// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package walk import ( "encoding/binary" "go/constant" "cmd/compile/internal/base" "cmd/compile/internal/ir" "cmd/compile/internal/reflectdata" "cmd/compile/internal/ssagen" "cmd/compile/internal/typecheck" "cmd/compile/internal/types" "cmd/internal/sys" ) // walkConv walks an OCONV or OCONVNOP (but not OCONVIFACE) node. func walkConv(n *ir.ConvExpr, init *ir.Nodes) ir.Node { n.X = walkExpr(n.X, init) if n.Op() == ir.OCONVNOP && n.Type() == n.X.Type() { return n.X } if n.Op() == ir.OCONVNOP && ir.ShouldCheckPtr(ir.CurFunc, 1) { if n.Type().IsPtr() && n.X.Type().IsUnsafePtr() { // unsafe.Pointer to *T return walkCheckPtrAlignment(n, init, nil) } if n.Type().IsUnsafePtr() && n.X.Type().IsUintptr() { // uintptr to unsafe.Pointer return walkCheckPtrArithmetic(n, init) } } param, result := rtconvfn(n.X.Type(), n.Type()) if param == types.Txxx { return n } fn := types.BasicTypeNames[param] + "to" + types.BasicTypeNames[result] return typecheck.Conv(mkcall(fn, types.Types[result], init, typecheck.Conv(n.X, types.Types[param])), n.Type()) } // walkConvInterface walks an OCONVIFACE node. func walkConvInterface(n *ir.ConvExpr, init *ir.Nodes) ir.Node { n.X = walkExpr(n.X, init) fromType := n.X.Type() toType := n.Type() if !fromType.IsInterface() && !ir.IsBlank(ir.CurFunc.Nname) { // skip unnamed functions (func _()) reflectdata.MarkTypeUsedInInterface(fromType, ir.CurFunc.LSym) } // typeword generates the type word of the interface value. typeword := func() ir.Node { if toType.IsEmptyInterface() { return reflectdata.TypePtr(fromType) } return reflectdata.ITabAddr(fromType, toType) } // Optimize convT2E or convT2I as a two-word copy when T is pointer-shaped. if types.IsDirectIface(fromType) { l := ir.NewBinaryExpr(base.Pos, ir.OEFACE, typeword(), n.X) l.SetType(toType) l.SetTypecheck(n.Typecheck()) return l } // Optimize convT2{E,I} for many cases in which T is not pointer-shaped, // by using an existing addressable value identical to n.Left // or creating one on the stack. var value ir.Node switch { case fromType.Size() == 0: // n.Left is zero-sized. Use zerobase. cheapExpr(n.X, init) // Evaluate n.Left for side-effects. See issue 19246. value = ir.NewLinksymExpr(base.Pos, ir.Syms.Zerobase, types.Types[types.TUINTPTR]) case fromType.IsBoolean() || (fromType.Size() == 1 && fromType.IsInteger()): // n.Left is a bool/byte. Use staticuint64s[n.Left * 8] on little-endian // and staticuint64s[n.Left * 8 + 7] on big-endian. n.X = cheapExpr(n.X, init) // byteindex widens n.Left so that the multiplication doesn't overflow. index := ir.NewBinaryExpr(base.Pos, ir.OLSH, byteindex(n.X), ir.NewInt(3)) if ssagen.Arch.LinkArch.ByteOrder == binary.BigEndian { index = ir.NewBinaryExpr(base.Pos, ir.OADD, index, ir.NewInt(7)) } // The actual type is [256]uint64, but we use [256*8]uint8 so we can address // individual bytes. staticuint64s := ir.NewLinksymExpr(base.Pos, ir.Syms.Staticuint64s, types.NewArray(types.Types[types.TUINT8], 256*8)) xe := ir.NewIndexExpr(base.Pos, staticuint64s, index) xe.SetBounded(true) value = xe case n.X.Op() == ir.ONAME && n.X.(*ir.Name).Class == ir.PEXTERN && n.X.