = append(s.P, bytes...) s.Size = int64(len(s.P)) return s.Size } func adduintxx(ctxt *Link, s *Symbol, v uint64, wid int) int64 { off := s.Size setuintxx(ctxt, s, off, v, int64(wid)) return off } func Adduint8(ctxt *Link, s *Symbol, v uint8) int64 { off := s.Size if s.Type == 0 { s.Type = SDATA } s.Attr |= AttrReachable s.Size++ s.P = append(s.P, v) return off } func Adduint16(ctxt *Link, s *Symbol, v uint16) int64 { return adduintxx(ctxt, s, uint64(v), 2) } func Adduint32(ctxt *Link, s *Symbol, v uint32) int64 { return adduintxx(ctxt, s, uint64(v), 4) } func Adduint64(ctxt *Link, s *Symbol, v uint64) int64 { return adduintxx(ctxt, s, v, 8) } func adduint(ctxt *Link, s *Symbol, v uint64) int64 { return adduintxx(ctxt, s, v, SysArch.PtrSize) } func setuint8(ctxt *Link, s *Symbol, r int64, v uint8) int64 { return setuintxx(ctxt, s, r, uint64(v), 1) } func setuint32(ctxt *Link, s *Symbol, r int64, v uint32) int64 { return setuintxx(ctxt, s, r, uint64(v), 4) } func setuint(ctxt *Link, s *Symbol, r int64, v uint64) int64 { return setuintxx(ctxt, s, r, v, int64(SysArch.PtrSize)) } func Addaddrplus(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 { if s.Type == 0 { s.Type = SDATA } s.Attr |= AttrReachable i := s.Size s.Size += int64(ctxt.Arch.PtrSize) Symgrow(s, s.Size) r := Addrel(s) r.Sym = t r.Off = int32(i) r.Siz = uint8(ctxt.Arch.PtrSize) r.Type = objabi.R_ADDR r.Add = add return i + int64(r.Siz) } func Addpcrelplus(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 { if s.Type == 0 { s.Type = SDATA } s.Attr |= AttrReachable i := s.Size s.Size += 4 Symgrow(s, s.Size) r := Addrel(s) r.Sym = t r.Off = int32(i) r.Add = add r.Type = objabi.R_PCREL r.Siz = 4 if SysArch.Family == sys.S390X { r.Variant = RV_390_DBL } return i + int64(r.Siz) } func Addaddr(ctxt *Link, s *Symbol, t *Symbol) int64 { return Addaddrplus(ctxt, s, t, 0) } func setaddrplus(ctxt *Link, s *Symbol, off int64, t *Symbol, add int64) int64 { if s.Type == 0 { s.Type = SDATA } s.Attr |= AttrReachable if off+int64(ctxt.Arch.PtrSize) > s.Size { s.Size = off + int64(ctxt.Arch.PtrSize) Symgrow(s, s.Size) } r := Addrel(s) r.Sym = t r.Off = int32(off) r.Siz = uint8(ctxt.Arch.PtrSize) r.Type = objabi.R_ADDR r.Add = add return off + int64(r.Siz) } func setaddr(ctxt *Link, s *Symbol, off int64, t *Symbol) int64 { return setaddrplus(ctxt, s, off, t, 0) } func addsize(ctxt *Link, s *Symbol, t *Symbol) int64 { if s.Type == 0 { s.Type = SDATA } s.Attr |= AttrReachable i := s.Size s.Size += int64(ctxt.Arch.PtrSize) Symgrow(s, s.Size) r := Addrel(s) r.Sym = t r.Off = int32(i) r.Siz = uint8(ctxt.Arch.PtrSize) r.Type = objabi.R_SIZE return i + int64(r.Siz) } func addaddrplus4(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 { if s.Type == 0 { s.Type = SDATA } s.Attr |= AttrReachable i := s.Size s.Size += 4 Symgrow(s, s.Size) r := Addrel(s) r.Sym = t r.Off = int32(i) r.Siz = 4 r.Type = objabi.R_ADDR r.Add = add return i + int64(r.Siz) } /* * divide-and-conquer list-link (by Sub) sort of Symbol* by Value. * Used for sub-symbols when loading host objects (see e.g. ldelf.go). */ func listsort(l *Symbol) *Symbol { if l == nil || l.Sub == nil { return l } l1 := l l2 := l for { l2 = l2.Sub if l2 == nil { break } l2 = l2.Sub if l2 == nil { break } l1 = l1.Sub } l2 = l1.Sub l1.Sub = nil l1 = listsort(l) l2 = listsort(l2) /* set up lead element */ if l1.Value < l2.Value { l = l1 l1 = l1.Sub } else { l = l2 l2 = l2.Sub } le := l for { if l1 == nil { for l2 != nil { le.Sub = l2 le = l2 l2 = l2.Sub } le.Sub = nil break } if l2 == nil { for l1 != nil { le.Sub = l1 le = l1 l1 = l1.Sub } break } if l1.Value < l2.Value { le.Sub = l1 le = l1 l1 = l1.Sub } else { le.Sub = l2 le = l2 l2 = l2.Sub } } le.Sub = nil return l } // isRuntimeDepPkg returns whether pkg is the runtime package or its dependency func isRuntimeDepPkg(pkg string) bool { switch pkg { case "runtime", "sync/atomic": // runtime may call to sync/atomic, due to go:linkname return true } return strings.HasPrefix(pkg, "runtime/internal/") && !strings.HasSuffix(pkg, "_test") } // Estimate the max size needed to hold any new trampolines created for this function. This // is used to determine when the section can be split if it becomes too large, to ensure that // the trampolines are in the same section as the function that uses them. func maxSizeTrampolinesPPC64(s *Symbol, isTramp bool) uint64 { // If Thearch.Trampoline is nil, then trampoline support is not available on this arch. // A trampoline does not need any dependent trampolines. if Thearch.Trampoline == nil || isTramp { return 0 } n := uint64(0) for ri := range s.R { r := &s.R[ri] if r.Type.IsDirectJump() { n++ } } // Trampolines in ppc64 are 4 instructions. return n * 16 } // detect too-far jumps in function s, and add trampolines if necessary // ARM, PPC64 & PPC64LE support trampoline insertion for internal and external linking // On PPC64 & PPC64LE the text sections might be split but will still insert trampolines // where necessary. func trampoline(ctxt *Link, s *Symbol) { if Thearch.Trampoline == nil { return // no need or no support of trampolines on this arch } for ri := range s.R { r := &s.R[ri] if !r.Type.IsDirectJump() { continue } if Symaddr(r.Sym) == 0 && r.Sym.Type != SDYNIMPORT { if r.Sym.File != s.File { if !isRuntimeDepPkg(s.File) || !isRuntimeDepPkg(r.Sym.File) { Errorf(s, "unresolved inter-package jump to %s(%s)", r.Sym, r.Sym.File) } // runtime and its dependent packages may call to each other. // they are fine, as they will be laid down together. } continue } Thearch.Trampoline(ctxt, r, s) } } // resolve relocations in s. func relocsym(ctxt *Link, s *Symbol) { var r *Reloc var rs *Symbol var i16 int16 var off int32 var siz int32 var fl int32 var o int64 for ri := int32(0); ri < int32(len(s.R)); ri++ { r = &s.R[ri] r.Done = 1 off = r.Off siz = int32(r.Siz) if off < 0 || off+siz > int32(len(s.P)) { rname := "" if r.Sym != nil { rname = r.Sym.Name } Errorf(s, "invalid relocation %s: %d+%d not in [%d,%d)", rname, off, siz, 0, len(s.P)) continue } if r.Sym != nil && (r.Sym.Type&(SMASK|SHIDDEN) == 0 || r.Sym.Type&SMASK == SXREF) { // When putting the runtime but not main into a shared library // these symbols are undefined and that's OK. if Buildmode == BuildmodeShared { if r.Sym.Name == "main.main" || r.Sym.Name == "main.init" { r.Sym.Type = SDYNIMPORT } else if strings.HasPrefix(r.Sym.Name, "go.info.") { // Skip go.info symbols. They are only needed to communicate // DWARF info between the compiler and linker. continue } } else { Errorf(s, "relocation target %s not defined", r.Sym.Name) continue } } if r.Type >= 256 { continue } if r.Siz == 0 { // informational relocation - no work to do continue } // We need to be able to reference dynimport symbols when linking against // shared libraries, and Solaris needs it always if Headtype != objabi.Hsolaris && r.Sym != nil && r.Sym.Type == SDYNIMPORT && !ctxt.DynlinkingGo() { if !