// Copyright 2018 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package modload import ( "cmd/go/internal/base" "cmd/go/internal/cfg" "cmd/go/internal/mvs" "cmd/go/internal/par" "context" "fmt" "os" "reflect" "runtime" "runtime/debug" "strings" "sync" "sync/atomic" "golang.org/x/mod/module" "golang.org/x/mod/semver" ) // capVersionSlice returns s with its cap reduced to its length. func capVersionSlice(s []module.Version) []module.Version { return s[:len(s):len(s)] } // A Requirements represents a logically-immutable set of root module requirements. type Requirements struct { // depth is the depth at which the requirement graph is computed. // // If eager, the graph includes all transitive requirements regardless of depth. // // If lazy, the graph includes only the root modules, the explicit // requirements of those root modules, and the transitive requirements of only // the *non-lazy* root modules. depth modDepth // rootModules is the set of module versions explicitly required by the main // module, sorted and capped to length. It may contain duplicates, and may // contain multiple versions for a given module path. rootModules []module.Version maxRootVersion map[string]string // direct is the set of module paths for which we believe the module provides // a package directly imported by a package or test in the main module. // // The "direct" map controls which modules are annotated with "// indirect" // comments in the go.mod file, and may impact which modules are listed as // explicit roots (vs. indirect-only dependencies). However, it should not // have a semantic effect on the build list overall. // // The initial direct map is populated from the existing "// indirect" // comments (or lack thereof) in the go.mod file. It is updated by the // package loader: dependencies may be promoted to direct if new // direct imports are observed, and may be demoted to indirect during // 'go mod tidy' or 'go mod vendor'. // // The direct map is keyed by module paths, not module versions. When a // module's selected version changes, we assume that it remains direct if the // previous version was a direct dependency. That assumption might not hold in // rare cases (such as if a dependency splits out a nested module, or merges a // nested module back into a parent module). direct map[string]bool graphOnce sync.Once // guards writes to (but not reads from) graph graph atomic.Value // cachedGraph } // A cachedGraph is a non-nil *ModuleGraph, together with any error discovered // while loading that graph. type cachedGraph struct { mg *ModuleGraph err error // If err is non-nil, mg may be incomplete (but must still be non-nil). } // requirements is the requirement graph for the main module. // // It is always non-nil if the main module's go.mod file has been loaded. // // This variable should only be read from the loadModFile function, and should // only be written in the loadModFile and commitRequirements functions. // All other functions that need or produce a *Requirements should // accept and/or return an explicit parameter. var requirements *Requirements // newRequirements returns a new requirement set with the given root modules. // The dependencies of the roots will be loaded lazily at the first call to the // Graph method. // // The rootModules slice must be sorted according to module.Sort. // The caller must not modify the rootModules slice or direct map after passing // them to newRequirements. // // If vendoring is in effect, the caller must invoke initVendor on the returned // *Requirements before any other method. func newRequirements(depth modDepth, rootModules []module.Version, direct map[string]bool) *Requirements { for i, m := range rootModules { if m == Target { panic(fmt.Sprintf("newRequirements called with untrimmed build list: rootModules[%v] is Target", i)) } if m.Path == "" || m.Version == "" { panic(fmt.Sprintf("bad requirement: rootModules[%v] = %v", i, m)) } if i > 0 { prev := rootModules[i-1] if prev.Path > m.Path || (prev.Path == m.Path && semver.Compare(prev.Version, m.Version) > 0) { panic(fmt.Sprintf("newRequirements called with unsorted roots: %v", rootModules)) } } } rs := &Requirements{ depth: depth, rootModules: capVersionSlice(rootModules), maxRootVersion: make(map[string]string, len(rootModules)), direct: direct, } for _, m := range rootModules { if v, ok := rs.maxRootVersion[m.Path]; ok && cmpVersion(v, m.Version) >= 0 { continue } rs.maxRootVersion[m.Path] = m.Version } return rs } // initVendor initializes rs.graph from the given list of vendored module // dependencies, overriding the graph that would normally be loaded from module // requirements. func (rs *Requirements) initVendor(vendorList []module.Version) { rs.graphOnce.Do(func() { mg := &ModuleGraph{ g: mvs.NewGraph(cmpVersion, []module.Version{Target}), } if rs.depth == lazy { // The roots of a lazy module should already include every