(*ir.Name).Readonly(): // n.Left is a readonly global; use it directly. value = n.X case !fromType.IsInterface() && n.Esc() == ir.EscNone && fromType.Width <= 1024: // n.Left does not escape. Use a stack temporary initialized to n.Left. value = typecheck.Temp(fromType) init.Append(typecheck.Stmt(ir.NewAssignStmt(base.Pos, value, n.X))) } if value != nil { // Value is identical to n.Left. // Construct the interface directly: {type/itab, &value}. l := ir.NewBinaryExpr(base.Pos, ir.OEFACE, typeword(), typecheck.Expr(typecheck.NodAddr(value))) l.SetType(toType) l.SetTypecheck(n.Typecheck()) return l } // Implement interface to empty interface conversion. // tmp = i.itab // if tmp != nil { // tmp = tmp.type // } // e = iface{tmp, i.data} if toType.IsEmptyInterface() && fromType.IsInterface() && !fromType.IsEmptyInterface() { // Evaluate the input interface. c := typecheck.Temp(fromType) init.Append(ir.NewAssignStmt(base.Pos, c, n.X)) // Get the itab out of the interface. tmp := typecheck.Temp(types.NewPtr(types.Types[types.TUINT8])) init.Append(ir.NewAssignStmt(base.Pos, tmp, typecheck.Expr(ir.NewUnaryExpr(base.Pos, ir.OITAB, c)))) // Get the type out of the itab. nif := ir.NewIfStmt(base.Pos, typecheck.Expr(ir.NewBinaryExpr(base.Pos, ir.ONE, tmp, typecheck.NodNil())), nil, nil) nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, tmp, itabType(tmp))} init.Append(nif) // Build the result. e := ir.NewBinaryExpr(base.Pos, ir.OEFACE, tmp, ifaceData(n.Pos(), c, types.NewPtr(types.Types[types.TUINT8]))) e.SetType(toType) // assign type manually, typecheck doesn't understand OEFACE. e.SetTypecheck(1) return e } fnname, argType, needsaddr := convFuncName(fromType, toType) if !needsaddr && !fromType.IsInterface() { // Use a specialized conversion routine that only returns a data pointer. // ptr = convT2X(val) // e = iface{typ/tab, ptr} fn := typecheck.LookupRuntime(fnname) types.CalcSize(fromType) arg := n.X switch { case fromType == argType: // already in the right type, nothing to do case fromType.Kind() == argType.Kind(), fromType.IsPtrShaped() && argType.IsPtrShaped(): // can directly convert (e.g. named type to underlying type, or one pointer to another) arg = ir.NewConvExpr(n.Pos(), ir.OCONVNOP, argType, arg) case fromType.IsInteger() && argType.IsInteger(): // can directly convert (e.g. int32 to uint32) arg = ir.NewConvExpr(n.Pos(), ir.OCONV, argType, arg) default: // unsafe cast through memory arg = copyExpr(arg, arg.Type(), init) var addr ir.Node = typecheck.NodAddr(arg) addr = ir.NewConvExpr(n.Pos(), ir.OCONVNOP, argType.PtrTo(), addr) arg = ir.NewStarExpr(n.Pos(), addr) arg.SetType(argType) } call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, nil) call.Args = []ir.Node{arg} e := ir.NewBinaryExpr(base.Pos, ir.OEFACE, typeword(), safeExpr(walkExpr(typecheck.Expr(call), init), init)) e.SetType(toType) e.SetTypecheck(1) return e } var tab ir.Node if fromType.IsInterface() { // convI2I tab = reflectdata.TypePtr(toType) } else { // convT2x tab = typeword() } v := n.X if needsaddr { // Types of large or unknown size are passed by reference. // Orderexpr arranged for n.Left to be a temporary for all // the conversions it could see. Comparison of an interface // with a non-interface, especially in a switch on interface value // with non-interface cases, is not visible to order.stmt, so we // have