// Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package types2 import ( "cmd/compile/internal/syntax" "fmt" ) // ---------------------------------------------------------------------------- // API // A Signature represents a (non-builtin) function or method type. // The receiver is ignored when comparing signatures for identity. type Signature struct { // We need to keep the scope in Signature (rather than passing it around // and store it in the Func Object) because when type-checking a function // literal we call the general type checker which returns a general Type. // We then unpack the *Signature and use the scope for the literal body. rparams *TParamList // receiver type parameters from left to right, or nil tparams *TParamList // type parameters from left to right, or nil scope *Scope // function scope, present for package-local signatures recv *Var // nil if not a method params *Tuple // (incoming) parameters from left to right; or nil results *Tuple // (outgoing) results from left to right; or nil variadic bool // true if the last parameter's type is of the form ...T (or string, for append built-in only) } // NewSignature returns a new function type for the given receiver, parameters, // and results, either of which may be nil. If variadic is set, the function // is variadic, it must have at least one parameter, and the last parameter // must be of unnamed slice type. func NewSignature(recv *Var, params, results *Tuple, variadic bool) *Signature { if variadic { n := params.Len() if n == 0 { panic("variadic function must have at least one parameter") } if _, ok := params.At(n - 1).typ.(*Slice); !ok { panic("variadic parameter must be of unnamed slice type") } } return &Signature{recv: recv, params: params, results: results, variadic: variadic} } // Recv returns the receiver of signature s (if a method), or nil if a // function. It is ignored when comparing signatures for identity. // // For an abstract method, Recv returns the enclosing interface either // as a *Named or an *Interface. Due to embedding, an interface may // contain methods whose receiver type is a different interface. func (s *Signature) Recv() *Var { return s.recv } // TParams returns the type parameters of signature s, or nil. func (s *Signature) TParams() *TParamList { return s.tparams } // SetTParams sets the type parameters of signature s. func (s *Signature) SetTParams(tparams []*TypeParam) { s.tparams = bindTParams(tparams) } // RParams returns the receiver type parameters of signature s, or nil. func (s *Signature) RParams() *TParamList { return s.rparams } // SetRParams sets the receiver type params of signature s. func (s *Signature) SetRParams(rparams []*TypeParam) { s.rparams = bindTParams(rparams) } // Params returns the parameters of signature s, or nil. func (s *Signature) Params() *Tuple { return s.params } // Results returns the results of signature s, or nil. func (s *Signature) Results() *Tuple { return s.results } // Variadic reports whether the signature s is variadic. func (s *Signature) Variadic() bool { return s.variadic } func (s *Signature) Underlying() Type { return s } func (s *Signature) String() string { return TypeString(s, nil) } // ---------------------------------------------------------------------------- // Implementation // Disabled by default, but enabled when running tests (via types_test.go). var acceptMethodTypeParams bool // funcType type-checks a function or method type. func (check *Checker) funcType(sig *Signature, recvPar *syntax.Field, tparams []*syntax.Field, ftyp *syntax.FuncType) { check.openScope(ftyp, "function") check.scope.isFunc = true check.recordScope(ftyp, check.scope) sig.scope = check.scope defer check.closeScope() var recvTyp syntax.Expr // rewritten receiver type; valid if != nil if recvPar != nil { // collect generic receiver type parameters, if any // - a receiver type parameter is like any other type parameter, except that it is declared implicitly // - the receiver specification acts as local declaration for its type parameters, which may be blank _, rname, rparams := check.unpackRecv(recvPar.Type, true) if len(rparams) > 0 { // Blank identifiers don't get declared and regular type-checking of the instantiated // parameterized receiver