module in the // vendor list, because the vendored modules are the same as those // maintained as roots by the lazy loading “import invariant”. // // Just to be sure, we'll double-check that here. inconsistent := false for _, m := range vendorList { if v, ok := rs.rootSelected(m.Path); !ok || v != m.Version { base.Errorf("go: vendored module %v should be required explicitly in go.mod", m) inconsistent = true } } if inconsistent { base.Fatalf("go: %v", errGoModDirty) } // Now we can treat the rest of the module graph as effectively “pruned // out”, like a more aggressive version of lazy loading: in vendor mode, // the root requirements *are* the complete module graph. mg.g.Require(Target, rs.rootModules) } else { // The transitive requirements of the main module are not in general available // from the vendor directory, and we don't actually know how we got from // the roots to the final build list. // // Instead, we'll inject a fake "vendor/modules.txt" module that provides // those transitive dependencies, and mark it as a dependency of the main // module. That allows us to elide the actual structure of the module // graph, but still distinguishes between direct and indirect // dependencies. vendorMod := module.Version{Path: "vendor/modules.txt", Version: ""} mg.g.Require(Target, append(rs.rootModules, vendorMod)) mg.g.Require(vendorMod, vendorList) } rs.graph.Store(cachedGraph{mg, nil}) }) } // rootSelected returns the version of the root dependency with the given module // path, or the zero module.Version and ok=false if the module is not a root // dependency. func (rs *Requirements) rootSelected(path string) (version string, ok bool) { if path == Target.Path { return Target.Version, true } if v, ok := rs.maxRootVersion[path]; ok { return v, true } return "", false } // hasRedundantRoot returns true if the root list contains multiple requirements // of the same module or a requirement on any version of the main module. // Redundant requirements should be pruned, but they may influence version // selection. func (rs *Requirements) hasRedundantRoot() bool { for i, m := range rs.rootModules { if m.Path == Target.Path || (i > 0 && m.Path == rs.rootModules[i-1].Path) { return true } } return false } // Graph returns the graph of module requirements loaded from the current // root modules (as reported by RootModules). // // Graph always makes a best effort to load the requirement graph despite any // errors, and always returns a non-nil *ModuleGraph. // // If the requirements of any relevant module fail to load, Graph also // returns a non-nil error of type *mvs.BuildListError. func (rs *Requirements) Graph(ctx context.Context) (*ModuleGraph, error) { rs.graphOnce.Do(func() { mg, mgErr := readModGraph(ctx, rs.depth, rs.rootModules) rs.graph.Store(cachedGraph{mg, mgErr}) }) cached := rs.graph.Load().(cachedGraph) return cached.mg, cached.err } // IsDirect returns whether the given module provides a package directly // imported by a package or test in the main module. func (rs *Requirements) IsDirect(path string) bool { return rs.direct[path] } // A ModuleGraph represents the complete graph of module dependencies // of a main module. // // If the main module is lazily loaded, the graph does not include // transitive dependencies of non-root (implicit) dependencies. type ModuleGraph struct { g *mvs.Graph loadCache par.Cache // module.Version → summaryError buildListOnce sync.Once buildList []module.Version } // A summaryError is either a non-nil modFileSummary or a non-nil error // encountered while reading or parsing that summary. type summaryError struct { summary *modFileSummary err error } var readModGraphDebugOnce sync.Once // readModGraph reads and returns the module dependency graph starting at the // given roots. // // Unlike LoadModGraph, readModGraph does not attempt to diagnose or update // inconsistent roots. func readModGraph(ctx context.Context, depth modDepth, roots []module.Version) (*ModuleGraph, error) { if depth == lazy { readModGraphDebugOnce.Do(func() { for _, f := range strings.Split(os.Getenv("GODEBUG"), ",") { switch f { case "lazymod=log": debug.PrintStack() fmt.Fprintf(os.Stderr, "go: read full module graph.\n") case "lazymod=strict": debug.PrintStack() base.Fatalf("go: read full module graph (forbidden by GODEBUG=lazymod=strict).") } } }) } var ( mu sync.Mutex // guards mg.g and hasError during loading hasError bool mg = &ModuleGraph{ g: mvs.NewGraph(cmpVersion, []module.Version{Target}), } ) mg.g.Require(Target, roots) var ( loadQueue = par.NewQueue(runtime.GOMAXPROCS(0)) loadingEager sync.Map // module.Version → nil; the set of modules that have been or are being loaded via eager roots ) // loadOne synchronously loads the explicit requirements for module m. // It does not load the transitive requirements of m even if the go version in // m's go.mod file indicates eager loading. loadOne := func(m module.Version) (*modFileSummary, error) { cached := mg.loadCache.Do(m, func() interface{} { summary, err := goModSummary(m) mu.Lock() if err == nil { mg.g.Require(m, summary.require) } else { hasError = true } mu.Unlock() return summaryError{summary, err} }).