// Inferno utils/5l/asm.c // https://bitbucket.org/inferno-os/inferno-os/src/master/utils/5l/asm.c // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package arm import ( "cmd/internal/objabi" "cmd/internal/sys" "cmd/link/internal/ld" "cmd/link/internal/loader" "cmd/link/internal/sym" "debug/elf" "fmt" "log" "sync" ) // This assembler: // // .align 2 // local.dso_init: // ldr r0, .Lmoduledata // .Lloadfrom: // ldr r0, [r0] // b runtime.addmoduledata@plt // .align 2 // .Lmoduledata: // .word local.moduledata(GOT_PREL) + (. - (.Lloadfrom + 4)) // assembles to: // // 00000000 : // 0: e59f0004 ldr r0, [pc, #4] ; c // 4: e5900000 ldr r0, [r0] // 8: eafffffe b 0 // 8: R_ARM_JUMP24 runtime.addmoduledata // c: 00000004 .word 0x00000004 // c: R_ARM_GOT_PREL local.moduledata func gentext2(ctxt *ld.Link, ldr *loader.Loader) { initfunc, addmoduledata := ld.PrepareAddmoduledata(ctxt) if initfunc == nil { return } o := func(op uint32) { initfunc.AddUint32(ctxt.Arch, op) } o(0xe59f0004) o(0xe08f0000) o(0xeafffffe) rel := loader.Reloc{ Off: 8, Size: 4, Type: objabi.R_CALLARM, Sym: addmoduledata, Add: 0xeafffffe, // vomit } initfunc.AddReloc(rel) o(0x00000000) rel2 := loader.Reloc{ Off: 12, Size: 4, Type: objabi.R_PCREL, Sym: ctxt.Moduledata2, Add: 4, } initfunc.AddReloc(rel2) } // Preserve highest 8 bits of a, and do addition to lower 24-bit // of a and b; used to adjust ARM branch instruction's target func braddoff(a int32, b int32) int32 { return int32((uint32(a))&0xff000000 | 0x00ffffff&uint32(a+b)) } func adddynrel2(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym, r loader.Reloc2, rIdx int) bool { targ := r.Sym() var targType sym.SymKind if targ != 0 { targType = ldr.SymType(targ) } switch r.Type() { default: if r.Type() >= objabi.ElfRelocOffset { ldr.Errorf(s, "unexpected relocation type %d (%s)", r.Type(), sym.RelocName(target.Arch, r.Type())) return false } // Handle relocations found in ELF object files. case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_PLT32): su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_CALLARM) if targType == sym.SDYNIMPORT { addpltsym2(target, ldr, syms, targ) su.SetRelocSym(rIdx, syms.PLT2) su.SetRelocAdd(rIdx, int64(braddoff(int32(r.Add()), ldr.SymPlt(targ)/4))) } return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_THM_PC22): // R_ARM_THM_CALL ld.Exitf("R_ARM_THM_CALL, are you using -marm?") return false case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_GOT32): // R_ARM_GOT_BREL if targType != sym.SDYNIMPORT { addgotsyminternal2(target, ldr, syms, targ) } else { addgotsym2(target, ldr, syms, targ) } su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_CONST) // write r->add during relocsym su.SetRelocSym(rIdx, 0) su.SetRelocAdd(rIdx, r.Add()+int64(ldr.SymGot(targ))) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_GOT_PREL): // GOT(nil) + A - nil if targType != sym.SDYNIMPORT { addgotsyminternal2(target, ldr, syms, targ) } else { addgotsym2(target, ldr, syms, targ) } su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_PCREL) su.SetRelocSym(rIdx, syms.GOT2) su.SetRelocAdd(rIdx, r.Add()+4+int64(ldr.SymGot(targ))) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_GOTOFF): // R_ARM_GOTOFF32 su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_GOTOFF) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_GOTPC): // R_ARM_BASE_PREL su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_PCREL) su.SetRelocSym(rIdx, syms.GOT2) su.SetRelocAdd(rIdx, r.Add()+4) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_CALL): su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_CALLARM) if targType == sym.SDYNIMPORT { addpltsym2(target, ldr, syms, targ) su.SetRelocSym(rIdx, syms.PLT2) su.SetRelocAdd(rIdx, int64(braddoff(int32(r.Add()), ldr.SymPlt(targ)/4))) } return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_REL32): // R_ARM_REL32 su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_PCREL) su.SetRelocAdd(rIdx, r.Add()+4) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_ABS32): if targType == sym.SDYNIMPORT { ldr.Errorf(s, "unexpected R_ARM_ABS32 relocation for dynamic symbol %s", ldr.SymName(targ)) } su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_ADDR) return true case objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_PC24), objabi.ElfRelocOffset + objabi.RelocType(elf.R_ARM_JUMP24): su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_CALLARM) if targType == sym.SDYNIMPORT { addpltsym2(target, ldr, syms, targ) su.SetRelocSym(rIdx, syms.PLT2) su.SetRelocAdd(rIdx, int64(braddoff(int32(r.Add()), ldr.SymPlt(targ)/4))) } return true } // Handle references to ELF symbols from our own object files. if targType != sym.SDYNIMPORT { return true } // Reread the reloc to incorporate any changes in type above. relocs := ldr.Relocs(s) r = relocs.At2(rIdx) switch r.Type() { case objabi.R_CALLARM: if target.IsExternal() { // External linker will do this relocation. return true } addpltsym2(target, ldr, syms, targ) su := ldr.MakeSymbolUpdater(s) su.SetRelocSym(rIdx, syms.PLT2) su.SetRelocAdd(rIdx, int64(ldr.SymPlt(targ))) return true case objabi.R_ADDR: if ldr.SymType(s) != sym.SDATA { break } if target.IsElf() { ld.Adddynsym2(ldr, target, syms, targ) rel := ldr.MakeSymbolUpdater(syms.Rel2) rel.AddAddrPlus(target.Arch, s, int64(r.Off())) rel.AddUint32(target.Arch, ld.ELF32_R_INFO(uint32(ldr.SymDynid(targ)), uint32(elf.R_ARM_GLOB_DAT))) // we need a nil + A dynamic reloc su := ldr.MakeSymbolUpdater(s) su.SetRelocType(rIdx, objabi.R_CONST) // write r->add during relocsym su.SetRelocSym(rIdx, 0) return true } } return false } func elfreloc1(ctxt *ld.Link, r *sym.Reloc, sectoff int64) bool { ctxt.Out.Write32(uint32(sectoff)) elfsym := ld.ElfSymForReloc(ctxt, r.Xsym) switch r.Type { default: return false case objabi.R_ADDR, objabi.R_DWARFSECREF: if r.Siz == 4 { ctxt.Out.Write32(uint32(elf.R_ARM_ABS32) | uint32(elfsym)<<8) } else { return false } case objabi.R_PCREL: if r.Siz == 4 { ctxt.Out.Write32(uint32(elf.R_ARM_REL32) | uint32(elfsym)<<8) } else { return false } case objabi.R_CALLARM: if r.Siz == 4 { if r.Add&0xff000000 == 0xeb000000 { // BL ctxt.Out.Write32(uint32(elf.R_ARM_CALL) | uint32(elfsym)<<8) } else { ctxt.Out.Write32(uint32(elf.R_ARM_JUMP24) | uint32(elfsym)<<8) } } else { return false } case objabi.R_TLS_LE: ctxt.Out.Write32(uint32(elf.R_ARM_TLS_LE32) | uint32(elfsym)<<8) case objabi.R_TLS_IE: ctxt.Out.Write32(uint32(elf.R_ARM_TLS_IE32) | uint32(elfsym)<<8) case objabi.R_GOTPCREL: if r.Siz == 4 { ctxt.Out.Write32(uint32(elf.R_ARM_GOT_PREL) | uint32(elfsym)<<8) } else { return false } } return true } func elfsetupplt(ctxt *ld.Link, plt, got *loader.SymbolBuilder, dynamic loader.Sym) { if plt.Size() == 0 { // str lr, [sp, #-4]! plt.AddUint32(ctxt.Arch, 0xe52de004) // ldr lr, [pc, #4] plt.AddUint32(ctxt.Arch, 0xe59fe004) // add lr, pc, lr plt.AddUint32(ctxt.Arch, 0xe08fe00e) // ldr pc, [lr, #8]! plt.AddUint32(ctxt.Arch, 0xe5bef008) // .word &GLOBAL_OFFSET_TABLE[0] - . plt.AddPCRelPlus(ctxt.Arch, got.Sym(), 4) // the first .plt entry requires 3 .plt.got entries got.AddUint32(ctxt.Arch, 0) got.AddUint32(ctxt.Arch, 0) got.AddUint32(ctxt.Arch, 0) } } func machoreloc1(arch *sys.Arch, out *ld.OutBuf, s *sym.Symbol, r *sym.Reloc, sectoff int64) bool { return false } func pereloc1(arch *sys.Arch, out *ld.OutBuf, s *sym.Symbol, r *sym.Reloc, sectoff int64) bool { rs := r.Xsym if rs.Dynid < 0 { ld.Errorf(s, "reloc %d (%s) to non-coff symbol %s type=%d (%s)", r.Type, sym.RelocName(arch, r.Type), rs.Name, rs.Type, rs.Type) return false } out.Write32(uint32(sectoff)) out.Write32(uint32(rs.Dynid)) var v uint32 switch r.Type { default: // unsupported relocation type return false case objabi.R_DWARFSECREF: v = ld.IMAGE_REL_ARM_SECREL case objabi.R_ADDR: v = ld.IMAGE_REL_ARM_ADDR32 } out.Write16(uint16(v)) return true } // sign extend a 24-bit integer func signext24(x int64) int32 { return (int32(x) << 8) >> 8 } // encode an immediate in ARM's imm12 format. copied from ../../../internal/obj/arm/asm5.go func immrot(v uint32) uint32 { for i := 0; i < 16; i++ { if v&^0xff == 0 { return uint32(i<<8) | v | 1<<25 } v = v<<2 | v>>30 } return 0 } // Convert the direct jump relocation r to refer to a trampoline if the target is too far func trampoline(ctxt *ld.Link, ldr *loader.Loader, ri int, rs, s loader.Sym) { relocs := ldr.Relocs(s) r := relocs.At2(ri) switch r.Type() { case objabi.R_CALLARM: var t int64 // ldr.SymValue(rs) == 0 indicates a cross-package jump to a function that is not yet // laid out. Conservatively use a trampoline. This should be rare, as we lay out packages // in dependency order. if ldr.SymValue(rs) != 0 { // r.Add is the instruction // low 24-bit encodes the target address t = (ldr.SymValue(rs) + int64(signext24(r.Add()&0xffffff)*4) - (ldr.SymValue(s) + int64(r.Off()))) / 4 } if t > 0x7fffff || t < -0x800000 || ldr.SymValue(rs) == 0 || (*ld.FlagDebugTramp > 1 && ldr.SymPkg(s) != ldr.SymPkg(rs)) { // direct call too far, need to insert trampoline. // look up existing trampolines first. if we found one within the range // of direct call, we can reuse it. otherwise create a new one. offset := (signext24(r.Add()&0xffffff) + 