// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package types2 import ( "cmd/compile/internal/syntax" "fmt" "go/constant" "sort" "strconv" "strings" "unicode" ) // A declInfo describes a package-level const, type, var, or func declaration. type declInfo struct { file *Scope // scope of file containing this declaration lhs []*Var // lhs of n:1 variable declarations, or nil vtyp syntax.Expr // type, or nil (for const and var declarations only) init syntax.Expr // init/orig expression, or nil (for const and var declarations only) inherited bool // if set, the init expression is inherited from a previous constant declaration tdecl *syntax.TypeDecl // type declaration, or nil fdecl *syntax.FuncDecl // func declaration, or nil // The deps field tracks initialization expression dependencies. deps map[Object]bool // lazily initialized } // hasInitializer reports whether the declared object has an initialization // expression or function body. func (d *declInfo) hasInitializer() bool { return d.init != nil || d.fdecl != nil && d.fdecl.Body != nil } // addDep adds obj to the set of objects d's init expression depends on. func (d *declInfo) addDep(obj Object) { m := d.deps if m == nil { m = make(map[Object]bool) d.deps = m } m[obj] = true } // arity checks that the lhs and rhs of a const or var decl // have a matching number of names and initialization values. // If inherited is set, the initialization values are from // another (constant) declaration. func (check *Checker) arity(pos syntax.Pos, names []*syntax.Name, inits []syntax.Expr, constDecl, inherited bool) { l := len(names) r := len(inits) switch { case l < r: n := inits[l] if inherited { check.errorf(pos, "extra init expr at %s", n.Pos()) } else { check.errorf(n, "extra init expr %s", n) } case l > r && (constDecl || r != 1): // if r == 1 it may be a multi-valued function and we can't say anything yet n := names[r] check.errorf(n, "missing init expr for %s", n.Value) } } func validatedImportPath(path string) (string, error) { s, err := strconv.Unquote(path) if err != nil { return "", err } if s == "" { return "", fmt.Errorf("empty string") } const illegalChars = `!"#$%&'()*,:;<=>?[\]^{|}` + "`\uFFFD" for _, r := range s { if !unicode.IsGraphic(r) || unicode.IsSpace(r) || strings.ContainsRune(illegalChars, r) { return s, fmt.Errorf("invalid character %#U", r) } } return s, nil } // declarePkgObj declares obj in the package scope, records its ident -> obj mapping, // and updates check.objMap. The object must not be a function or method. func (check *Checker) declarePkgObj(ident *syntax.Name, obj Object, d *declInfo) { assert(ident.Value == obj.Name()) // spec: "A package-scope or file-scope identifier with name init // may only be declared to be a function with this (func()) signature." if ident.Value == "init" { check.error(ident, "cannot declare init - must be func") return } // spec: "The main package must have package name main and declare // a function main that takes no arguments and returns no value." if ident.Value == "main" && check.pkg.name == "main" { check.error(ident, "cannot declare main - must be func") return } check.declare(check.pkg.scope, ident, obj, nopos) check.objMap[obj] = d obj.setOrder(uint32(len(check.objMap))) } // filename returns a filename suitable for debugging output. func (check *Checker) filename(fileNo int) string { file := check.files[fileNo] if pos := file.Pos(); pos.IsKnown() { // return check.fset.File(pos).Name() // TODO(gri) do we need the actual file name here? return pos.RelFilename() } return fmt.Sprintf("file[%d]", fileNo) } func (check *Checker) importPackage(pos syntax.Pos, path, dir string) *Package { // If we already have a package for the given (path, dir) // pair, use it instead of doing a full import. // Checker.impMap only caches packages that are marked Complete // or fake (dummy packages for failed imports). Incomplete but // non-fake packages do require an import to complete them. key := importKey{path, dir} imp := check.impMap[key] if imp != nil { return imp } // no package yet => import it if path == "C" && (check.conf.FakeImportC || check.conf.go115UsesCgo) { imp = NewPackage("C", "C") imp.fake = true // package scope is not populated imp.cgo = check.conf.go115UsesCgo } else { // ordinary import var err error if importer := check.conf.Importer; importer == nil { err = fmt.Errorf("Config.Importer not installed") } else if importerFrom, ok := importer.