(SysArch.Family == sys.PPC64 && Linkmode == LinkExternal && r.Sym.Name == ".TOC.") { Errorf(s, "unhandled relocation for %s (type %d rtype %d)", r.Sym.Name, r.Sym.Type, r.Type) } } if r.Sym != nil && r.Sym.Type != STLSBSS && r.Type != objabi.R_WEAKADDROFF && !r.Sym.Attr.Reachable() { Errorf(s, "unreachable sym in relocation: %s", r.Sym.Name) } // TODO(mundaym): remove this special case - see issue 14218. if SysArch.Family == sys.S390X { switch r.Type { case objabi.R_PCRELDBL: r.Type = objabi.R_PCREL r.Variant = RV_390_DBL case objabi.R_CALL: r.Variant = RV_390_DBL } } switch r.Type { default: switch siz { default: Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name) case 1: o = int64(s.P[off]) case 2: o = int64(ctxt.Arch.ByteOrder.Uint16(s.P[off:])) case 4: o = int64(ctxt.Arch.ByteOrder.Uint32(s.P[off:])) case 8: o = int64(ctxt.Arch.ByteOrder.Uint64(s.P[off:])) } if Thearch.Archreloc(ctxt, r, s, &o) < 0 { Errorf(s, "unknown reloc to %v: %v", r.Sym.Name, r.Type) } case objabi.R_TLS_LE: isAndroidX86 := objabi.GOOS == "android" && (SysArch.InFamily(sys.AMD64, sys.I386)) if Linkmode == LinkExternal && Iself && !isAndroidX86 { r.Done = 0 if r.Sym == nil { r.Sym = ctxt.Tlsg } r.Xsym = r.Sym r.Xadd = r.Add o = 0 if SysArch.Family != sys.AMD64 { o = r.Add } break } if Iself && SysArch.Family == sys.ARM { // On ELF ARM, the thread pointer is 8 bytes before // the start of the thread-local data block, so add 8 // to the actual TLS offset (r->sym->value). // This 8 seems to be a fundamental constant of // ELF on ARM (or maybe Glibc on ARM); it is not // related to the fact that our own TLS storage happens // to take up 8 bytes. o = 8 + r.Sym.Value } else if Iself || Headtype == objabi.Hplan9 || Headtype == objabi.Hdarwin || isAndroidX86 { o = int64(ctxt.Tlsoffset) + r.Add } else if Headtype == objabi.Hwindows { o = r.Add } else { log.Fatalf("unexpected R_TLS_LE relocation for %v", Headtype) } case objabi.R_TLS_IE: isAndroidX86 := objabi.GOOS == "android" && (SysArch.InFamily(sys.AMD64, sys.I386)) if Linkmode == LinkExternal && Iself && !isAndroidX86 { r.Done = 0 if r.Sym == nil { r.Sym = ctxt.Tlsg } r.Xsym = r.Sym r.Xadd = r.Add o = 0 if SysArch.Family != sys.AMD64 { o = r.Add } break } if Buildmode == BuildmodePIE && Iself { // We are linking the final executable, so we // can optimize any TLS IE relocation to LE. if Thearch.TLSIEtoLE == nil { log.Fatalf("internal linking of TLS IE not supported on %v", SysArch.Family) } Thearch.TLSIEtoLE(s, int(off), int(r.Siz)) o = int64(ctxt.Tlsoffset) // TODO: o += r.Add when SysArch.Family != sys.AMD64? // Why do we treat r.Add differently on AMD64? // Is the external linker using Xadd at all? } else { log.Fatalf("cannot handle R_TLS_IE (sym %s) when linking internally", s.Name) } case objabi.R_ADDR: if Linkmode == LinkExternal && r.Sym.Type != SCONST { r.Done = 0 // set up addend for eventual relocation via outer symbol. rs = r.Sym r.Xadd = r.Add for rs.Outer != nil { r.Xadd += Symaddr(rs) - Symaddr(rs.Outer) rs = rs.Outer } if rs.Type != SHOSTOBJ && rs.Type != SDYNIMPORT && rs.Sect == nil { Errorf(s, "missing section for relocation target %s", rs.Name) } r.Xsym = rs o = r.Xadd if Iself { if SysArch.Family == sys.AMD64 { o = 0 } } else if Headtype == objabi.Hdarwin { // ld64 for arm64 has a bug where if the address pointed to by o exists in the // symbol table (dynid >= 0), or is inside a symbol that exists in the symbol // table, then it will add o twice into the relocated value. // The workaround is that on arm64 don't ever add symaddr to o and always use // extern relocation by requiring rs->dynid >= 0. if rs.Type != SHOSTOBJ { if SysArch.Family == sys.ARM64 && rs.Dynid < 0 { Errorf(s, "R_ADDR reloc to %s+%d is not supported on darwin/arm64", rs.Name, o) } if SysArch.Family != sys.ARM64 { o += Symaddr(rs) } } } else if Headtype == objabi.Hwindows { // nothing to do } else { Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, Headtype) } break } o = Symaddr(r.Sym) + r.Add // On amd64, 4-byte offsets will be sign-extended, so it is impossible to // access more than 2GB of static data; fail at link time is better than // fail at runtime. See https://golang.org/issue/7980. // Instead of special casing only amd64, we treat this as an error on all // 64-bit architectures so as to be future-proof. if int32(o) < 0 && SysArch.PtrSize > 4 && siz == 4 { Errorf(s, "non-pc-relative relocation address for %s is too big: %#x (%#x + %#x)", r.Sym.Name, uint64(o), Symaddr(r.Sym), r.Add) errorexit() } case objabi.R_DWARFREF: if r.Sym.Sect == nil { Errorf(s, "missing DWARF section for relocation target %s", r.Sym.Name) } if Linkmode == LinkExternal { r.Done = 0 // PE code emits IMAGE_REL_I386_SECREL and IMAGE_REL_AMD64_SECREL // for R_DWARFREF relocations, while R_ADDR is replaced with // IMAGE_REL_I386_DIR32, IMAGE_REL_AMD64_ADDR64 and IMAGE_REL_AMD64_ADDR32. // Do not replace R_DWARFREF with R_ADDR for windows - // let PE code emit correct relocations. if Headtype != objabi.Hwindows { r.Type = objabi.R_ADDR } r.Xsym = ctxt.Syms.ROLookup(r.Sym.Sect.Name, 0) r.Xadd = r.Add + Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr) o = r.Xadd rs = r.Xsym if Iself && SysArch.Family == sys.AMD64 { o = 0 } break } o = Symaddr(r.Sym) + r.Add - int64(r.Sym.Sect.Vaddr) case objabi.R_WEAKADDROFF: if !r.Sym.Attr.Reachable() { continue } fallthrough case objabi.R_ADDROFF: // The method offset tables using this relocation expect the offset to be relative // to the start of the first text section, even if there are multiple. if r.Sym.Sect.Name == ".text" { o = Symaddr(r.Sym) - int64(Segtext.Sections[0].Vaddr) + r.Add } else { o = Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr) + r.Add } // r->sym can be null when CALL $(constant) is transformed from absolute PC to relative PC call. case objabi.R_GOTPCREL: if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin && r.Sym != nil && r.Sym.Type != SCONST { r.Done = 0 r.Xadd = r.Add r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk r.Xsym = r.Sym o = r.Xadd o += int64(r.Siz) break } fallthrough case objabi.R_CALL, objabi.R_PCREL: if Linkmode == LinkExternal && r.Sym != nil && r.Sym.Type != SCONST && (r.Sym.Sect != s.Sect || r.Type == objabi.R_GOTPCREL) { r.Done = 0 // set up addend for eventual relocation via outer symbol. rs = r.Sym r.Xadd = r.Add for rs.Outer != nil { r.Xadd += Symaddr(rs) - Symaddr(rs.Outer) rs = rs.Outer } r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk if rs.Type != SHOSTOBJ && rs.Type != SDYNIMPORT && rs.Sect == nil { Errorf(s, "missing section for relocation target %s", rs.Name) } r.Xsym = rs o = r.Xadd if Iself { if SysArch.Family == sys.AMD64 { o = 0 } } else if Headtype == objabi.Hdarwin { if r.Type == objabi.R_CALL { if rs.Type != SHOSTOBJ { o += int64(uint64(Symaddr(rs)) - rs.Sect.Vaddr) } o -= int64(r.Off) // relative to section offset, not symbol } else if SysArch.Family == sys.ARM { // see ../arm/asm.go:/machoreloc1 o += Symaddr(rs) - int64(s.Value) - int64(r.Off) } else { o += int64(r.Siz) } } else if Headtype == objabi.Hwindows && SysArch.Family == sys.AMD64 { // only amd64 needs PCREL // PE/COFF's PC32 relocation uses the address after the relocated // bytes as the base. Compensate by skewing the addend. o += int64(r.Siz) } else { Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, Headtype) } break } o = 0 if r.Sym != nil { o += Symaddr(r.Sym) } o += r.Add - (s.Value + int64(r.Off) + int64(r.Siz)) case objabi.R_SIZE: o = r.Sym.Size + r.Add } if r.Variant != RV_NONE { o = Thearch.Archrelocvariant(ctxt, r, s, o) } if false { nam := "" if r.Sym != nil { nam = r.Sym.Name } fmt.Printf("relocate %s %#x (%#x+%#x, size %d) => %s %#x +%#x [type %d/%d, %x]\n", s.Name, s.Value+int64(off), s.Value, r.Off, r.Siz, nam, Symaddr(r.Sym), r.Add, r.Type, r.Variant, o) } switch siz { default: Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name) fallthrough // TODO(rsc): Remove. case 1: s.P[off] = byte(int8(o)) case 2: if o != int64(int16(o)) { Errorf(s, "relocation address for %s is too big: %#x", r.Sym.Name, o) } i16 = int16(o) ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(i16)) case 4: if r.Type == objabi.R_PCREL || r.Type == objabi.R_CALL { if o != int64(int32(o)) { Errorf(s, "pc-relative relocation address for %s is too big: %#x", r.Sym.Name, o) } } else { if o != int64(int32(o)) && o != int64(uint32(o)) { Errorf(s, "non-pc-relative relocation address for %s is too big: %#x", r.Sym.Name, uint64(o)) } } fl = int32(o) ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(fl)) case 8: ctxt.Arch.ByteOrder.PutUint64(s.P[off:], uint64(o)) } } } func (ctxt *Link) reloc() { if ctxt.Debugvlog != 0 { ctxt.Logf("%5.2f reloc\n", Cputime()) } for _, s := range ctxt.Textp { relocsym(ctxt, s) } for _, sym := range datap { relocsym(ctxt, sym) } for _, s := range dwarfp { relocsym(ctxt, s) } } func dynrelocsym(ctxt *Link, s *Symbol) { if Headtype == objabi.Hwindows && Linkmode != LinkExternal { rel := ctxt.Syms.Lookup(".rel", 0) if s == rel { return } for ri := 0; ri < len(s.R); ri++ { r := &s.R[ri] targ := r.Sym if targ == nil { continue } if !targ.Attr.Reachable() { if r.Type == objabi.R_WEAKADDROFF { continue } Errorf(s, "dynamic relocation to unreachable symbol %s", targ.Name) } if r.Sym.Plt == -2 && r.Sym.Got != -2 { // make dynimport JMP table for PE object files. targ.Plt = int32(rel.Size) r.Sym = rel r.Add = int64(targ.Plt) // jmp *addr if SysArch.Family == sys.I386 { Adduint8(ctxt, rel, 0xff) Adduint8(ctxt, rel, 0x25) Addaddr(ctxt, rel, targ) Adduint8(ctxt, rel, 0x90) Adduint8(ctxt, rel, 0x90) } else { Adduint8(ctxt, rel, 0xff) Adduint8(ctxt, rel, 0x24) Adduint8(ctxt, rel, 0x25) addaddrplus4(ctxt, rel, targ, 0) Adduint8(ctxt, rel, 0x90) } } else if r.Sym.Plt >= 0 { r.Sym = rel r.Add = int64(targ.Plt) } } return } for ri := 0; ri < len(s.R); ri++ { r := &s.R[ri] if Buildmode == BuildmodePIE && Linkmode == LinkInternal { // It's expected that some relocations will be done // later by relocsym (R_TLS_LE, R_ADDROFF), so // don't worry if Adddynrel returns false. Thearch.Adddynrel(ctxt, s, r) continue } if r.Sym != nil && r.Sym.Type == SDYNIMPORT || r.Type >= 256 { if r.Sym != nil && !r.Sym.Attr.Reachable() { Errorf(s, "dynamic relocation to unreachable symbol %s", r.Sym.Name) } if !Thearch.Adddynrel(ctxt, s, r) { Errorf(s, "unsupported dynamic relocation for symbol %s (type=%d stype=%d)", r.Sym.Name, r.Type, r.Sym.Type) } } } } func dynreloc(ctxt *Link, data *[SXREF][]*Symbol) { // -d suppresses dynamic loader format, so we may as well not // compute these sections or mark their symbols as reachable. if *FlagD && Headtype != objabi.Hwindows { return } if ctxt.Debugvlog != 0 { ctxt.Logf("%5.2f reloc\n", Cputime()) } for _, s := range ctxt.Textp { dynrelocsym(ctxt, s) } for _, syms := range data { for _, sym := range syms { dynrelocsym(ctxt, sym) } } if Iself { elfdynhash(ctxt) } } func Codeblk(ctxt *Link, addr int64, size int64) { CodeblkPad(ctxt, addr, size, zeros[:]) } func CodeblkPad(ctxt *Link, addr int64, size int64, pad []byte) { if *flagA { ctxt.Logf("codeblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset()) } blk(ctxt, ctxt.Textp, addr, size, pad) /* again for printing */ if !*flagA { return } syms := ctxt.Textp for i, sym := range syms { if !sym.Attr.Reachable() { continue } if sym.Value >= addr { syms = syms[i:] break } } eaddr := addr + size var q []byte for _, sym := range syms { if !sym.Attr.Reachable() { continue } if sym.Value >= eaddr { break } if addr < sym.Value { ctxt.Logf("%-20s %.8x|", "_", uint64(addr)) for ; addr < sym.Value; addr++ { ctxt.Logf(" %.2x", 0) } ctxt.Logf("\n") } ctxt.Logf("%.6x\t%-20s\n", uint64(addr), sym.Name) q = sym.P for len(q) >= 16 { ctxt.Logf("%.6x\t% x\n", uint64(addr), q[:16]) addr += 16 q = q[16:] } if len(q) > 0 { ctxt.Logf("%.6x\t% x\n", uint64(addr), q) addr += int64(len(q)) } } if addr < eaddr { ctxt.Logf("%-20s %.8x|", "_", uint64(addr)) for ; addr < eaddr; addr++ { ctxt.Logf(" %.2x", 0) } } } func blk(ctxt *Link, syms []*Symbol, addr, size int64, pad []byte) { for i, s := range syms { if s.Type&SSUB == 0 && s.Value >= addr { syms = syms[i:] break } } eaddr := addr + size for _, s := range syms { if s.Type&SSUB != 0 { continue } if s.Value >= eaddr { break } if s.Value < addr { Errorf(s, "phase error: addr=%#x but sym=%#x type=%d", addr, s.Value, s.Type) errorexit() } if addr < s.Value { strnputPad("", int(s.Value-addr), pad) addr = s.Value } Cwrite(s.P) addr += int64(len(s.P)) if addr < s.Value+s.Size { strnputPad("", int(s.Value+s.Size-addr), pad) addr = s.Value + s.Size } if addr != s.Value+s.Size { Errorf(s, "phase error: addr=%#x value+size=%#x", addr, s.Value+s.Size) errorexit() } if s.Value+s.Size >= eaddr { break } } if addr < eaddr { strnputPad("", int(eaddr-addr), pad) } Cflush() } func Datblk(ctxt *Link, addr int64, size int64) { if *flagA { ctxt.Logf("datblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset()) } blk(ctxt, datap, addr, size, zeros[:]) /* again for printing */ if !*flagA { return } syms := datap for i, sym := range syms { if sym.Value >= addr { syms = syms[i:] break } } eaddr := addr + size for _, sym := range syms { if sym.Value >= eaddr { break } if addr < sym.Value { ctxt.Logf("\t%.8x| 00 ...\n", uint64(addr)) addr = sym.Value } ctxt.Logf("%s\n\t%.8x|", sym.Name, uint64(addr)) for i, b := range sym.P { if i > 0 && i%16 == 0 { ctxt.Logf("\n\t%.8x|", uint64(addr)+uint64(i)) } ctxt.Logf(" %.2x", b) } addr += int64(len(sym.P)) for ; addr < sym.Value+sym.Size; addr++ { ctxt.Logf(" %.2x", 0) } ctxt.Logf("\n") if Linkmode != LinkExternal { continue } for _, r := range sym.R { rsname := "" if r.Sym != nil { rsname = r.Sym.Name } typ := "?" switch r.Type { case objabi.R_ADDR: typ = "addr" case objabi.R_PCREL: typ = "pcrel" case objabi.R_CALL: typ = "call" } ctxt.Logf("\treloc %.8x/%d %s %s+%#x [%#x]\n", uint(sym.Value+int64(r.Off)), r.Siz, typ, rsname, r.Add, r.Sym.Value+r.Add) } } if addr < eaddr { ctxt.Logf("\t%.8x| 00 ...