// Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package types2 import ( "bytes" "cmd/compile/internal/syntax" "fmt" "sort" ) // ---------------------------------------------------------------------------- // API // A _TypeSet represents the type set of an interface. type _TypeSet struct { comparable bool // if set, the interface is or embeds comparable // TODO(gri) consider using a set for the methods for faster lookup methods []*Func // all methods of the interface; sorted by unique ID terms termlist // type terms of the type set } // IsEmpty reports whether type set s is the empty set. func (s *_TypeSet) IsEmpty() bool { return s.terms.isEmpty() } // IsAll reports whether type set s is the set of all types (corresponding to the empty interface). func (s *_TypeSet) IsAll() bool { return !s.comparable && len(s.methods) == 0 && s.terms.isAll() } // IsConstraint reports whether type set s is not just a set of methods. func (s *_TypeSet) IsConstraint() bool { return s.comparable || !s.terms.isAll() } // IsComparable reports whether each type in the set is comparable. func (s *_TypeSet) IsComparable() bool { if s.terms.isAll() { return s.comparable } return s.is(func(t *term) bool { return Comparable(t.typ) }) } // TODO(gri) IsTypeSet is not a great name for this predicate. Find a better one. // IsTypeSet reports whether the type set s is represented by a finite set of underlying types. func (s *_TypeSet) IsTypeSet() bool { return !s.comparable && len(s.methods) == 0 } // NumMethods returns the number of methods available. func (s *_TypeSet) NumMethods() int { return len(s.methods) } // Method returns the i'th method of type set s for 0 <= i < s.NumMethods(). // The methods are ordered by their unique ID. func (s *_TypeSet) Method(i int) *Func { return s.methods[i] } // LookupMethod returns the index of and method with matching package and name, or (-1, nil). func (s *_TypeSet) LookupMethod(pkg *Package, name string) (int, *Func) { // TODO(gri) s.methods is sorted - consider binary search return lookupMethod(s.methods, pkg, name) } func (s *_TypeSet) String() string { switch { case s.IsEmpty(): return "∅" case s.IsAll(): return "𝓤" } hasMethods := len(s.methods) > 0 hasTerms := s.hasTerms() var buf bytes.Buffer buf.WriteByte('{') if s.comparable { buf.WriteString("comparable") if hasMethods || hasTerms { buf.WriteString("; ") } } for i, m := range s.methods { if i > 0 { buf.WriteString("; ") } buf.WriteString(m.String()) } if hasMethods && hasTerms { buf.WriteString("; ") } if hasTerms { buf.WriteString(s.terms.String()) } buf.WriteString("}") return buf.String() } // ---------------------------------------------------------------------------- // Implementation func (s *_TypeSet) hasTerms() bool { return !s.terms.isAll() } func (s *_TypeSet) structuralType() Type { return s.terms.structuralType() } func (s *_TypeSet) includes(t Type) bool { return s.terms.includes(t) } func (s1 *_TypeSet) subsetOf(s2 *_TypeSet) bool { return s1.terms.subsetOf(s2.terms) } // TODO(gri) TypeSet.is and TypeSet.underIs should probably also go into termlist.go var topTerm = term{false, theTop} func (s *_TypeSet) is(f func(*term) bool) bool { if len(s.terms) == 0 { return false } for _, t := range s.terms { // Terms represent the top term with a nil type. // The rest of the type checker uses the top type // instead. Convert. // TODO(gri) investigate if we can do without this if t.typ == nil { t = &topTerm } if !f(t) { return false } } return true } func (s *_TypeSet) underIs(f func(Type) bool) bool { if len(s.terms) == 0 { return false } for _, t := range s.terms { // see corresponding comment in TypeSet.is u := t.typ if u == nil { u = theTop } // t == under(t) for ~t terms if !t.tilde { u = under(u) } if debug { assert(Identical(u, under(u))) } if !f(u) { return false } } return true } // topTypeSet may be used as type set for the empty interface. var topTypeSet = _TypeSet{terms: allTermlist} // computeInterfaceTypeSet may be called with check == nil. func computeInterfaceTypeSet(check *Checker, pos syntax.Pos, ityp *Interface) *_TypeSet { if ityp.tset != nil { return ityp.tset } // If the interface is not fully set up yet, the type set will // not be complete, which may lead to errors when using the the // type set (e.g. missing method). Don't compute a partial type // set (and don't store it!), so that we still compute the full // type set eventually. Instead, return the top type set and // let any follow-on errors play out. if !ityp.complete { return &topTypeSet } if check != nil && check.conf.Trace { // Types don't generally have position information. // If we don't have a valid pos provided, try to use // one close enough. if !pos.IsKnown() && len(ityp.methods) > 0 { pos = ityp.methods[0].pos } check.trace(pos, "type set for %s", ityp) check.indent++ defer func() { check.indent-- check.trace(pos, "=> %s ", ityp.typeSet()) }() } // An infinitely expanding interface (due to a cycle) is detected // elsewhere (Checker.validType), so here we simply assume we only // have valid interfaces. Mark the interface as complete to avoid // infinite recursion if the validType check occurs later for some // reason. ityp.tset = &_TypeSet{terms: allTermlist} // TODO(gri) is this sufficient? // Methods of embedded interfaces are collected unchanged; i.e., the identity // of a method I.m's Func Object of an interface I is the same as that of // the method m in an interface that embeds interface I. On the other hand, // if a method is embedded via multiple overlapping embedded interfaces, we // don't provide a guarantee which "original m" got chosen for the embedding // interface. See also issue #34421. // // If we don't care to provide this identity guarantee anymore, instead of // reusing the original method in embeddings, we can clone the method's Func // Object and give it the position of a corresponding embedded interface. Then // we can get rid of the mpos map below and simply use the cloned method's // position. var todo []*Func var seen objset var methods []*Func mpos := make(map[*Func]syntax.Pos) // method specification or method embedding position, for good error messages addMethod := func(pos syntax.Pos, m *Func, explicit bool) { switch other := seen.insert(m); { case other == nil: methods = append(methods, m) mpos[m] = pos case explicit: if check == nil { panic(fmt.Sprintf("%s: duplicate method %s", m.pos, m.name)) } // check != nil var err error_ err.errorf(pos, "duplicate method %s", m.name) err.errorf(mpos[other.