to fall back on allocating a temp here. if !ir.IsAddressable(v) { v = copyExpr(v, v.Type(), init) } v = typecheck.NodAddr(v) } types.CalcSize(fromType) fn := typecheck.LookupRuntime(fnname) fn = typecheck.SubstArgTypes(fn, fromType, toType) types.CalcSize(fn.Type()) call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, nil) call.Args = []ir.Node{tab, v} return walkExpr(typecheck.Expr(call), init) } // walkBytesRunesToString walks an OBYTES2STR or ORUNES2STR node. func walkBytesRunesToString(n *ir.ConvExpr, init *ir.Nodes) ir.Node { a := typecheck.NodNil() if n.Esc() == ir.EscNone { // Create temporary buffer for string on stack. a = stackBufAddr(tmpstringbufsize, types.Types[types.TUINT8]) } if n.Op() == ir.ORUNES2STR { // slicerunetostring(*[32]byte, []rune) string return mkcall("slicerunetostring", n.Type(), init, a, n.X) } // slicebytetostring(*[32]byte, ptr *byte, n int) string n.X = cheapExpr(n.X, init) ptr, len := backingArrayPtrLen(n.X) return mkcall("slicebytetostring", n.Type(), init, a, ptr, len) } // walkBytesToStringTemp walks an OBYTES2STRTMP node. func walkBytesToStringTemp(n *ir.ConvExpr, init *ir.Nodes) ir.Node { n.X = walkExpr(n.X, init) if !base.Flag.Cfg.Instrumenting { // Let the backend handle OBYTES2STRTMP directly // to avoid a function call to slicebytetostringtmp. return n } // slicebytetostringtmp(ptr *byte, n int) string n.X = cheapExpr(n.X, init) ptr, len := backingArrayPtrLen(n.X) return mkcall("slicebytetostringtmp", n.Type(), init, ptr, len) } // walkRuneToString walks an ORUNESTR node. func walkRuneToString(n *ir.ConvExpr, init *ir.Nodes) ir.Node { a := typecheck.NodNil() if n.Esc() == ir.EscNone { a = stackBufAddr(4, types.Types[types.TUINT8]) } // intstring(*[4]byte, rune) return mkcall("intstring", n.Type(), init, a, typecheck.Conv(n.X, types.Types[types.TINT64])) } // walkStringToBytes walks an OSTR2BYTES node. func walkStringToBytes(n *ir.ConvExpr, init *ir.Nodes) ir.Node { s := n.X if ir.IsConst(s, constant.String) { sc := ir.StringVal(s) // Allocate a [n]byte of the right size. t := types.NewArray(types.Types[types.TUINT8], int64(len(sc))) var a ir.Node if n.Esc() == ir.EscNone && len(sc) <= int(ir.MaxImplicitStackVarSize) { a = stackBufAddr(t.NumElem(), t.Elem()) } else { types.CalcSize(t) a = ir.NewUnaryExpr(base.Pos, ir.ONEW, nil) a.SetType(types.NewPtr(t)) a.SetTypecheck(1) a.MarkNonNil() } p := typecheck.Temp(t.PtrTo()) // *[n]byte init.Append(typecheck.Stmt(ir.NewAssignStmt(base.Pos, p, a))) // Copy from the static string data to the [n]byte. if len(sc) > 0 { as := ir.NewAssignStmt(base.Pos, ir.NewStarExpr(base.Pos, p), ir.NewStarExpr(base.Pos, typecheck.ConvNop(ir.NewUnaryExpr(base.Pos, ir.OSPTR, s), t.PtrTo()))) appendWalkStmt(init, as) } // Slice the [n]byte to a []byte. slice := ir.NewSliceExpr(n.Pos(), ir.OSLICEARR, p, nil, nil, nil) slice.SetType(n.Type()) slice.SetTypecheck(1) return walkExpr(slice, init) } a := typecheck.NodNil() if n.Esc() == ir.EscNone { // Create temporary buffer for slice on stack. a = stackBufAddr(tmpstringbufsize, types.Types[types.TUINT8]) } // stringtoslicebyte(*32[byte], string) []byte return mkcall("stringtoslicebyte", n.Type(), init, a, typecheck.Conv(s, types.Types[types.TSTRING])) } // walkStringToBytesTemp walks an