type expression fails in Checker.collectParams of receiver. // Identify blank type parameters and substitute each with a unique new identifier named // "n_" (where n is the parameter index) and which cannot conflict with any user-defined // name. var smap map[*syntax.Name]*syntax.Name // substitution map from "_" to "!n" identifiers for i, p := range rparams { if p.Value == "_" { new := *p new.Value = fmt.Sprintf("%d_", i) rparams[i] = &new // use n_ identifier instead of _ so it can be looked up if smap == nil { smap = make(map[*syntax.Name]*syntax.Name) } smap[p] = &new } } if smap != nil { // blank identifiers were found => use rewritten receiver type recvTyp = isubst(recvPar.Type, smap) } rlist := make([]*TypeParam, len(rparams)) for i, rparam := range rparams { rlist[i] = check.declareTypeParam(rparam) } sig.rparams = bindTParams(rlist) // determine receiver type to get its type parameters // and the respective type parameter bounds var recvTParams []*TypeParam if rname != nil { // recv should be a Named type (otherwise an error is reported elsewhere) // Also: Don't report an error via genericType since it will be reported // again when we type-check the signature. // TODO(gri) maybe the receiver should be marked as invalid instead? if recv := asNamed(check.genericType(rname, false)); recv != nil { recvTParams = recv.TParams().list() } } // provide type parameter bounds // - only do this if we have the right number (otherwise an error is reported elsewhere) if sig.RParams().Len() == len(recvTParams) { // We have a list of *TypeNames but we need a list of Types. list := make([]Type, sig.RParams().Len()) for i, t := range sig.RParams().list() { list[i] = t } smap := makeSubstMap(recvTParams, list) for i, tpar := range sig.RParams().list() { bound := recvTParams[i].bound // bound is (possibly) parameterized in the context of the // receiver type declaration. Substitute parameters for the // current context. tpar.bound = check.subst(tpar.obj.pos, bound, smap, nil) } } } } if tparams != nil { sig.tparams = check.collectTypeParams(tparams) // Always type-check method type parameters but complain if they are not enabled. // (A separate check is needed when type-checking interface method signatures because // they don't have a receiver specification.) if recvPar != nil && !acceptMethodTypeParams { check.error(ftyp, "methods cannot have type parameters") } } // Value (non-type) parameters' scope starts in the function body. Use a temporary scope for their // declarations and then squash that scope into the parent scope (and report any redeclarations at // that time). scope := NewScope(check.scope, nopos, nopos, "function body (temp. scope)") var recvList []*Var // TODO(gri) remove the need for making a list here if recvPar != nil { recvList, _ = check.collectParams(scope, []*syntax.Field{recvPar}, recvTyp, false) // use rewritten receiver type, if any } params, variadic := check.collectParams(scope, ftyp.ParamList, nil, true) results, _ := check.collectParams(scope, ftyp.ResultList, nil, false) scope.Squash(func(obj, alt Object) { var err error_ err.errorf(obj, "%s redeclared in this block", obj.Name()) err.recordAltDecl(alt) check.report(&err) }) if recvPar != nil { // recv parameter list present (may be empty) // spec: "The receiver is specified via an extra parameter section preceding the // method name. That parameter section must declare a single parameter, the receiver." var recv *Var switch len(recvList) { case 0: // error reported by resolver recv = NewParam(nopos, nil, "", Typ[Invalid]) // ignore recv below default: // more than one receiver check.error(recvList[len(recvList)-1].Pos(), "method must have exactly one receiver") fallthrough // continue with first receiver case 1: recv = recvList[0] } // TODO(gri) We should delay rtyp expansion to when we actually need the // receiver; thus all checks here should be delayed to later. rtyp, _ := deref(recv.typ) // spec: "The receiver type must be of the form T or *T where T is a type name." // (ignore invalid types - error was reported before) if rtyp != Typ[Invalid] { var err string switch T := rtyp.