2) * 4 var tramp loader.Sym for i := 0; ; i++ { oName := ldr.SymName(rs) name := oName + fmt.Sprintf("%+d-tramp%d", offset, i) tramp = ldr.LookupOrCreateSym(name, int(ldr.SymVersion(rs))) if ldr.SymType(tramp) == sym.SDYNIMPORT { // don't reuse trampoline defined in other module continue } if oName == "runtime.deferreturn" { ldr.SetIsDeferReturnTramp(tramp, true) } if ldr.SymValue(tramp) == 0 { // either the trampoline does not exist -- we need to create one, // or found one the address which is not assigned -- this will be // laid down immediately after the current function. use this one. break } t = (ldr.SymValue(tramp) - 8 - (ldr.SymValue(s) + int64(r.Off()))) / 4 if t >= -0x800000 && t < 0x7fffff { // found an existing trampoline that is not too far // we can just use it break } } if ldr.SymType(tramp) == 0 { // trampoline does not exist, create one trampb := ldr.MakeSymbolUpdater(tramp) ctxt.AddTramp(trampb) if ctxt.DynlinkingGo() { if immrot(uint32(offset)) == 0 { ctxt.Errorf(s, "odd offset in dynlink direct call: %v+%d", ldr.SymName(rs), offset) } gentrampdyn(ctxt.Arch, trampb, rs, int64(offset)) } else if ctxt.BuildMode == ld.BuildModeCArchive || ctxt.BuildMode == ld.BuildModeCShared || ctxt.BuildMode == ld.BuildModePIE { gentramppic(ctxt.Arch, trampb, rs, int64(offset)) } else { gentramp(ctxt.Arch, ctxt.LinkMode, ldr, trampb, rs, int64(offset)) } } // modify reloc to point to tramp, which will be resolved later sb := ldr.MakeSymbolUpdater(s) relocs := sb.Relocs() r := relocs.At2(ri) r.SetSym(tramp) r.SetAdd(r.Add()&0xff000000 | 0xfffffe) // clear the offset embedded in the instruction } default: ctxt.Errorf(s, "trampoline called with non-jump reloc: %d (%s)", r.Type(), sym.RelocName(ctxt.Arch, r.Type())) } } // generate a trampoline to target+offset func gentramp(arch *sys.Arch, linkmode ld.LinkMode, ldr *loader.Loader, tramp *loader.SymbolBuilder, target loader.Sym, offset int64) { tramp.SetSize(12) // 3 instructions P := make([]byte, tramp.Size()) t := ldr.SymValue(target) + offset o1 := uint32(0xe5900000 | 11<<12 | 15<<16) // MOVW (R15), R11 // R15 is actual pc + 8 o2 := uint32(0xe12fff10 | 11) // JMP (R11) o3 := uint32(t) // WORD $target arch.ByteOrder.PutUint32(P, o1) arch.ByteOrder.PutUint32(P[4:], o2) arch.ByteOrder.PutUint32(P[8:], o3) tramp.SetData(P) if linkmode == ld.LinkExternal || ldr.SymValue(target) == 0 { r := loader.Reloc{ Off: 8, Type: objabi.R_ADDR, Size: 4, Sym: target, Add: offset, } tramp.AddReloc(r) } } // generate a trampoline to target+offset in position independent code func gentramppic(arch *sys.Arch, tramp *loader.SymbolBuilder, target loader.Sym, offset int64) { tramp.SetSize(16) // 4 instructions P := make([]byte, tramp.Size()) o1 := uint32(0xe5900000 | 11<<12 | 15<<16 | 4) // MOVW 4(R15), R11 // R15 is actual pc + 8 o2 := uint32(0xe0800000 | 11<<12 | 15<<16 | 11) // ADD R15, R11, R11 o3 := uint32(0xe12fff10 | 11) // JMP (R11) o4 := uint32(0) // WORD $(target-pc) // filled in with relocation