OSTR2BYTESTMP node. func walkStringToBytesTemp(n *ir.ConvExpr, init *ir.Nodes) ir.Node { // []byte(string) conversion that creates a slice // referring to the actual string bytes. // This conversion is handled later by the backend and // is only for use by internal compiler optimizations // that know that the slice won't be mutated. // The only such case today is: // for i, c := range []byte(string) n.X = walkExpr(n.X, init) return n } // walkStringToRunes walks an OSTR2RUNES node. func walkStringToRunes(n *ir.ConvExpr, init *ir.Nodes) ir.Node { a := typecheck.NodNil() if n.Esc() == ir.EscNone { // Create temporary buffer for slice on stack. a = stackBufAddr(tmpstringbufsize, types.Types[types.TINT32]) } // stringtoslicerune(*[32]rune, string) []rune return mkcall("stringtoslicerune", n.Type(), init, a, typecheck.Conv(n.X, types.Types[types.TSTRING])) } // convFuncName builds the runtime function name for interface conversion. // It also returns the argument type that the runtime function takes, and // whether the function expects the data by address. // Not all names are possible. For example, we never generate convE2E or convE2I. func convFuncName(from, to *types.Type) (fnname string, argType *types.Type, needsaddr bool) { tkind := to.Tie() switch from.Tie() { case 'I': if tkind == 'I' { return "convI2I", types.Types[types.TINTER], false } case 'T': switch { case from.Size() == 2 && from.Align == 2: return "convT16", types.Types[types.TUINT16], false case from.Size() == 4 && from.Align == 4 && !from.HasPointers(): return "convT32", types.Types[types.TUINT32], false case from.Size() == 8 && from.Align == types.Types[types.TUINT64].Align && !from.HasPointers(): return "convT64", types.Types[types.TUINT64], false } if sc := from.SoleComponent(); sc != nil { switch { case sc.IsString(): return "convTstring", types.Types[types.TSTRING], false case sc.IsSlice(): return "convTslice", types.NewSlice(types.Types[types.TUINT8]), false // the element type doesn't matter } } switch tkind { case 'E': if !from.HasPointers() { return "convT2Enoptr", types.Types[types.TUNSAFEPTR], true } return "convT2E", types.Types[types.TUNSAFEPTR], true case 'I': if !from.HasPointers() { return "convT2Inoptr", types.Types[types.TUNSAFEPTR], true } return "convT2I", types.Types[types.TUNSAFEPTR], true } } base.Fatalf("unknown conv func %c2%c", from.Tie(), to.Tie()) panic("unreachable") } // rtconvfn returns the parameter and result types that will be used by a // runtime function to convert from type src to type dst. The runtime function // name can be derived from the names of the returned types. // // If no such function is necessary, it returns (Txxx, Txxx). func rtconvfn(src, dst *types.Type) (param, result types.Kind) { if ssagen.Arch.SoftFloat { return types.Txxx, types.Txxx } switch ssagen.Arch.LinkArch.Family { case sys.ARM, sys.MIPS: if src.IsFloat() { switch dst.Kind() { case types.TINT64, types.TUINT64: return types.TFLOAT64, dst.Kind() } } if dst.IsFloat() { switch src.Kind() { case types.TINT64, types.TUINT64: return src.Kind(), types.TFLOAT64 } } case sys.I386: if src.IsFloat() { switch dst.Kind() { case types.TINT64, types.TUINT64: return types.TFLOAT64, dst.Kind() case types.TUINT32, types.TUINT, types.TUINTPTR: return