(summaryError) return cached.summary, cached.err } var enqueue func(m module.Version, depth modDepth) enqueue = func(m module.Version, depth modDepth) { if m.Version == "none" { return } if depth == eager { if _, dup := loadingEager.LoadOrStore(m, nil); dup { // m has already been enqueued for loading. Since eager loading may // follow cycles in the the requirement graph, we need to return early // to avoid making the load queue infinitely long. return } } loadQueue.Add(func() { summary, err := loadOne(m) if err != nil { return // findError will report the error later. } // If the version in m's go.mod file implies eager loading, then we cannot // assume that the explicit requirements of m (added by loadOne) are // sufficient to build the packages it contains. We must load its full // transitive dependency graph to be sure that we see all relevant // dependencies. if depth == eager || summary.depth == eager { for _, r := range summary.require { enqueue(r, eager) } } }) } for _, m := range roots { enqueue(m, depth) } <-loadQueue.Idle() if hasError { return mg, mg.findError() } return mg, nil } // RequiredBy returns the dependencies required by module m in the graph, // or ok=false if module m's dependencies are not relevant (such as if they // are pruned out by lazy loading). // // The caller must not modify the returned slice, but may safely append to it // and may rely on it not to be modified. func (mg *ModuleGraph) RequiredBy(m module.Version) (reqs []module.Version, ok bool) { return mg.g.RequiredBy(m) } // Selected returns the selected version of the module with the given path. // // If no version is selected, Selected returns version "none". func (mg *ModuleGraph) Selected(path string) (version string) { return mg.g.Selected(path) } // WalkBreadthFirst invokes f once, in breadth-first order, for each module // version other than "none" that appears in the graph, regardless of whether // that version is selected. func (mg *ModuleGraph) WalkBreadthFirst(f func(m module.Version)) { mg.g.WalkBreadthFirst(f) } // BuildList returns the selected versions of all modules present in the graph, // beginning with Target. // // The order of the remaining elements in the list is deterministic // but arbitrary. // // The caller must not modify the returned list, but may safely append to it // and may rely on it not to be modified. func (mg *ModuleGraph) BuildList() []module.Version { mg.buildListOnce.Do(func() { mg.buildList = capVersionSlice(mg.g.BuildList()) }) return mg.buildList } func (mg *ModuleGraph) findError() error { errStack := mg.g.FindPath(func(m module.Version) bool { cached := mg.loadCache.Get(m) return cached != nil && cached.(summaryError).err != nil }) if len(errStack) > 0 { err := mg.loadCache.Get(errStack[len(errStack)-1]).(summaryError).err var noUpgrade func(from, to module.Version) bool return mvs.NewBuildListError(err, errStack, noUpgrade) } return nil } func (mg *ModuleGraph) allRootsSelected() bool { roots, _ := mg.g.RequiredBy(Target) for _, m := range roots { if mg.Selected(m.Path) != m.Version { return false } } return true } // LoadModGraph loads and returns the graph of module dependencies of the main module, // without loading any packages. // // If the goVersion string is non-empty, the returned graph is the graph // as interpreted by the given Go version (instead of the version indicated // in the go.mod file). // // Modules are loaded automatically (and lazily) in LoadPackages: // LoadModGraph need only be called if LoadPackages is not, // typically in commands that care about modules but no particular package. func LoadModGraph(ctx context.Context, goVersion string) *ModuleGraph { rs := LoadModFile(ctx) if goVersion != "" { depth := modDepthFromGoVersion(goVersion) if depth == eager && rs.depth != eager { // Use newRequirements instead of convertDepth because convertDepth // also updates roots; here, we want to report the unmodified roots // even though they may seem inconsistent. rs = newRequirements(eager, rs.rootModules, rs.direct) } mg, err := rs.Graph(ctx) if err != nil { base.Fatalf("go: %v", err) } return mg } rs, mg, err := expandGraph(ctx, rs) if err != nil { base.Fatalf("go: %v", err) } commitRequirements(ctx, modFileGoVersion(), rs) return mg } // expandGraph loads the complete module graph from rs. // // If the complete graph reveals that some root of rs is not actually the // selected version of its path, expandGraph computes a new set of roots that // are consistent. (When lazy loading is implemented, this may result in // upgrades to other modules due to requirements that were previously pruned // out.) // // expandGraph returns