(*Func)], "other declaration of %s", m.name) check.report(&err) default: // We have a duplicate method name in an embedded (not explicitly declared) method. // Check method signatures after all types are computed (issue #33656). // If we're pre-go1.14 (overlapping embeddings are not permitted), report that // error here as well (even though we could do it eagerly) because it's the same // error message. if check == nil { // check method signatures after all locally embedded interfaces are computed todo = append(todo, m, other.(*Func)) break } // check != nil check.later(func() { if !check.allowVersion(m.pkg, 1, 14) || !Identical(m.typ, other.Type()) { var err error_ err.errorf(pos, "duplicate method %s", m.name) err.errorf(mpos[other.(*Func)], "other declaration of %s", m.name) check.report(&err) } }) } } for _, m := range ityp.methods { addMethod(m.pos, m, true) } // collect embedded elements var allTerms = allTermlist for i, typ := range ityp.embeddeds { // The embedding position is nil for imported interfaces // and also for interface copies after substitution (but // in that case we don't need to report errors again). var pos syntax.Pos // embedding position if ityp.embedPos != nil { pos = (*ityp.embedPos)[i] } var terms termlist switch u := under(typ).(type) { case *Interface: tset := computeInterfaceTypeSet(check, pos, u) // If typ is local, an error was already reported where typ is specified/defined. if check != nil && check.isImportedConstraint(typ) && !check.allowVersion(check.pkg, 1, 18) { check.errorf(pos, "embedding constraint interface %s requires go1.18 or later", typ) continue } if tset.comparable { ityp.tset.comparable = true } for _, m := range tset.methods { addMethod(pos, m, false) // use embedding position pos rather than m.pos } terms = tset.terms case *Union: if check != nil && !check.allowVersion(check.pkg, 1, 18) { check.errorf(pos, "embedding interface element %s requires go1.18 or later", u) continue } tset := computeUnionTypeSet(check, pos, u) if tset == &invalidTypeSet { continue // ignore invalid unions } terms = tset.terms case *TypeParam: // Embedding stand-alone type parameters is not permitted. // This case is handled during union parsing. unreachable() default: if typ == Typ[Invalid] { continue } if check != nil && !check.allowVersion(check.pkg, 1, 18) { check.errorf(pos, "embedding non-interface type %s requires go1.18 or later", typ) continue } terms = termlist{{false, typ}} } // The type set of an interface is the intersection // of the type sets of all its elements. // Intersection cannot produce longer termlists and // thus cannot overflow. allTerms = allTerms.intersect(terms) } ityp.embedPos = nil // not needed anymore (errors have been reported) // process todo's (this only happens if check == nil) for i := 0; i < len(todo); i += 2 { m := todo[i] other := todo[i+1] if !Identical(m.typ, other.typ) { panic(fmt.Sprintf("%s: duplicate method %s", m.pos, m.name)) } } if methods != nil { sortMethods(methods) ityp.tset.methods = methods } ityp.tset.terms = allTerms return ityp.tset } func sortMethods(list []*Func) { sort.Sort(byUniqueMethodName(list)) } func assertSortedMethods(list []*Func) { if !debug { panic("assertSortedMethods called outside debug mode") } if !sort.IsSorted(byUniqueMethodName(list)) { panic("methods not sorted") } } // byUniqueMethodName method lists can be sorted by their unique method names. type byUniqueMethodName []*Func func (a byUniqueMethodName) Len() int { return len(a) } func (a byUniqueMethodName) Less(i, j int) bool { return a[i].less(&a[j].object) } func (a byUniqueMethodName) Swap(i, j int) { a[i], a[j] = a[j], a[i] } // invalidTypeSet is a singleton type set to signal an invalid type set // due to an error. It's also a valid empty type set, so consumers of // type sets may choose to ignore it. var invalidTypeSet _TypeSet // computeUnionTypeSet may be called with check == nil. // The result is &invalidTypeSet if the union overflows. func computeUnionTypeSet(check *Checker, pos syntax.Pos, utyp *Union) *_TypeSet { if utyp.tset != nil { return utyp.tset } // avoid infinite recursion (see also computeInterfaceTypeSet) utyp.tset = new(_TypeSet) var allTerms termlist for _, t := range utyp.terms { var terms termlist switch u := under(t.typ).(type) { case *Interface: terms = computeInterfaceTypeSet(check, pos, u).terms case *TypeParam: // A stand-alone type parameters is not permitted as union term. // This case is handled during union parsing. unreachable() default: if t.typ == Typ[Invalid] { continue } terms = termlist{(*term)(t)} } // The type set of a union expression is the union // of the type sets of each term. allTerms = allTerms.union(terms) if len(allTerms) > maxTermCount { if check != nil { check.errorf(pos, "cannot handle more than %d union terms (implementation limitation)", maxTermCount) } utyp.tset = &invalidTypeSet return utyp.tset } } utyp.tset.terms = allTerms return utyp.tset }