\n", uint(addr)) } ctxt.Logf("\t%.8x|\n", uint(eaddr)) } func Dwarfblk(ctxt *Link, addr int64, size int64) { if *flagA { ctxt.Logf("dwarfblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset()) } blk(ctxt, dwarfp, addr, size, zeros[:]) } var zeros [512]byte // strnput writes the first n bytes of s. // If n is larger than len(s), // it is padded with NUL bytes. func strnput(s string, n int) { strnputPad(s, n, zeros[:]) } // strnput writes the first n bytes of s. // If n is larger than len(s), // it is padded with the bytes in pad (repeated as needed). func strnputPad(s string, n int, pad []byte) { if len(s) >= n { Cwritestring(s[:n]) } else { Cwritestring(s) n -= len(s) for n > len(pad) { Cwrite(pad) n -= len(pad) } Cwrite(pad[:n]) } } var strdata []*Symbol func addstrdata1(ctxt *Link, arg string) { eq := strings.Index(arg, "=") dot := strings.LastIndex(arg[:eq+1], ".") if eq < 0 || dot < 0 { Exitf("-X flag requires argument of the form importpath.name=value") } addstrdata(ctxt, objabi.PathToPrefix(arg[:dot])+arg[dot:eq], arg[eq+1:]) } func addstrdata(ctxt *Link, name string, value string) { p := fmt.Sprintf("%s.str", name) sp := ctxt.Syms.Lookup(p, 0) Addstring(sp, value) sp.Type = SRODATA s := ctxt.Syms.Lookup(name, 0) s.Size = 0 s.Attr |= AttrDuplicateOK reachable := s.Attr.Reachable() Addaddr(ctxt, s, sp) adduintxx(ctxt, s, uint64(len(value)), SysArch.PtrSize) // addstring, addaddr, etc., mark the symbols as reachable. // In this case that is not necessarily true, so stick to what // we know before entering this function. s.Attr.Set(AttrReachable, reachable) strdata = append(strdata, s) sp.Attr.Set(AttrReachable, reachable) } func (ctxt *Link) checkstrdata() { for _, s := range strdata { if s.Type == STEXT { Errorf(s, "cannot use -X with text symbol") } else if s.Gotype != nil && s.Gotype.Name != "type.string" { Errorf(s, "cannot use -X with non-string symbol") } } } func Addstring(s *Symbol, str string) int64 { if s.Type == 0 { s.Type = SNOPTRDATA } s.Attr |= AttrReachable r := s.Size if s.Name == ".shstrtab" { elfsetstring(s, str, int(r)) } s.P = append(s.P, str...) s.P = append(s.P, 0) s.Size = int64(len(s.P)) return r } // addgostring adds str, as a Go string value, to s. symname is the name of the // symbol used to define the string data and must be unique per linked object. func addgostring(ctxt *Link, s *Symbol, symname, str string) { sym := ctxt.Syms.Lookup(symname, 0) if sym.Type != Sxxx { Errorf(s, "duplicate symname in addgostring: %s", symname) } sym.Attr |= AttrReachable sym.Attr |= AttrLocal sym.Type = SRODATA sym.Size = int64(len(str)) sym.P = []byte(str) Addaddr(ctxt, s, sym) adduint(ctxt, s, uint64(len(str))) } func addinitarrdata(ctxt *Link, s *Symbol) { p := s.Name + ".ptr" sp := ctxt.Syms.Lookup(p, 0) sp.Type = SINITARR sp.Size = 0 sp.Attr |= AttrDuplicateOK Addaddr(ctxt, sp, s) } func dosymtype(ctxt *Link) { switch Buildmode { case BuildmodeCArchive, BuildmodeCShared: for _, s := range ctxt.Syms.Allsym { // Create a new entry in the .init_array section that points to the // library initializer function. switch Buildmode { case BuildmodeCArchive, BuildmodeCShared: if s.Name == *flagEntrySymbol { addinitarrdata(ctxt, s) } } } } } // symalign returns the required alignment for the given symbol s. func symalign(s *Symbol) int32 { min := int32(Thearch.Minalign) if s.Align >= min { return s.Align } else if s.Align != 0 { return min } if strings.HasPrefix(s.Name, "go.string.") || strings.HasPrefix(s.Name, "type..namedata.") { // String data is just bytes. // If we align it, we waste a lot of space to padding. return min } align := int32(Thearch.Maxalign) for int64(align) > s.Size && align > min { align >>= 1 } return align } func aligndatsize(datsize int64, s *Symbol) int64 { return Rnd(datsize, int64(symalign(s))) } const debugGCProg = false type GCProg struct { ctxt *Link sym *Symbol w gcprog.Writer } func (p *GCProg) Init(ctxt *Link, name string) { p.ctxt = ctxt p.sym = ctxt.Syms.Lookup(name, 0) p.w.Init(p.writeByte(ctxt)) if debugGCProg { fmt.Fprintf(os.Stderr, "ld: start GCProg %s\n", name) p.w.Debug(os.Stderr) } } func (p *GCProg) writeByte(ctxt *Link) func(x byte) { return func(x byte) { Adduint8(ctxt, p.sym, x) } } func (p *GCProg) End(size int64) { p.w.ZeroUntil(size / int64(SysArch.PtrSize)) p.w.End() if debugGCProg { fmt.Fprintf(os.Stderr, "ld: end GCProg\n") } } func (p *GCProg) AddSym(s *Symbol) { typ := s.Gotype // Things without pointers should be in SNOPTRDATA or SNOPTRBSS; // everything we see should have pointers and should therefore have a type. if typ == nil { switch s.Name { case "runtime.data", "runtime.edata", "runtime.bss", "runtime.ebss": // Ignore special symbols that are sometimes laid out // as real symbols. See comment about dyld on darwin in // the address function. return } Errorf(s, "missing Go type information for global symbol: size %d", s.Size) return } ptrsize := int64(SysArch.PtrSize) nptr := decodetypePtrdata(p.ctxt.Arch, typ) / ptrsize if debugGCProg { fmt.Fprintf(os.Stderr, "gcprog sym: %s at %d (ptr=%d+%d)\n", s.Name, s.Value, s.Value/ptrsize, nptr) } if decodetypeUsegcprog(typ) == 0 { // Copy pointers from mask into program. mask := decodetypeGcmask(p.ctxt, typ) for i := int64(0); i < nptr; i++ { if (mask[i/8]>>uint(i%8))&1 != 0 { p.w.Ptr(s.Value/ptrsize + i) } } return } // Copy program. prog := decodetypeGcprog(p.ctxt, typ) p.w.ZeroUntil(s.Value / ptrsize) p.w.Append(prog[4:], nptr) } // dataSortKey is used to sort a slice of data symbol *Symbol pointers. // The sort keys are kept inline to improve cache behavior while sorting. type dataSortKey struct { size int64 name string sym *Symbol } type bySizeAndName []dataSortKey func (d bySizeAndName) Len() int { return len(d) } func (d bySizeAndName) Swap(i, j int) { d[i], d[j] = d[j], d[i] } func (d bySizeAndName) Less(i, j int) bool { s1, s2 := d[i], d[j] if s1.size != s2.size { return s1.size < s2.size } return s1.name < s2.name } const cutoff int64 = 2e9 // 2 GB (or so; looks better in errors than 2^31) func checkdatsize(ctxt *Link, datsize int64, symn SymKind) { if datsize > cutoff { Errorf(nil, "too much data in section %v (over %d bytes)", symn, cutoff) } } // datap is a collection of reachable data symbols in address order. // Generated by dodata. var datap []*Symbol func (ctxt *Link) dodata() { if ctxt.Debugvlog != 0 { ctxt.Logf("%5.2f dodata\n", Cputime()) } if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin { // The values in moduledata are filled out by relocations // pointing to the addresses of these special symbols. // Typically these symbols have no size and are not laid // out with their matching section. // // However on darwin, dyld will find the special symbol // in the first loaded module, even though it is local. // // (An hypothesis, formed without looking in the dyld sources: // these special symbols have no size, so their address // matches a real symbol. The dynamic linker assumes we // want the normal symbol with the same address and finds // it in the other module.) // // To work around this we lay out the symbls whose // addresses are vital for multi-module programs