the updated roots, along with the module graph loaded // from those roots and any error encountered while loading that graph. // expandGraph returns non-nil requirements and a non-nil graph regardless of // errors. On error, the roots might not be updated to be consistent. func expandGraph(ctx context.Context, rs *Requirements) (*Requirements, *ModuleGraph, error) { mg, mgErr := rs.Graph(ctx) if mgErr != nil { // Without the graph, we can't update the roots: we don't know which // versions of transitive dependencies would be selected. return rs, mg, mgErr } if !mg.allRootsSelected() { // The roots of rs are not consistent with the rest of the graph. Update // them. In an eager module this is a no-op for the build list as a whole — // it just promotes what were previously transitive requirements to be // roots — but in a lazy module it may pull in previously-irrelevant // transitive dependencies. newRS, rsErr := updateRoots(ctx, rs.direct, rs, nil, nil, false) if rsErr != nil { // Failed to update roots, perhaps because of an error in a transitive // dependency needed for the update. Return the original Requirements // instead. return rs, mg, rsErr } rs = newRS mg, mgErr = rs.Graph(ctx) } return rs, mg, mgErr } // EditBuildList edits the global build list by first adding every module in add // to the existing build list, then adjusting versions (and adding or removing // requirements as needed) until every module in mustSelect is selected at the // given version. // // (Note that the newly-added modules might not be selected in the resulting // build list: they could be lower than existing requirements or conflict with // versions in mustSelect.) // // If the versions listed in mustSelect are mutually incompatible (due to one of // the listed modules requiring a higher version of another), EditBuildList // returns a *ConstraintError and leaves the build list in its previous state. // // On success, EditBuildList reports whether the selected version of any module // in the build list may have been changed (possibly to or from "none") as a // result. func EditBuildList(ctx context.Context, add, mustSelect []module.Version) (changed bool, err error) { rs, changed, err := editRequirements(ctx, LoadModFile(ctx), add, mustSelect) if err != nil { return false, err } commitRequirements(ctx, modFileGoVersion(), rs) return changed, err } // A ConstraintError describes inconsistent constraints in EditBuildList type ConstraintError struct { // Conflict lists the source of the conflict for each version in mustSelect // that could not be selected due to the requirements of some other version in // mustSelect. Conflicts []Conflict } func (e *ConstraintError) Error() string { b := new(strings.Builder) b.WriteString("version constraints conflict:") for _, c := range e.Conflicts { fmt.Fprintf(b, "\n\t%v requires %v, but %v is requested", c.Source, c.Dep, c.Constraint) } return b.String() } // A Conflict documents that Source requires Dep, which conflicts with Constraint. // (That is, Dep has the same module path as Constraint but a higher version.) type Conflict struct { Source module.Version Dep module.Version Constraint module.Version } // tidyRoots trims the root dependencies to the minimal requirements needed to // both retain the same versions of all packages in pkgs and satisfy the // lazy loading invariants (if applicable). func tidyRoots(ctx context.Context, rs *Requirements, pkgs []*loadPkg) (*Requirements, error) { if rs.depth == eager { return tidyEagerRoots(ctx, rs.direct, pkgs) } return tidyLazyRoots(ctx, rs.direct, pkgs) } func updateRoots(ctx context.Context, direct map[string]bool, rs *Requirements, pkgs []*loadPkg, add []module.Version, rootsImported bool) (*Requirements, error) { if rs.depth == eager { return updateEagerRoots(ctx, direct, rs, add) } return updateLazyRoots(ctx, direct, rs, pkgs, add, rootsImported) } // tidyLazyRoots returns a minimal set of root requirements that maintains the // "lazy loading" invariants of the go.mod file for the given packages: // // 1. For each package marked with pkgInAll, the module path that provided that // package is included as a root. // 2. For all packages, the module that provided that package either remains // selected at the same version or is upgraded by the dependencies of a // root. // // If any module that provided a package has been upgraded above its previous, // version, the caller may need to reload and recompute the package graph. // // To ensure that the loading process eventually converges, the caller should // add any needed roots from the tidy root set (without removing existing untidy // roots) until the set of roots has converged. func tidyLazyRoots(ctx context.Context, direct map[string]bool, pkgs []*loadPkg) (*Requirements, error) { var ( roots []module.Version pathIncluded = map[string]bool{Target.Path: true} ) // We start by adding roots for every package