(ImporterFrom); ok { imp, err = importerFrom.ImportFrom(path, dir, 0) if imp == nil && err == nil { err = fmt.Errorf("Config.Importer.ImportFrom(%s, %s, 0) returned nil but no error", path, dir) } } else { imp, err = importer.Import(path) if imp == nil && err == nil { err = fmt.Errorf("Config.Importer.Import(%s) returned nil but no error", path) } } // make sure we have a valid package name // (errors here can only happen through manipulation of packages after creation) if err == nil && imp != nil && (imp.name == "_" || imp.name == "") { err = fmt.Errorf("invalid package name: %q", imp.name) imp = nil // create fake package below } if err != nil { check.errorf(pos, "could not import %s (%s)", path, err) if imp == nil { // create a new fake package // come up with a sensible package name (heuristic) name := path if i := len(name); i > 0 && name[i-1] == '/' { name = name[:i-1] } if i := strings.LastIndex(name, "/"); i >= 0 { name = name[i+1:] } imp = NewPackage(path, name) } // continue to use the package as best as we can imp.fake = true // avoid follow-up lookup failures } } // package should be complete or marked fake, but be cautious if imp.complete || imp.fake { check.impMap[key] = imp // Once we've formatted an error message once, keep the pkgPathMap // up-to-date on subsequent imports. if check.pkgPathMap != nil { check.markImports(imp) } return imp } // something went wrong (importer may have returned incomplete package without error) return nil } // collectObjects collects all file and package objects and inserts them // into their respective scopes. It also performs imports and associates // methods with receiver base type names. func (check *Checker) collectObjects() { pkg := check.pkg pkg.height = 0 // pkgImports is the set of packages already imported by any package file seen // so far. Used to avoid duplicate entries in pkg.imports. Allocate and populate // it (pkg.imports may not be empty if we are checking test files incrementally). // Note that pkgImports is keyed by package (and thus package path), not by an // importKey value. Two different importKey values may map to the same package // which is why we cannot use the check.impMap here. var pkgImports = make(map[*Package]bool) for _, imp := range pkg.imports { pkgImports[imp] = true } type methodInfo struct { obj *Func // method ptr bool // true if pointer receiver recv *syntax.Name // receiver type name } var methods []methodInfo // collected methods with valid receivers and non-blank _ names var fileScopes []*Scope for fileNo, file := range check.files { // The package identifier denotes the current package, // but there is no corresponding package object. check.recordDef(file.PkgName, nil) fileScope := NewScope(check.pkg.scope, syntax.StartPos(file), syntax.EndPos(file), check.filename(fileNo)) fileScopes = append(fileScopes, fileScope) check.recordScope(file, fileScope) // determine file directory, necessary to resolve imports // FileName may be "" (typically for tests) in which case // we get "." as the directory which is what we would want. fileDir := dir(file.PkgName.Pos().RelFilename()) // TODO(gri) should this be filename? first := -1 // index of first ConstDecl in the current group, or -1 var last *syntax.ConstDecl // last ConstDecl with init expressions, or nil for index, decl := range file.DeclList { if _, ok := decl.(*syntax.ConstDecl); !ok { first = -1 // we're not in a constant declaration } switch s := decl.(type) { case *syntax.ImportDecl: // import package if s.Path == nil || s.Path.Bad { continue // error reported during parsing } path, err := validatedImportPath(s.Path.Value) if err != nil { check.errorf(s.Path, "invalid import path (%s)", err) continue } imp := check.importPackage(s.Path.Pos(), path, fileDir) if imp == nil { continue } if imp == Unsafe { // typecheck ignores imports of package unsafe for // calculating height. // TODO(mdempsky): Revisit this. This seems fine, but I // don't remember explicitly considering this case. } else if h := imp.height + 1; h > pkg.height { pkg.height = h } // local name overrides imported package name name := imp.name if s.LocalPkgName != nil { name = s.LocalPkgName.Value if path == "C" { // match cmd/compile (not prescribed by spec) check.error(s.LocalPkgName, `cannot rename