arch.ByteOrder.PutUint32(P, o1) arch.ByteOrder.PutUint32(P[4:], o2) arch.ByteOrder.PutUint32(P[8:], o3) arch.ByteOrder.PutUint32(P[12:], o4) tramp.SetData(P) r := loader.Reloc{ Off: 12, Type: objabi.R_PCREL, Size: 4, Sym: target, Add: offset + 4, } tramp.AddReloc(r) } // generate a trampoline to target+offset in dynlink mode (using GOT) func gentrampdyn(arch *sys.Arch, tramp *loader.SymbolBuilder, target loader.Sym, offset int64) { tramp.SetSize(20) // 5 instructions o1 := uint32(0xe5900000 | 11<<12 | 15<<16 | 8) // MOVW 8(R15), R11 // R15 is actual pc + 8 o2 := uint32(0xe0800000 | 11<<12 | 15<<16 | 11) // ADD R15, R11, R11 o3 := uint32(0xe5900000 | 11<<12 | 11<<16) // MOVW (R11), R11 o4 := uint32(0xe12fff10 | 11) // JMP (R11) o5 := uint32(0) // WORD $target@GOT // filled in with relocation o6 := uint32(0) if offset != 0 { // insert an instruction to add offset tramp.SetSize(24) // 6 instructions o6 = o5 o5 = o4 o4 = 0xe2800000 | 11<<12 | 11<<16 | immrot(uint32(offset)) // ADD $offset, R11, R11 o1 = uint32(0xe5900000 | 11<<12 | 15<<16 | 12) // MOVW 12(R15), R11 } P := make([]byte, tramp.Size()) arch.ByteOrder.PutUint32(P, o1) arch.ByteOrder.PutUint32(P[4:], o2) arch.ByteOrder.PutUint32(P[8:], o3) arch.ByteOrder.PutUint32(P[12:], o4) arch.ByteOrder.PutUint32(P[16:], o5) if offset != 0 { arch.ByteOrder.PutUint32(P[20:], o6) } tramp.SetData(P) r := loader.Reloc{ Off: 16, Type: objabi.R_GOTPCREL, Size: 4, Sym: target, Add: 8, } if offset != 0 { // increase reloc offset by 4 as we inserted an ADD instruction r.Off = 20 r.Add = 12 } tramp.AddReloc(r) } func archreloc(target *ld.Target, syms *ld.ArchSyms, r *sym.Reloc, s *sym.Symbol, val int64) (int64, bool) { if target.IsExternal() { switch r.Type { case objabi.R_CALLARM: r.Done = false // set up addend for eventual relocation via outer symbol. rs := r.Sym r.Xadd = int64(signext24(r.Add & 0xffffff)) r.Xadd *= 4 for rs.Outer != nil { r.Xadd += ld.Symaddr(rs) - ld.Symaddr(rs.Outer) rs = rs.Outer } if rs.Type != sym.SHOSTOBJ && rs.Type != sym.SDYNIMPORT && rs.Type != sym.SUNDEFEXT && rs.Sect == nil { ld.Errorf(s, "missing section for %s", rs.Name) } r.Xsym = rs // ld64 for arm seems to want the symbol table to contain offset // into the section rather than pseudo virtual address that contains // the section load address. // we need to compensate that by removing the instruction's address // from addend. if target.IsDarwin() { r.Xadd -= ld.Symaddr(s) + int64(r.Off) } if r.Xadd/4 > 0x7fffff || r.Xadd/4 < -0x800000 { ld.Errorf(s, "direct call too far %d", r.Xadd/4) } return int64(braddoff(int32(0xff000000&uint32(r.Add)), int32(0xffffff&uint32(r.Xadd/4)))), true } return -1, false } switch r.Type { case objabi.R_CONST: return r.Add, true case objabi.R_GOTOFF: return ld.Symaddr(r.Sym) + r.Add - ld.Symaddr(syms.GOT), true // The following three arch specific relocations are only for generation of // Linux/ARM ELF's PLT entry (3 assembler instruction) case objabi.R_PLT0: // add ip, pc, #0xXX00000 if ld.Symaddr(syms.GOTPLT) < ld.Symaddr(syms.PLT) { ld.Errorf(s, ".got.plt should be placed after .plt section.") } return 0xe28fc600 + (0xff & (int64(uint32(ld.Symaddr(r.Sym)-(ld.Symaddr(syms.PLT)+int64(r.Off))+r.Add)) >> 20)), true case objabi.R_PLT1: // add ip, ip, #0xYY000 return 0xe28cca00 + (0xff & (int64(uint32(ld.Symaddr(r.Sym)-(ld.Symaddr(syms.PLT)+int64(r.Off))+r.Add+4)) >> 12)), true case objabi.R_PLT2: // ldr pc, [ip, #0xZZZ]! return 0xe5bcf000 + (0xfff & int64(uint32(ld.Symaddr(r.Sym)-(ld.Symaddr(syms.PLT)+int64(r.Off))+r.Add+8))), true case objabi.R_CALLARM: // bl XXXXXX or b YYYYYY // r.Add is the instruction // low 24-bit encodes the target address t := (ld.Symaddr(r.Sym) + int64(signext24(r.Add&0xffffff)*4) - (s.Value + int64(r.Off))) / 4 if t > 0x7fffff || t < -0x800000 { ld.Errorf(s, "direct call too far: %s %x", r.Sym.Name, t) } return int64(braddoff(int32(0xff000000&uint32(r.Add)), int32(0xffffff&t))), true } return val, false } func archrelocvariant(target *ld.Target, syms *ld.ArchSyms, r *sym.Reloc, s *sym.Symbol, t int64) int64 { log.Fatalf("unexpected relocation variant") return t } func addpltreloc2(ldr *loader.Loader, plt *loader.SymbolBuilder, got *loader.SymbolBuilder, s loader.Sym, typ objabi.RelocType) { r, _ := plt.AddRel(typ) r.SetSym(got.Sym()) r.SetOff(int32(plt.Size())) r.SetSiz(4) r.SetAdd(int64(ldr.SymGot(s)) - 8) plt.SetReachable(true) plt.SetSize(plt.Size() + 4) plt.Grow(plt.Size()) } func addpltsym2(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym) { if ldr.SymPlt(s) >= 0 { return } ld.Adddynsym2(ldr, target, syms, s) if target.IsElf() { plt := ldr.MakeSymbolUpdater(syms.PLT2) got := ldr.MakeSymbolUpdater(syms.GOTPLT2) rel := ldr.MakeSymbolUpdater(syms.RelPLT2) if plt.Size() == 0 { panic("plt is not set up") } // .got entry ldr.SetGot(s, int32(got.Size())) // In theory, all GOT should point to the first PLT entry, // Linux/ARM's dynamic linker will do that for us, but FreeBSD/ARM's // dynamic linker won't, so we'd better do it ourselves. got.AddAddrPlus(target.Arch, plt.Sym(), 0) // .plt entry, this depends on the .got entry ldr.SetPlt(s, int32(plt.Size())) addpltreloc2(ldr, plt, got, s, objabi.R_PLT0) // add lr, pc, #0xXX00000 addpltreloc2(ldr, plt, got, s, objabi.R_PLT1) // add lr, lr, #0xYY000 addpltreloc2(ldr, plt, got, s, objabi.R_PLT2) // ldr pc, [lr, #0xZZZ]! // rel rel.AddAddrPlus(target.Arch, got.Sym(), int64(ldr.SymGot(s))) rel.AddUint32(target.Arch, ld.ELF32_R_INFO(uint32(ldr.SymDynid(s)), uint32(elf.R_ARM_JUMP_SLOT))) } else { ldr.Errorf(s, "addpltsym: unsupported binary format") } } func addgotsyminternal2(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym) { if ldr.SymGot(s) >= 0 { return } got := ldr.MakeSymbolUpdater(syms.GOT2) ldr.SetGot(s, int32(got.Size())) got.AddAddrPlus(target.Arch, s, 0) if target.IsElf() { } else { ldr.Errorf(s, "addgotsyminternal: unsupported binary format") } } func addgotsym2(target *ld.Target, ldr *loader.Loader, syms *ld.ArchSyms, s loader.Sym) { if ldr.SymGot(s) >= 0 { return } ld.Adddynsym2(ldr, target, syms, s) got := ldr.MakeSymbolUpdater(syms.GOT2) ldr.SetGot(s, int32(got.Size())) got.AddUint64(target.Arch, 0) if target.IsElf() { rel := ldr.MakeSymbolUpdater(syms.Rel2) rel.AddAddrPlus(target.Arch, got.Sym(), int64(ldr.SymGot(s))) rel.AddUint32(target.Arch, ld.ELF32_R_INFO(uint32(ldr.SymDynid(s)), uint32(elf.R_ARM_GLOB_DAT))) } else { ldr.Errorf(s, "addgotsym: unsupported binary format") } } func asmb(ctxt *ld.Link, _ *loader.Loader) { if ctxt.IsELF { ld.Asmbelfsetup() } var wg sync.WaitGroup sect := ld.Segtext.Sections[0] offset := sect.Vaddr - ld.Segtext.Vaddr + ld.Segtext.Fileoff ld.WriteParallel(&wg, ld.Codeblk, ctxt, offset, sect.Vaddr, sect.Length) for _, sect := range ld.Segtext.Sections[1:] { offset := sect.Vaddr - ld.Segtext.Vaddr + ld.Segtext.Fileoff ld.WriteParallel(&wg, ld.Datblk, ctxt, offset, sect.Vaddr, sect.Length) } if ld.Segrodata.Filelen > 0 { ld.WriteParallel(&wg, ld.Datblk, ctxt, ld.Segrodata.Fileoff, ld.Segrodata.Vaddr, ld.Segrodata.Filelen) } if ld.Segrelrodata.Filelen > 0 { ld.WriteParallel(&wg, ld.Datblk, ctxt, ld.Segrelrodata.Fileoff, ld.Segrelrodata.Vaddr, ld.Segrelrodata.Filelen) } ld.WriteParallel(&wg, ld.Datblk, ctxt, ld.Segdata.Fileoff, ld.Segdata.Vaddr, ld.Segdata.Filelen) ld.WriteParallel(&wg, ld.Dwarfblk, ctxt, ld.Segdwarf.Fileoff, ld.Segdwarf.Vaddr, ld.Segdwarf.Filelen) wg.Wait() } func asmb2(ctxt *ld.Link) { /* output symbol table */ ld.Symsize = 0 ld.Lcsize = 0 symo := uint32(0) if !*ld.FlagS { // TODO: rationalize switch ctxt.HeadType { default: if ctxt.IsELF { symo = uint32(ld.Segdwarf.Fileoff + ld.Segdwarf.Filelen) symo = uint32(ld.Rnd(int64(symo), int64(*ld.FlagRound))) } case objabi.Hplan9: symo = uint32(ld.Segdata.Fileoff + ld.Segdata.Filelen) case objabi.Hwindows: symo = uint32(ld.Segdwarf.Fileoff + ld.Segdwarf.Filelen) symo = uint32(ld.Rnd(int64(symo), ld.PEFILEALIGN)) } ctxt.Out.SeekSet(int64(symo)) switch ctxt.HeadType { default: if ctxt.IsELF { ld.Asmelfsym(ctxt) ctxt.Out.Write(ld.Elfstrdat) if ctxt.LinkMode == ld.LinkExternal { ld.Elfemitreloc(ctxt) } } case objabi.Hplan9: ld.Asmplan9sym(ctxt) sym := ctxt.Syms.Lookup("pclntab", 0) if sym != nil { ld.Lcsize = int32(len(sym.P)) ctxt.Out.Write(sym.P) } case objabi.Hwindows: // Do nothing } } ctxt.Out.SeekSet(0) switch ctxt.HeadType { default: case objabi.Hplan9: /* plan 9 */ ctxt.Out.Write32b(0x647) /* magic */ ctxt.Out.Write32b(uint32(ld.Segtext.Filelen)) /* sizes */ ctxt.Out.Write32b(uint32(ld.Segdata.Filelen)) ctxt.Out.Write32b(uint32(ld.Segdata.Length - ld.Segdata.Filelen)) ctxt.Out.Write32b(uint32(ld.Symsize)) /* nsyms */ ctxt.Out.Write32b(uint32(ld.Entryvalue(ctxt))) /* va of entry */ ctxt.Out.Write32b(0) ctxt.Out.Write32b(uint32(ld.Lcsize)) case objabi.Hlinux, objabi.Hfreebsd, objabi.Hnetbsd, objabi.Hopenbsd: ld.Asmbelf(ctxt, int64(symo)) case objabi.Hwindows: ld.Asmbpe(ctxt) } if *ld.FlagC { fmt.Printf("textsize=%d\n", ld.Segtext.Filelen) fmt.Printf("datsize=%d\n", ld.Segdata.Filelen) fmt.Printf("bsssize=%d\n", ld.Segdata.Length-ld.Segdata.Filelen) fmt.Printf("symsize=%d\n", ld.Symsize) fmt.Printf("lcsize=%d\n", ld.Lcsize) fmt.Printf("total=%d\n", ld.Segtext.Filelen+ld.Segdata.Length+uint64(ld.Symsize)+uint64(ld.Lcsize)) } }