in "all". // // Once that is done, we may still need to add more roots to cover upgraded or // otherwise-missing test dependencies for packages in "all". For those test // dependencies, we prefer to add roots for packages with shorter import // stacks first, on the theory that the module requirements for those will // tend to fill in the requirements for their transitive imports (which have // deeper import stacks). So we add the missing dependencies for one depth at // a time, starting with the packages actually in "all" and expanding outwards // until we have scanned every package that was loaded. var ( queue []*loadPkg queued = map[*loadPkg]bool{} ) for _, pkg := range pkgs { if !pkg.flags.has(pkgInAll) { continue } if pkg.fromExternalModule() && !pathIncluded[pkg.mod.Path] { roots = append(roots, pkg.mod) pathIncluded[pkg.mod.Path] = true } queue = append(queue, pkg) queued[pkg] = true } module.Sort(roots) tidy := newRequirements(lazy, roots, direct) for len(queue) > 0 { roots = tidy.rootModules mg, err := tidy.Graph(ctx) if err != nil { return nil, err } prevQueue := queue queue = nil for _, pkg := range prevQueue { m := pkg.mod if m.Path == "" { continue } for _, dep := range pkg.imports { if !queued[dep] { queue = append(queue, dep) queued[dep] = true } } if pkg.test != nil && !queued[pkg.test] { queue = append(queue, pkg.test) queued[pkg.test] = true } if !pathIncluded[m.Path] { if s := mg.Selected(m.Path); cmpVersion(s, m.Version) < 0 { roots = append(roots, m) } pathIncluded[m.Path] = true } } if len(roots) > len(tidy.rootModules) { module.Sort(roots) tidy = newRequirements(lazy, roots, tidy.direct) } } _, err := tidy.Graph(ctx) if err != nil { return nil, err } return tidy, nil } // updateLazyRoots returns a set of root requirements that maintains the “lazy // loading” invariants of the go.mod file: // // 1. The selected version of the module providing each package marked with // either pkgInAll or pkgIsRoot is included as a root. // Note that certain root patterns (such as '...') may explode the root set // to contain every module that provides any package imported (or merely // required) by any other module. // 2. Each root appears only once, at the selected version of its path // (if rs.graph is non-nil) or at the highest version otherwise present as a // root (otherwise). // 3. Every module path that appears as a root in rs remains a root. // 4. Every version in add is selected at its given version unless upgraded by // (the dependencies of) an existing root or another module in add. // // The packages in pkgs are assumed to have been loaded from either the roots of // rs or the modules selected in the graph of rs. // // The above invariants together imply the “lazy loading” invariants for the // go.mod file: // // 1. (The import invariant.) Every module that provides a package transitively // imported by any package or test in the main module is included as a root. // This follows by induction from (1) and (3) above. Transitively-imported // packages loaded during this invocation are marked with pkgInAll (1), // and by hypothesis any transitively-imported packages loaded in previous // invocations were already roots in rs (3). // // 2. (The argument invariant.) Every module that provides a package matching // an explicit package pattern is included as a root. This follows directly // from (1): packages matching explicit package patterns are marked with // pkgIsRoot. // // 3. (The completeness invariant.) Every module that contributed any package // to the build is required by either the main module or one of the modules // it requires explicitly. This invariant is left up to the caller, who must // not load packages from outside the module graph but may add roots to the // graph, but is facilited by (3). If the caller adds roots to the graph in // order to resolve missing packages, then updateLazyRoots will retain them, // the selected versions of those roots cannot regress, and they will // eventually be written back to the main module's go.mod file. // // (See https://golang.org/design/36460-lazy-module-loading#invariants for more // detail.) func updateLazyRoots(ctx context.Context, direct map[string]bool, rs *Requirements, pkgs []*loadPkg, add []module.Version, rootsImported bool) (*Requirements, error) { roots := rs.rootModules rootsUpgraded := false spotCheckRoot := map[module.Version]bool{} // “The selected version of the module providing each package marked with // either pkgInAll or pkgIsRoot is included as a root.” needSort := false for _, pkg := range pkgs { if !pkg.fromExternalModule() { // pkg was not loaded from a module dependency, so we don't need // to do anything special to maintain that dependency. continue } switch { case pkg.flags.has(pkgInAll): // pkg is transitively imported by a package or test in the main module. // We need to promote the module that maintains it to a root: if