to work // as normal symbols, and give them a little size. bss := ctxt.Syms.Lookup("runtime.bss", 0) bss.Size = 8 bss.Attr.Set(AttrSpecial, false) ctxt.Syms.Lookup("runtime.ebss", 0).Attr.Set(AttrSpecial, false) data := ctxt.Syms.Lookup("runtime.data", 0) data.Size = 8 data.Attr.Set(AttrSpecial, false) ctxt.Syms.Lookup("runtime.edata", 0).Attr.Set(AttrSpecial, false) types := ctxt.Syms.Lookup("runtime.types", 0) types.Type = STYPE types.Size = 8 types.Attr.Set(AttrSpecial, false) etypes := ctxt.Syms.Lookup("runtime.etypes", 0) etypes.Type = SFUNCTAB etypes.Attr.Set(AttrSpecial, false) } // Collect data symbols by type into data. var data [SXREF][]*Symbol for _, s := range ctxt.Syms.Allsym { if !s.Attr.Reachable() || s.Attr.Special() { continue } if s.Type <= STEXT || s.Type >= SXREF { continue } data[s.Type] = append(data[s.Type], s) } // Now that we have the data symbols, but before we start // to assign addresses, record all the necessary // dynamic relocations. These will grow the relocation // symbol, which is itself data. // // On darwin, we need the symbol table numbers for dynreloc. if Headtype == objabi.Hdarwin { machosymorder(ctxt) } dynreloc(ctxt, &data) if UseRelro() { // "read only" data with relocations needs to go in its own section // when building a shared library. We do this by boosting objects of // type SXXX with relocations to type SXXXRELRO. for _, symnro := range readOnly { symnrelro := relROMap[symnro] ro := []*Symbol{} relro := data[symnrelro] for _, s := range data[symnro] { isRelro := len(s.R) > 0 switch s.Type { case STYPE, STYPERELRO, SGOFUNCRELRO: // Symbols are not sorted yet, so it is possible // that an Outer symbol has been changed to a // relro Type before it reaches here. isRelro = true } if isRelro { s.Type = symnrelro if s.Outer != nil { s.Outer.Type = s.Type } relro = append(relro, s) } else { ro = append(ro, s) } } // Check that we haven't made two symbols with the same .Outer into // different types (because references two symbols with non-nil Outer // become references to the outer symbol + offset it's vital that the // symbol and the outer end up in the same section). for _, s := range relro { if s.Outer != nil && s.Outer.Type != s.Type { Errorf(s, "inconsistent types for symbol and its Outer %s (%v != %v)", s.Outer.Name, s.Type, s.Outer.Type) } } data[symnro] = ro data[symnrelro] = relro } } // Sort symbols. var dataMaxAlign [SXREF]int32 var wg sync.WaitGroup for symn := range data { symn := SymKind(symn) wg.Add(1) go func() { data[symn], dataMaxAlign[symn] = dodataSect(ctxt, symn, data[symn]) wg.Done() }() } wg.Wait() // Allocate sections. // Data is processed before segtext, because we need // to see all symbols in the .data and .bss sections in order // to generate garbage collection information. datsize := int64(0) // Writable data sections that do not need any specialized handling. writable := []SymKind{ SELFSECT, SMACHO, SMACHOGOT, SWINDOWS, } for _, symn := range writable { for _, s := range data[symn] { sect := addsection(&Segdata, s.Name, 06) sect.Align = symalign(s) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) s.Sect = sect s.Type = SDATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size sect.Length = uint64(datsize) - sect.Vaddr } checkdatsize(ctxt, datsize, symn) } // .got (and .toc on ppc64) if len(data[SELFGOT]) > 0 { sect := addsection(&Segdata, ".got", 06) sect.Align = dataMaxAlign[SELFGOT] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) var toc *Symbol for _, s := range data[SELFGOT] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = SDATA s.Value = int64(uint64(datsize) - sect.Vaddr) // Resolve .TOC. symbol for this object file (ppc64) toc = ctxt.Syms.ROLookup(".TOC.", int(s.Version)) if toc != nil { toc.Sect = sect toc.Outer = s toc.Sub = s.Sub s.Sub = toc toc.Value = 0x8000 } datsize += s.Size } checkdatsize(ctxt, datsize, SELFGOT) sect.Length = uint64(datsize) - sect.Vaddr } /* pointer-free data */ sect := addsection(&Segdata, ".noptrdata", 06) sect.Align = dataMaxAlign[SNOPTRDATA] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) ctxt.Syms.Lookup("runtime.noptrdata", 0).Sect = sect ctxt.Syms.Lookup("runtime.enoptrdata", 0).Sect = sect for _, s := range data[SNOPTRDATA] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = SDATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } checkdatsize(ctxt, datsize, SNOPTRDATA) sect.Length = uint64(datsize) - sect.Vaddr hasinitarr := *FlagLinkshared /* shared library initializer */ switch Buildmode { case BuildmodeCArchive, BuildmodeCShared, BuildmodeShared, BuildmodePlugin: hasinitarr = true } if hasinitarr { sect := addsection(&Segdata, ".init_array", 06) sect.Align = dataMaxAlign[SINITARR] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) for _, s := range data[SINITARR] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } sect.Length = uint64(datsize) - sect.Vaddr checkdatsize(ctxt, datsize, SINITARR) } /* data */ sect = addsection(&Segdata, ".data", 06) sect.Align = dataMaxAlign[SDATA] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) ctxt.Syms.Lookup("runtime.data", 0).Sect = sect ctxt.Syms.Lookup("runtime.edata", 0).Sect = sect var gc GCProg gc.Init(ctxt, "runtime.gcdata") for _, s := range data[SDATA] { s.Sect = sect s.Type = SDATA datsize = aligndatsize(datsize, s) s.Value = int64(uint64(datsize) - sect.Vaddr) gc.AddSym(s) datsize += s.Size } checkdatsize(ctxt, datsize, SDATA) sect.Length = uint64(datsize) - sect.Vaddr gc.End(int64(sect.Length)) /* bss */ sect = addsection(&Segdata, ".bss", 06) sect.Align = dataMaxAlign[SBSS] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) ctxt.Syms.Lookup("runtime.bss", 0).Sect = sect ctxt.Syms.Lookup("runtime.ebss", 0).Sect = sect gc = GCProg{} gc.Init(ctxt, "runtime.gcbss") for _, s := range data[SBSS] { s.Sect = sect datsize = aligndatsize(datsize, s) s.Value = int64(uint64(datsize) - sect.Vaddr) gc.AddSym(s) datsize += s.Size } checkdatsize(ctxt, datsize, SBSS) sect.Length = uint64(datsize) - sect.Vaddr gc.End(int64(sect.Length)) /* pointer-free bss */ sect = addsection(&Segdata, ".noptrbss", 06) sect.Align = dataMaxAlign[SNOPTRBSS] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) ctxt.Syms.Lookup("runtime.noptrbss", 0).Sect = sect ctxt.Syms.Lookup("runtime.enoptrbss", 0).Sect = sect for _, s := range data[SNOPTRBSS] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } sect.Length = uint64(datsize) - sect.Vaddr ctxt.Syms.Lookup("runtime.end", 0).Sect = sect checkdatsize(ctxt, datsize, SNOPTRBSS) if len(data[STLSBSS]) > 0 { var sect *Section if Iself && (Linkmode == LinkExternal || !