types.TFLOAT64, types.TUINT32 } } if dst.IsFloat() { switch src.Kind() { case types.TINT64, types.TUINT64: return src.Kind(), types.TFLOAT64 case types.TUINT32, types.TUINT, types.TUINTPTR: return types.TUINT32, types.TFLOAT64 } } } return types.Txxx, types.Txxx } // byteindex converts n, which is byte-sized, to an int used to index into an array. // We cannot use conv, because we allow converting bool to int here, // which is forbidden in user code. func byteindex(n ir.Node) ir.Node { // We cannot convert from bool to int directly. // While converting from int8 to int is possible, it would yield // the wrong result for negative values. // Reinterpreting the value as an unsigned byte solves both cases. if !types.Identical(n.Type(), types.Types[types.TUINT8]) { n = ir.NewConvExpr(base.Pos, ir.OCONV, nil, n) n.SetType(types.Types[types.TUINT8]) n.SetTypecheck(1) } n = ir.NewConvExpr(base.Pos, ir.OCONV, nil, n) n.SetType(types.Types[types.TINT]) n.SetTypecheck(1) return n } func walkCheckPtrAlignment(n *ir.ConvExpr, init *ir.Nodes, count ir.Node) ir.Node { if !n.Type().IsPtr() { base.Fatalf("expected pointer type: %v", n.Type()) } elem := n.Type().Elem() if count != nil { if !elem.IsArray() { base.Fatalf("expected array type: %v", elem) } elem = elem.Elem() } size := elem.Size() if elem.Alignment() == 1 && (size == 0 || size == 1 && count == nil) { return n } if count == nil { count = ir.NewInt(1) } n.X = cheapExpr(n.X, init) init.Append(mkcall("checkptrAlignment", nil, init, typecheck.ConvNop(n.X, types.Types[types.TUNSAFEPTR]), reflectdata.TypePtr(elem), typecheck.Conv(count, types.Types[types.TUINTPTR]))) return n } func walkCheckPtrArithmetic(n *ir.ConvExpr, init *ir.Nodes) ir.Node { // Calling cheapExpr(n, init) below leads to a recursive call to // walkExpr, which leads us back here again. Use n.Checkptr to // prevent infinite loops. if n.CheckPtr() { return n } n.SetCheckPtr(true) defer n.SetCheckPtr(false) // TODO(mdempsky): Make stricter. We only need to exempt // reflect.Value.Pointer and reflect.Value.UnsafeAddr. switch n.X.Op() { case ir.OCALLFUNC, ir.OCALLMETH, ir.OCALLINTER: return n } if n.X.Op() == ir.ODOTPTR && ir.IsReflectHeaderDataField(n.X) { return n } // Find original unsafe.Pointer operands involved in this // arithmetic expression. // // "It is valid both to add and to subtract offsets from a // pointer in this way. It is also valid to use &^ to round // pointers, usually for alignment." var originals []ir.Node var walk func(n ir.Node) walk = func(n ir.Node) { switch n.Op() { case ir.OADD: n := n.(*ir.BinaryExpr) walk(n.X) walk(n.Y) case ir.OSUB, ir.OANDNOT: n := n.(*ir.BinaryExpr) walk(n.X) case ir.OCONVNOP: n := n.(*ir.ConvExpr) if n.X.Type().IsUnsafePtr() { n.X = cheapExpr(n.X, init) originals = append(originals, typecheck.ConvNop(n.X, types.Types[types.TUNSAFEPTR])) } } } walk(n.X) cheap := cheapExpr(n, init) slice := typecheck.MakeDotArgs(types.NewSlice(types.Types[types.TUNSAFEPTR]), originals) slice.SetEsc(ir.EscNone) init.Append(mkcall("checkptrArithmetic", nil, init, typecheck.ConvNop(cheap, types.Types[types.TUNSAFEPTR]), slice)) // TODO(khr): Mark backing store of slice as dead. This will allow us to reuse // the backing store for multiple calls to checkptrArithmetic. return cheap }