some // other module depends on the main module, and that other module also // uses lazy loading, it will expect to find all of our transitive // dependencies by reading just our go.mod file, not the go.mod files of // everything we depend on. // // (This is the “import invariant” that makes lazy loading possible.) case rootsImported && pkg.flags.has(pkgFromRoot): // pkg is a transitive dependency of some root, and we are treating the // roots as if they are imported by the main module (as in 'go get'). case pkg.flags.has(pkgIsRoot): // pkg is a root of the package-import graph. (Generally this means that // it matches a command-line argument.) We want future invocations of the // 'go' command — such as 'go test' on the same package — to continue to // use the same versions of its dependencies that we are using right now. // So we need to bring this package's dependencies inside the lazy-loading // horizon. // // Making the module containing this package a root of the module graph // does exactly that: if the module containing the package is lazy it // should satisfy the import invariant itself, so all of its dependencies // should be in its go.mod file, and if the module containing the package // is eager then if we make it a root we will load all of its transitive // dependencies into the module graph. // // (This is the “argument invariant” of lazy loading, and is important for // reproducibility.) default: // pkg is a dependency of some other package outside of the main module. // As far as we know it's not relevant to the main module (and thus not // relevant to consumers of the main module either), and its dependencies // should already be in the module graph — included in the dependencies of // the package that imported it. continue } if _, ok := rs.rootSelected(pkg.mod.Path); ok { // It is possible that the main module's go.mod file is incomplete or // otherwise erroneous — for example, perhaps the author forgot to 'git // add' their updated go.mod file after adding a new package import, or // perhaps they made an edit to the go.mod file using a third-party tool // ('git merge'?) that doesn't maintain consistency for module // dependencies. If that happens, ideally we want to detect the missing // requirements and fix them up here. // // However, we also need to be careful not to be too aggressive. For // transitive dependencies of external tests, the go.mod file for the // module containing the test itself is expected to provide all of the // relevant dependencies, and we explicitly don't want to pull in // requirements on *irrelevant* requirements that happen to occur in the // go.mod files for these transitive-test-only dependencies. (See the test // in mod_lazy_test_horizon.txt for a concrete example. // // The “goldilocks zone” seems to be to spot-check exactly the same // modules that we promote to explicit roots: namely, those that provide // packages transitively imported by the main module, and those that // provide roots of the package-import graph. That will catch erroneous // edits to the main module's go.mod file and inconsistent requirements in // dependencies that provide imported packages, but will ignore erroneous // or misleading requirements in dependencies that aren't obviously // relevant to the packages in the main module. spotCheckRoot[pkg.mod] = true } else { roots = append(roots, pkg.mod) rootsUpgraded = true // The roots slice was initially sorted because rs.rootModules was sorted, // but the root we just added could be out of order. needSort = true } } for _, m := range add { if v, ok := rs.rootSelected(m.Path); !ok || cmpVersion(v, m.Version) < 0 { roots = append(roots, m) rootsUpgraded = true needSort = true } } if needSort { module.Sort(roots) } // "Each root appears only once, at the selected version of its path ….” for { var mg *ModuleGraph if rootsUpgraded { // We've added or upgraded one or more roots, so load the full module // graph so that we can update those roots to be consistent with other // requirements. if cfg.BuildMod != "mod" { // Our changes to the roots may have moved dependencies into or out of // the lazy-loading horizon, which could in turn change the selected // versions of other modules. (Unlike for eager modules, for lazy // modules adding or removing an explicit root is a semantic change, not // just a cosmetic one.) return rs, errGoModDirty } rs = newRequirements(lazy, roots, direct) var err error mg, err = rs.Graph(ctx) if err != nil { return rs, err } } else { // Since none of the roots have been upgraded, we have no reason to // suspect that they are inconsistent with the requirements of any other // roots. Only look at the full module graph if we've already loaded it; // otherwise, just spot-check the explicit requirements of the roots from // which we loaded packages. if rs.graph.Load() != nil { // We've already loaded the full module graph, which includes