*FlagD) { sect = addsection(&Segdata, ".tbss", 06) sect.Align = int32(SysArch.PtrSize) sect.Vaddr = 0 } datsize = 0 for _, s := range data[STLSBSS] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Value = datsize datsize += s.Size } checkdatsize(ctxt, datsize, STLSBSS) if sect != nil { sect.Length = uint64(datsize) } } /* * We finished data, begin read-only data. * Not all systems support a separate read-only non-executable data section. * ELF systems do. * OS X and Plan 9 do not. * Windows PE may, but if so we have not implemented it. * And if we're using external linking mode, the point is moot, * since it's not our decision; that code expects the sections in * segtext. */ var segro *Segment if Iself && Linkmode == LinkInternal { segro = &Segrodata } else { segro = &Segtext } datsize = 0 /* read-only executable ELF, Mach-O sections */ if len(data[STEXT]) != 0 { Errorf(nil, "dodata found an STEXT symbol: %s", data[STEXT][0].Name) } for _, s := range data[SELFRXSECT] { sect := addsection(&Segtext, s.Name, 04) sect.Align = symalign(s) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) s.Sect = sect s.Type = SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size sect.Length = uint64(datsize) - sect.Vaddr checkdatsize(ctxt, datsize, SELFRXSECT) } /* read-only data */ sect = addsection(segro, ".rodata", 04) sect.Vaddr = 0 ctxt.Syms.Lookup("runtime.rodata", 0).Sect = sect ctxt.Syms.Lookup("runtime.erodata", 0).Sect = sect if !UseRelro() { ctxt.Syms.Lookup("runtime.types", 0).Sect = sect ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect } for _, symn := range readOnly { align := dataMaxAlign[symn] if sect.Align < align { sect.Align = align } } datsize = Rnd(datsize, int64(sect.Align)) for _, symn := range readOnly { for _, s := range data[symn] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } checkdatsize(ctxt, datsize, symn) } sect.Length = uint64(datsize) - sect.Vaddr /* read-only ELF, Mach-O sections */ for _, s := range data[SELFROSECT] { sect = addsection(segro, s.Name, 04) sect.Align = symalign(s) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) s.Sect = sect s.Type = SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size sect.Length = uint64(datsize) - sect.Vaddr } checkdatsize(ctxt, datsize, SELFROSECT) for _, s := range data[SMACHOPLT] { sect = addsection(segro, s.Name, 04) sect.Align = symalign(s) datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) s.Sect = sect s.Type = SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size sect.Length = uint64(datsize) - sect.Vaddr } checkdatsize(ctxt, datsize, SMACHOPLT) // There is some data that are conceptually read-only but are written to by // relocations. On GNU systems, we can arrange for the dynamic linker to // mprotect sections after relocations are applied by giving them write // permissions in the object file and calling them ".data.rel.ro.FOO". We // divide the .rodata section between actual .rodata and .data.rel.ro.rodata, // but for the other sections that this applies to, we just write a read-only // .FOO section or a read-write .data.rel.ro.FOO section depending on the // situation. // TODO(mwhudson): It would make sense to do this more widely, but it makes // the system linker segfault on darwin. addrelrosection := func(suffix string) *Section { return addsection(segro, suffix, 04) } if UseRelro() { addrelrosection = func(suffix string) *Section { seg := &Segrelrodata if Linkmode == LinkExternal { // Using a separate segment with an external // linker results in some programs moving // their data sections unexpectedly, which // corrupts the moduledata. So we use the // rodata segment and let the external linker // sort out a rel.ro segment. seg = &Segrodata } return addsection(seg, ".data.rel.ro"+suffix, 06) } /* data only written by relocations */ sect = addrelrosection("") sect.Vaddr = 0 ctxt.Syms.Lookup("runtime.types", 0).Sect = sect ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect for _, symnro := range readOnly { symn := relROMap[symnro] align := dataMaxAlign[symn] if sect.Align < align { sect.Align = align } } datsize = Rnd(datsize, int64(sect.Align)) for _, symnro := range readOnly { symn := relROMap[symnro] for _, s := range data[symn] { datsize = aligndatsize(datsize, s) if s.Outer != nil && s.Outer.Sect != nil && s.Outer.Sect != sect { Errorf(s, "s.Outer (%s) in different section from s, %s != %s", s.Outer.Name, s.Outer.Sect.Name, sect.Name) } s.Sect = sect s.Type = SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } checkdatsize(ctxt, datsize, symn) } sect.Length = uint64(datsize) - sect.Vaddr } /* typelink */ sect = addrelrosection(".typelink") sect.Align = dataMaxAlign[STYPELINK] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) typelink := ctxt.Syms.Lookup("runtime.typelink", 0) typelink.Sect = sect typelink.Type = SRODATA datsize += typelink.Size checkdatsize(ctxt, datsize, STYPELINK) sect.Length = uint64(datsize) - sect.Vaddr /* itablink */ sect = addrelrosection(".itablink") sect.Align = dataMaxAlign[SITABLINK] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) ctxt.Syms.Lookup("runtime.itablink", 0).Sect = sect ctxt.Syms.Lookup("runtime.eitablink", 0).Sect = sect for _, s := range data[SITABLINK] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } checkdatsize(ctxt, datsize, SITABLINK) sect.Length = uint64(datsize) - sect.Vaddr /* gosymtab */ sect = addrelrosection(".gosymtab") sect.Align = dataMaxAlign[SSYMTAB] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) ctxt.Syms.Lookup("runtime.symtab", 0).Sect = sect ctxt.Syms.Lookup("runtime.esymtab", 0).Sect = sect for _, s := range data[SSYMTAB] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } checkdatsize(ctxt, datsize, SSYMTAB) sect.Length = uint64(datsize) - sect.Vaddr /* gopclntab */ sect = addrelrosection(".gopclntab") sect.Align = dataMaxAlign[SPCLNTAB] datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) ctxt.Syms.Lookup("runtime.pclntab", 0).Sect = sect ctxt.Syms.Lookup("runtime.epclntab", 0).Sect = sect for _, s := range data[SPCLNTAB] { datsize = aligndatsize(datsize, s) s.Sect = sect s.Type = SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size } checkdatsize(ctxt, datsize, SRODATA) sect.Length = uint64(datsize) - sect.Vaddr // 6g uses 4-byte relocation offsets, so the entire segment must fit in 32 bits. if datsize != int64(uint32(datsize)) { Errorf(nil, "read-only data segment too large: %d", datsize) } for symn := SELFRXSECT; symn < SXREF; symn++ { datap = append(datap, data[symn]...) } dwarfgeneratedebugsyms(ctxt) var i int for ; i < len(dwarfp); i++ { s := dwarfp[i] if s.Type != SDWARFSECT { break } sect = addsection(&Segdwarf, s.Name, 04) sect.Align = 1 datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) s.Sect = sect s.Type = SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) datsize += s.Size sect.Length = uint64(datsize) - sect.Vaddr } checkdatsize(ctxt, datsize, SDWARFSECT) for i < len(dwarfp) { curType := dwarfp[i].Type var sect *Section switch curType { case SDWARFINFO: sect = addsection(&Segdwarf, ".debug_info", 04) case SDWARFRANGE: sect = addsection(&Segdwarf, ".debug_ranges", 04) default: Errorf(dwarfp[i], "unknown DWARF section %v", curType) } sect.Align = 1 datsize = Rnd(datsize, int64(sect.Align)) sect.Vaddr = uint64(datsize) for ; i < len(dwarfp); i++ { s := dwarfp[i] if s.Type != curType { break } s.Sect = sect s.Type = SRODATA