(type) { case *Named: T.expand(nil) // spec: "The type denoted by T is called the receiver base type; it must not // be a pointer or interface type and it must be declared in the same package // as the method." if T.obj.pkg != check.pkg { err = "type not defined in this package" if check.conf.CompilerErrorMessages { check.errorf(recv.pos, "cannot define new methods on non-local type %s", recv.typ) err = "" } } else { // The underlying type of a receiver base type can be a type parameter; // e.g. for methods with a generic receiver T[P] with type T[P any] P. underIs(T, func(u Type) bool { switch u := u.(type) { case *Basic: // unsafe.Pointer is treated like a regular pointer if u.kind == UnsafePointer { err = "unsafe.Pointer" return false } case *Pointer, *Interface: err = "pointer or interface type" return false } return true }) } case *Basic: err = "basic or unnamed type" if check.conf.CompilerErrorMessages { check.errorf(recv.pos, "cannot define new methods on non-local type %s", recv.typ) err = "" } default: check.errorf(recv.pos, "invalid receiver type %s", recv.typ) } if err != "" { check.errorf(recv.pos, "invalid receiver type %s (%s)", recv.typ, err) // ok to continue } } sig.recv = recv } sig.params = NewTuple(params...) sig.results = NewTuple(results...) sig.variadic = variadic } // collectParams declares the parameters of list in scope and returns the corresponding // variable list. If type0 != nil, it is used instead of the first type in list. func (check *Checker) collectParams(scope *Scope, list []*syntax.Field, type0 syntax.Expr, variadicOk bool) (params []*Var, variadic bool) { if list == nil { return } var named, anonymous bool var typ Type var prev syntax.Expr for i, field := range list { ftype := field.Type // type-check type of grouped fields only once if ftype != prev { prev = ftype if i == 0 && type0 != nil { ftype = type0 } if t, _ := ftype.(*syntax.DotsType); t != nil { ftype = t.Elem if variadicOk && i == len(list)-1 { variadic = true } else { check.softErrorf(t, "can only use ... with final parameter in list") // ignore ... and continue } } typ = check.varType(ftype) } // The parser ensures that f.Tag is nil and we don't // care if a constructed AST contains a non-nil tag. if field.Name != nil { // named parameter name := field.Name.Value if name == "" { check.error(field.Name, invalidAST+"anonymous parameter") // ok to continue } par := NewParam(field.Name.Pos(), check.pkg, name, typ) check.declare(scope, field.Name, par, scope.pos) params = append(params, par) named = true } else { // anonymous parameter par := NewParam(field.Pos(), check.pkg, "", typ) check.recordImplicit(field, par) params = append(params, par) anonymous = true } } if named && anonymous { check.error(list[0], invalidAST+"list contains both named and anonymous parameters") // ok to continue } // For a variadic function, change the last parameter's type from T to []T. // Since we type-checked T rather than ...T, we also need to retro-actively // record the type for ...T. if variadic { last := params[len(params)-1] last.typ = &Slice{elem: last.typ} check.recordTypeAndValue(list[len(list)-1].Type, typexpr, last.typ, nil) } return } // isubst returns an x with identifiers substituted per the substitution map smap. // isubst only handles the case of (valid) method receiver type expressions correctly. func isubst(x syntax.Expr, smap map[*syntax.Name]*syntax.Name) syntax.Expr { switch n := x.(type) { case *syntax.Name: if alt := smap[n]; alt != nil { return alt } // case *syntax.StarExpr: // X := isubst(n.X, smap) // if X != n.X { // new := *n // new.X = X // return &new // } case *syntax.Operation: if n.Op == syntax.Mul && n.Y == nil { X := isubst(n.X, smap) if X != n.X { new := *n new.X = X return &new } } case *syntax.IndexExpr: Index := isubst(n.Index, smap) if Index != n.Index { new := *n new.Index = Index return &new } case *syntax.ListExpr: var elems []syntax.Expr for i, elem := range n.ElemList { new := isubst(elem, smap) if new != elem { if elems == nil { elems = make([]syntax.Expr, len(n.ElemList)) copy(elems, n.ElemList) } elems[i] = new } } if elems != nil { new := *n new.ElemList = elems return &new } case *syntax.ParenExpr: return isubst(n.X, smap) // no need to keep parentheses default: // Other receiver type expressions are invalid. // It's fine to ignore those here as they will // be checked elsewhere. } return x }