the // requirements of all of the root modules — even the transitive // requirements, if they are eager! mg, _ = rs.Graph(ctx) } else if cfg.BuildMod == "vendor" { // We can't spot-check the requirements of other modules because we // don't in general have their go.mod files available in the vendor // directory. (Fortunately this case is impossible, because mg.graph is // always non-nil in vendor mode!) panic("internal error: rs.graph is unexpectedly nil with -mod=vendor") } else if !spotCheckRoots(ctx, rs, spotCheckRoot) { // We spot-checked the explicit requirements of the roots that are // relevant to the packages we've loaded. Unfortunately, they're // inconsistent in some way; we need to load the full module graph // so that we can fix the roots properly. var err error mg, err = rs.Graph(ctx) if err != nil { return rs, err } } } roots = make([]module.Version, 0, len(rs.rootModules)) rootsUpgraded = false inRootPaths := make(map[string]bool, len(rs.rootModules)+1) inRootPaths[Target.Path] = true for _, m := range rs.rootModules { if inRootPaths[m.Path] { // This root specifies a redundant path. We already retained the // selected version of this path when we saw it before, so omit the // redundant copy regardless of its version. // // When we read the full module graph, we include the dependencies of // every root even if that root is redundant. That better preserves // reproducibility if, say, some automated tool adds a redundant // 'require' line and then runs 'go mod tidy' to try to make everything // consistent, since the requirements of the older version are carried // over. // // So omitting a root that was previously present may *reduce* the // selected versions of non-roots, but merely removing a requirement // cannot *increase* the selected versions of other roots as a result — // we don't need to mark this change as an upgrade. (This particular // change cannot invalidate any other roots.) continue } var v string if mg == nil { v, _ = rs.rootSelected(m.Path) } else { v = mg.Selected(m.Path) } roots = append(roots, module.Version{Path: m.Path, Version: v}) inRootPaths[m.Path] = true if v != m.Version { rootsUpgraded = true } } // Note that rs.rootModules was already sorted by module path and version, // and we appended to the roots slice in the same order and guaranteed that // each path has only one version, so roots is also sorted by module path // and (trivially) version. if !rootsUpgraded { if cfg.BuildMod != "mod" { // The only changes to the root set (if any) were to remove duplicates. // The requirements are consistent (if perhaps redundant), so keep the // original rs to preserve its ModuleGraph. return rs, nil } // The root set has converged: every root going into this iteration was // already at its selected version, although we have have removed other // (redundant) roots for the same path. break } } if rs.depth == lazy && reflect.DeepEqual(roots, rs.rootModules) && reflect.DeepEqual(direct, rs.direct) { // The root set is unchanged and rs was already lazy, so keep rs to // preserve its cached ModuleGraph (if any). return rs, nil } return newRequirements(lazy, roots, direct), nil } // spotCheckRoots reports whether the versions of the roots in rs satisfy the // explicit requirements of the modules in mods. func spotCheckRoots(ctx context.Context, rs *Requirements, mods map[module.Version]bool) bool { ctx, cancel := context.WithCancel(ctx) defer cancel() work := par.NewQueue(runtime.GOMAXPROCS(0)) for m := range mods { m := m work.Add(func() { if ctx.Err() != nil { return } summary, err := goModSummary(m) if err != nil { cancel() return } for _, r := range summary.require { if v, ok := rs.rootSelected(r.Path); ok && cmpVersion(v, r.Version) < 0 { cancel() return } } }) } <-work.Idle() if ctx.Err() != nil { // Either we failed a spot-check, or the caller no longer cares about our // answer anyway. return false } return true } // tidyEagerRoots returns a minimal set of root requirements that maintains the // selected version of every module that provided a package in pkgs, and // includes the selected version of every such module in direct as a root. func tidyEagerRoots(ctx context.Context, direct map[string]bool, pkgs []*loadPkg) (*Requirements, error) { var ( keep []module.Version keptPath = map[string]bool{} ) var ( rootPaths []string // module paths that should be included as roots inRootPaths = map[string]bool{} ) for _, pkg := range pkgs { if !pkg.fromExternalModule() { continue } if m := pkg.mod; !keptPath[m.Path] { keep = append(keep, m) keptPath[m.Path] = true if direct[m.Path] && !inRootPaths[m.Path] { rootPaths = append(rootPaths, m.Path) inRootPaths[m.Path] = true } } } min, err := mvs.Req(Target, rootPaths, &mvsReqs{roots: keep}) if err != nil { return nil, err } return newRequirements(eager, min, direct), nil } // updateEagerRoots returns a set of root requirements that includes the