s.Value = int64(uint64(datsize) - sect.Vaddr) s.Attr |= AttrLocal datsize += s.Size } sect.Length = uint64(datsize) - sect.Vaddr checkdatsize(ctxt, datsize, curType) } /* number the sections */ n := int32(1) for _, sect := range Segtext.Sections { sect.Extnum = int16(n) n++ } for _, sect := range Segrodata.Sections { sect.Extnum = int16(n) n++ } for _, sect := range Segrelrodata.Sections { sect.Extnum = int16(n) n++ } for _, sect := range Segdata.Sections { sect.Extnum = int16(n) n++ } for _, sect := range Segdwarf.Sections { sect.Extnum = int16(n) n++ } } func dodataSect(ctxt *Link, symn SymKind, syms []*Symbol) (result []*Symbol, maxAlign int32) { if Headtype == objabi.Hdarwin { // Some symbols may no longer belong in syms // due to movement in machosymorder. newSyms := make([]*Symbol, 0, len(syms)) for _, s := range syms { if s.Type == symn { newSyms = append(newSyms, s) } } syms = newSyms } var head, tail *Symbol symsSort := make([]dataSortKey, 0, len(syms)) for _, s := range syms { if s.Attr.OnList() { log.Fatalf("symbol %s listed multiple times", s.Name) } s.Attr |= AttrOnList switch { case s.Size < int64(len(s.P)): Errorf(s, "initialize bounds (%d < %d)", s.Size, len(s.P)) case s.Size < 0: Errorf(s, "negative size (%d bytes)", s.Size) case s.Size > cutoff: Errorf(s, "symbol too large (%d bytes)", s.Size) } // If the usually-special section-marker symbols are being laid // out as regular symbols, put them either at the beginning or // end of their section. if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin { switch s.Name { case "runtime.text", "runtime.bss", "runtime.data", "runtime.types": head = s continue case "runtime.etext", "runtime.ebss", "runtime.edata", "runtime.etypes": tail = s continue } } key := dataSortKey{ size: s.Size, name: s.Name, sym: s, } switch s.Type { case SELFGOT: // For ppc64, we want to interleave the .got and .toc sections // from input files. Both are type SELFGOT, so in that case // we skip size comparison and fall through to the name // comparison (conveniently, .got sorts before .toc). key.size = 0 } symsSort = append(symsSort, key) } sort.Sort(bySizeAndName(symsSort)) off := 0 if head != nil { syms[0] = head off++ } for i, symSort := range symsSort { syms[i+off] = symSort.sym align := symalign(symSort.sym) if maxAlign < align { maxAlign = align } } if tail != nil { syms[len(syms)-1] = tail } if Iself && symn == SELFROSECT { // Make .rela and .rela.plt contiguous, the ELF ABI requires this // and Solaris actually cares. reli, plti := -1, -1 for i, s := range syms { switch s.Name { case ".rel.plt", ".rela.plt": plti = i case ".rel", ".rela": reli = i } } if reli >= 0 && plti >= 0 && plti != reli+1 { var first, second int if plti > reli { first, second = reli, plti } else { first, second = plti, reli } rel, plt := syms[reli], syms[plti] copy(syms[first+2:], syms[first+1:second]) syms[first+0] = rel syms[first+1] = plt // Make sure alignment doesn't introduce a gap. // Setting the alignment explicitly prevents // symalign from basing it on the size and // getting it wrong. rel.Align = int32(SysArch.RegSize) plt.Align = int32(SysArch.RegSize) } } return syms, maxAlign } // Add buildid to beginning of text segment, on non-ELF systems. // Non-ELF binary formats are not always flexible enough to // give us a place to put the Go build ID. On those systems, we put it // at the very beginning of the text segment. // This ``header'' is read by cmd/go. func (ctxt *Link) textbuildid() { if Iself || Buildmode == BuildmodePlugin || *flagBuildid == "" { return } sym := ctxt.Syms.Lookup("go.buildid", 0) sym.Attr |= AttrReachable // The \xff is invalid UTF-8, meant to make it less likely // to find one of these accidentally. data := "\xff Go build ID: " + strconv.Quote(*flagBuildid) + "\n \xff" sym.Type = STEXT sym.P = []byte(data) sym.Size = int64(len(sym.P)) ctxt.Textp = append(ctxt.Textp, nil) copy(ctxt.Textp[1:], ctxt.Textp) ctxt.Textp[0] = sym } // assign addresses to text func (ctxt *Link) textaddress() { addsection(&Segtext, ".text", 05) // Assign PCs in text segment. // Could parallelize, by assigning to text // and then letting threads copy down, but probably not worth it. sect := Segtext.Sections[0] sect.Align = int32(Funcalign) text := ctxt.Syms.Lookup("runtime.text", 0) text.Sect = sect if ctxt.DynlinkingGo() && Headtype == objabi.Hdarwin { etext := ctxt.Syms.Lookup("runtime.etext", 0) etext.Sect = sect ctxt.Textp = append(ctxt.Textp, etext, nil) copy(ctxt.Textp[1:], ctxt.Textp) ctxt.Textp[0] = text } va := uint64(*FlagTextAddr) n := 1 sect.Vaddr = va ntramps := 0 for _, sym := range ctxt.Textp { sect, n, va = assignAddress(ctxt, sect, n, sym, va, false) trampoline(ctxt, sym) // resolve jumps, may add trampolines if jump too far // lay down trampolines after each function for ; ntramps < len(ctxt.tramps); ntramps++ { tramp := ctxt.tramps[ntramps] sect, n, va = assignAddress(ctxt, sect, n, tramp, va, true) } } sect.Length = va - sect.Vaddr ctxt.Syms.Lookup("runtime.etext", 0).Sect = sect // merge tramps into Textp, keeping Textp in address order if ntramps != 0 { newtextp := make([]*Symbol, 0, len(ctxt.Textp)+ntramps) i := 0 for _, sym := range ctxt.Textp { for ; i < ntramps && ctxt.tramps[i].Value < sym.Value; i++ { newtextp = append(newtextp, ctxt.tramps[i]) } newtextp = append(newtextp, sym) } newtextp = append(newtextp, ctxt.tramps[i:ntramps]...) ctxt.Textp = newtextp } } // assigns address for a text symbol, returns (possibly new) section, its number, and the address // Note: once we have trampoline insertion support for external linking, this function // will not need to create new text sections, and so no need to return sect and n. func assignAddress(ctxt *Link, sect *Section, n int, sym *Symbol, va uint64, isTramp bool) (*Section, int, uint64) { sym.Sect = sect if sym.Type&SSUB != 0 { return sect, n, va } if sym.Align != 0 { va = uint64(Rnd(int64(va), int64(sym.Align))) } else { va = uint64(Rnd(int64(va), int64(Funcalign))) } sym.Value = 0 for sub := sym; sub != nil; sub = sub.Sub { sub.Value += int64(va) } funcsize := uint64(MINFUNC) // spacing required for findfunctab if sym.Size > MINFUNC { funcsize = uint64(sym.Size) } // On ppc64x a text section should not be larger than 2^26 bytes due to the size of // call target offset field in the bl instruction. Splitting into smaller text // sections smaller than this limit allows the GNU linker to modify the long calls // appropriately. The limit allows for the space needed for tables inserted by the linker. // If this function doesn't fit in the current text section, then create a new one. // Only break at outermost syms. if SysArch.InFamily(sys.PPC64) && sym.Outer == nil && Iself && Linkmode == LinkExternal && va-sect.Vaddr+funcsize+maxSizeTrampolinesPPC64(sym, isTramp) > 0x1c00000 { // Set the length for the previous text section sect.Length = va - sect.Vaddr // Create new section, set the starting Vaddr sect = addsection(&Segtext, ".text", 05) sect.Vaddr = va sym.Sect = sect // Create a symbol for the start of the secondary text sections ctxt.Syms.Lookup(fmt.Sprintf("runtime.text.%d", n), 0).Sect = sect n++ } va += funcsize return sect, n, va } // assign addresses func (ctxt *Link) address() { va := uint64(*FlagTextAddr) Segtext.Rwx = 05 Segtext.Vaddr = va Segtext.Fileoff = uint64(HEADR) for _, s := range Segtext.Sections { va = uint64(Rnd(int64(va), int64(s.Align))) s.Vaddr = va va += s.Length } Segtext.Length = va - uint64(*FlagTextAddr) Segtext.Filelen = Segtext.Length if Headtype == objabi.Hnacl { va += 32 // room for the "halt sled" } if len(Segrodata.Sections) > 0 { // align to page boundary so as not to mix // rodata and executable text. // // Note: gold or GNU ld will reduce the size of the executable // file by arranging for the relro segment to end at a page // boundary, and overlap the end of the text segment with the // start of the relro segment in the file. The PT_LOAD segments // will be such that the last page of the text segment will be // mapped twice, once r-x and once starting out rw- and, after // relocation processing, changed to r--. // // Ideally the last page of the text segment would not be // writable even for this short period. va = uint64(Rnd(int64(va), int64(*FlagRound))) Segrodata.Rwx = 04 Segrodata.Vaddr = va Segrodata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff Segrodata.Filelen = 0 for _, s := range Segrodata.Sections { va = uint64(Rnd(int64(va), int64(s.Align))) s.Vaddr = va va += s.Length } Segrodata.Length = va - Segrodata.Vaddr Segrodata.Filelen = Segrodata.Length } if len(Segrelrodata.Sections) > 0 { // align to page boundary so as not to mix // rodata, rel-ro data, and executable text. va = uint64(Rnd(int64(va), int64(*FlagRound))) Segrelrodata.Rwx = 06 Segrelrodata.Vaddr = va Segrelrodata.Fileoff = va - Segrodata.Vaddr + Segrodata.Fileoff Segrelrodata.Filelen = 0 for _, s := range Segrelrodata.Sections { va = uint64(Rnd(int64(va), int64(s.Align))) s.Vaddr = va va += s.Length } Segrelrodata.Length = va - Segrelrodata.Vaddr Segrelrodata.Filelen = Segrelrodata.Length } va = uint64(Rnd(int64(va), int64(*FlagRound))) Segdata.Rwx = 06 Segdata.Vaddr = va Segdata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff Segdata.Filelen = 0 if Headtype == objabi.Hwindows { Segdata.Fileoff = Segtext.Fileoff + uint64(Rnd(int64(Segtext.Length), PEFILEALIGN)) } if Headtype == objabi.Hplan9 { Segdata.Fileoff = Segtext.Fileoff + Segtext.Filelen } var data *Section var noptr *Section var bss *Section var noptrbss *Section var vlen int64 for i, s := range Segdata.Sections { if Iself && s.Name == ".tbss" { continue } vlen = int64(s.Length) if i+1 < len(Segdata.Sections) && !(Iself && Segdata.Sections[i+1].Name == ".tbss") { vlen = int64(Segdata.Sections[i+1].Vaddr - s.Vaddr) } s.Vaddr = va va += uint64(vlen) Segdata.Length = va - Segdata.Vaddr if s.Name == ".data" { data = s } if s.Name == ".noptrdata" { noptr = s } if s.Name == ".bss" { bss = s } if s.Name == ".noptrbss" { noptrbss = s } } Segdata.Filelen = bss.Vaddr - Segdata.Vaddr va = uint64(Rnd(int64(va), int64(*FlagRound))) Segdwarf.Rwx = 06 Segdwarf.Vaddr = va Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(*FlagRound))) Segdwarf.Filelen = 0 if Headtype == objabi.Hwindows { Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(PEFILEALIGN))) } for i, s := range Segdwarf.Sections { vlen = int64(s.Length) if i+1 < len(Segdwarf.Sections) { vlen = int64(Segdwarf.Sections[i+1].Vaddr - s.Vaddr) } s.Vaddr = va va += uint64(vlen) if Headtype == objabi.Hwindows { va = uint64(Rnd(int64(va), PEFILEALIGN)) } Segdwarf.Length = va - Segdwarf.Vaddr } Segdwarf.Filelen = va - Segdwarf.Vaddr var ( text = Segtext.Sections[0] rodata = ctxt.Syms.Lookup("runtime.rodata", 0).Sect itablink = ctxt.Syms.Lookup("runtime.itablink", 0).Sect symtab = ctxt.Syms.Lookup("runtime.symtab", 0).Sect pclntab = ctxt.Syms.Lookup("runtime.pclntab", 0).Sect types = ctxt.Syms.Lookup("runtime.types", 0).Sect ) lasttext := text // Could be multiple .text sections for _, sect := range Segtext.Sections { if sect.Name == ".text" { lasttext = sect } } for _, s := range datap { if s.Sect != nil { s.Value += int64(s.Sect.Vaddr) } for sub := s.Sub; sub != nil; sub = sub.Sub { sub.Value += s.Value } } for _, sym := range dwarfp { if sym.Sect != nil { sym.Value += int64(sym.Sect.Vaddr) } for sub := sym.Sub; sub != nil; sub = sub.Sub { sub.Value += sym.Value } } if Buildmode == BuildmodeShared { s := ctxt.Syms.Lookup("go.link.abihashbytes", 0) sectSym := ctxt.Syms.Lookup(".note.go.abihash", 0) s.Sect = sectSym.Sect s.Value = int64(sectSym.Sect.Vaddr + 16) } ctxt.xdefine("runtime.text", STEXT, int64(text.Vaddr)) ctxt.xdefine("runtime.etext", STEXT, int64(lasttext.Vaddr+lasttext.Length)) // If there are multiple text sections, create runtime.text.n for // their section Vaddr, using n for index n := 1 for _, sect := range Segtext.Sections[1:] { if sect.Name == ".text" { symname := fmt.Sprintf("runtime.text.%d", n) ctxt.xdefine(symname, STEXT, int64(sect.Vaddr)) n++ } else { break } } ctxt.xdefine("runtime.rodata", SRODATA, int64(rodata.Vaddr)) ctxt.xdefine("runtime.erodata", SRODATA, int64(rodata.Vaddr+rodata.Length)) ctxt.xdefine("runtime.types", SRODATA, int64(types.Vaddr)) ctxt.xdefine("runtime.etypes", SRODATA, int64(types.Vaddr+types.Length)) ctxt.xdefine("runtime.itablink", SRODATA, int64(itablink.Vaddr)) ctxt.xdefine("runtime.eitablink", SRODATA, int64(itablink.Vaddr+itablink.Length)) sym := ctxt.Syms.Lookup("runtime.gcdata", 0) sym.Attr |= AttrLocal ctxt.xdefine("runtime.egcdata", SRODATA, Symaddr(sym)+sym.Size) ctxt.Syms.Lookup("runtime.egcdata", 0).Sect = sym.Sect sym = ctxt.Syms.Lookup("runtime.gcbss", 0) sym.Attr |= AttrLocal ctxt.xdefine("runtime.egcbss", SRODATA, Symaddr(sym)+sym.Size) ctxt.Syms.Lookup("runtime.egcbss", 0).Sect = sym.Sect ctxt.xdefine("runtime.symtab", SRODATA, int64(symtab.Vaddr)) ctxt.xdefine("runtime.esymtab", SRODATA, int64(symtab.Vaddr+symtab.Length)) ctxt.xdefine("runtime.pclntab", SRODATA, int64(pclntab.Vaddr)) ctxt.xdefine("runtime.epclntab", SRODATA, int64(pclntab.Vaddr+pclntab.Length)) ctxt.xdefine("runtime.noptrdata", SNOPTRDATA, int64(noptr.Vaddr)) ctxt.xdefine("runtime.enoptrdata", SNOPTRDATA, int64(noptr.Vaddr+noptr.Length)) ctxt.xdefine("runtime.bss", SBSS, int64(bss.Vaddr)) ctxt.xdefine("runtime.ebss", SBSS, int64(bss.Vaddr+bss.Length)) ctxt.xdefine("runtime.data", SDATA, int64(data.Vaddr)) ctxt.xdefine("runtime.edata", SDATA, int64(data.Vaddr+data.Length)) ctxt.xdefine("runtime.noptrbss", SNOPTRBSS, int64(noptrbss.Vaddr)) ctxt.xdefine("runtime.enoptrbss", SNOPTRBSS, int64(noptrbss.Vaddr+noptrbss.Length)) ctxt.xdefine("runtime.end", SBSS, int64(Segdata.Vaddr+Segdata.Length)) } // add a trampoline with symbol s (to be laid down after the current function) func (ctxt *Link) AddTramp(s *Symbol) { s.Type = STEXT s.Attr |= AttrReachable s.Attr |= AttrOnList ctxt.tramps = append(ctxt.tramps, s) if *FlagDebugTramp > 0 && ctxt.Debugvlog > 0 { ctxt.Logf("trampoline %s inserted\n", s) } }