selected // version of every module path in direct as a root, and maintains the selected // version of every module selected in the graph of rs. // // The roots are updated such that: // // 1. The selected version of every module path in direct is included as a root // (if it is not "none"). // 2. Each root is the selected version of its path. (We say that such a root // set is “consistent”.) // 3. Every version selected in the graph of rs remains selected unless upgraded // by a dependency in add. // 4. Every version in add is selected at its given version unless upgraded by // (the dependencies of) an existing root or another module in add. func updateEagerRoots(ctx context.Context, direct map[string]bool, rs *Requirements, add []module.Version) (*Requirements, error) { mg, err := rs.Graph(ctx) if err != nil { // We can't ignore errors in the module graph even if the user passed the -e // flag to try to push past them. If we can't load the complete module // dependencies, then we can't reliably compute a minimal subset of them. return rs, err } if cfg.BuildMod != "mod" { // Instead of actually updating the requirements, just check that no updates // are needed. if rs == nil { // We're being asked to reconstruct the requirements from scratch, // but we aren't even allowed to modify them. return rs, errGoModDirty } for _, m := range rs.rootModules { if m.Version != mg.Selected(m.Path) { // The root version v is misleading: the actual selected version is higher. return rs, errGoModDirty } } for _, m := range add { if m.Version != mg.Selected(m.Path) { return rs, errGoModDirty } } for mPath := range direct { if _, ok := rs.rootSelected(mPath); !ok { // Module m is supposed to be listed explicitly, but isn't. // // Note that this condition is also detected (and logged with more // detail) earlier during package loading, so it shouldn't actually be // possible at this point — this is just a defense in depth. return rs, errGoModDirty } } // No explicit roots are missing and all roots are already at the versions // we want to keep. Any other changes we would make are purely cosmetic, // such as pruning redundant indirect dependencies. Per issue #34822, we // ignore cosmetic changes when we cannot update the go.mod file. return rs, nil } var ( rootPaths []string // module paths that should be included as roots inRootPaths = map[string]bool{} ) for _, root := range rs.rootModules { // If the selected version of the root is the same as what was already // listed in the go.mod file, retain it as a root (even if redundant) to // avoid unnecessary churn. (See https://golang.org/issue/34822.) // // We do this even for indirect requirements, since we don't know why they // were added and they could become direct at any time. if !inRootPaths[root.Path] && mg.Selected(root.Path) == root.Version { rootPaths = append(rootPaths, root.Path) inRootPaths[root.Path] = true } } // “The selected version of every module path in direct is included as a root.” // // This is only for convenience and clarity for end users: in an eager module, // the choice of explicit vs. implicit dependency has no impact on MVS // selection (for itself or any other module). keep := append(mg.BuildList()[1:], add...) for _, m := range keep { if direct[m.Path] && !inRootPaths[m.Path] { rootPaths = append(rootPaths, m.Path) inRootPaths[m.Path] = true } } min, err := mvs.Req(Target, rootPaths, &mvsReqs{roots: keep}) if err != nil { return rs, err } if rs.depth == eager && reflect.DeepEqual(min, rs.rootModules) && reflect.DeepEqual(direct, rs.direct) { // The root set is unchanged and rs was already eager, so keep rs to // preserve its cached ModuleGraph (if any). return rs, nil } return newRequirements(eager, min, direct), nil } // convertDepth returns a version of rs with the given depth. // If rs already has the given depth, convertDepth returns rs unmodified. func convertDepth(ctx context.Context, rs *Requirements, depth modDepth) (*Requirements, error) { if rs.depth == depth { return rs, nil } if depth == eager { // We are converting a lazy module to an eager one. The roots of an eager // module graph are a superset of the roots of a lazy graph, so we don't // need to add any new roots — we just need to prune away the ones that are // redundant given eager loading, which is exactly what updateEagerRoots // does. return updateEagerRoots(ctx, rs.direct, rs, nil) } // We are converting an eager module to a lazy one. The module graph of an // eager module includes the transitive dependencies of every module in the // build list. // // Hey, we can express that as a lazy root set! “Include the transitive // dependencies of every module in the build list” is exactly what happens in // a lazy module if we promote every module in the build list to a root! mg, err := rs.Graph(ctx) if err != nil { return rs, err } return newRequirements(lazy, mg.BuildList()[1:], rs.direct), nil }