import "C"`) continue } } if name == "init" { check.error(s, "cannot import package as init - init must be a func") continue } // add package to list of explicit imports // (this functionality is provided as a convenience // for clients; it is not needed for type-checking) if !pkgImports[imp] { pkgImports[imp] = true pkg.imports = append(pkg.imports, imp) } pkgName := NewPkgName(s.Pos(), pkg, name, imp) if s.LocalPkgName != nil { // in a dot-import, the dot represents the package check.recordDef(s.LocalPkgName, pkgName) } else { check.recordImplicit(s, pkgName) } if path == "C" { // match cmd/compile (not prescribed by spec) pkgName.used = true } // add import to file scope check.imports = append(check.imports, pkgName) if name == "." { // dot-import if check.dotImportMap == nil { check.dotImportMap = make(map[dotImportKey]*PkgName) } // merge imported scope with file scope for name, obj := range imp.scope.elems { // Note: Avoid eager resolve(name, obj) here, so we only // resolve dot-imported objects as needed. // A package scope may contain non-exported objects, // do not import them! if isExported(name) { // declare dot-imported object // (Do not use check.declare because it modifies the object // via Object.setScopePos, which leads to a race condition; // the object may be imported into more than one file scope // concurrently. See issue #32154.) if alt := fileScope.Lookup(name); alt != nil { var err error_ err.errorf(s.LocalPkgName, "%s redeclared in this block", alt.Name()) err.recordAltDecl(alt) check.report(&err) } else { fileScope.insert(name, obj) check.dotImportMap[dotImportKey{fileScope, name}] = pkgName } } } } else { // declare imported package object in file scope // (no need to provide s.LocalPkgName since we called check.recordDef earlier) check.declare(fileScope, nil, pkgName, nopos) } case *syntax.ConstDecl: // iota is the index of the current constDecl within the group if first < 0 || file.DeclList[index-1].(*syntax.ConstDecl).Group != s.Group { first = index last = nil } iota := constant.MakeInt64(int64(index - first)) // determine which initialization expressions to use inherited := true switch { case s.Type != nil || s.Values != nil: last = s inherited = false case last == nil: last = new(syntax.ConstDecl) // make sure last exists inherited = false } // declare all constants values := unpackExpr(last.Values) for i, name := range s.NameList { obj := NewConst(name.Pos(), pkg, name.Value, nil, iota) var init syntax.Expr if i < len(values) { init = values[i] } d := &declInfo{file: fileScope, vtyp: last.Type, init: init, inherited: inherited} check.declarePkgObj(name, obj, d) } // Constants must always have init values. check.arity(s.Pos(), s.NameList, values, true, inherited) case *syntax.VarDecl: lhs := make([]*Var, len(s.NameList)) // If there's exactly one rhs initializer, use // the same declInfo d1 for all lhs variables // so that each lhs variable depends on the same // rhs initializer (n:1 var declaration). var d1 *declInfo if _, ok := s.Values.(*syntax.ListExpr); !ok { // The lhs elements are only set up after the for loop below, // but that's ok because declarePkgObj only collects the declInfo // for a later phase. d1 = &declInfo{file: fileScope, lhs: lhs, vtyp: s.Type, init: s.Values} } // declare all variables values := unpackExpr(s.Values) for i, name := range s.NameList { obj := NewVar(name.Pos(), pkg, name.Value, nil) lhs[i] = obj d := d1 if d == nil { // individual assignments var init syntax.Expr if i < len(values) { init = values[i] } d = &declInfo{file: fileScope, vtyp: s.Type, init: init} } check.declarePkgObj(name, obj, d) } // If we have no type, we must have values. if s.Type == nil || values != nil { check.arity(s.Pos(), s.NameList, values, false, false) } case *syntax.TypeDecl: if len(s.TParamList) != 0 && !check.allowVersion(pkg, 1, 18) { check.softErrorf(s.TParamList[0], "type parameters require go1.18 or later") } obj := NewTypeName(s.Name.Pos(), pkg, s.Name.Value, nil) check.declarePkgObj(s.Name, obj, &declInfo{file: fileScope, tdecl: s}) case *syntax.FuncDecl: name := s.Name.Value obj := NewFunc(s.Name.Pos(), pkg, name, nil) hasTParamError := false // avoid duplicate type parameter errors if s.Recv == nil { // regular function if name == "init" || name == "main" && pkg.name == "main" { if len(s.TParamList) != 0 { check.softErrorf(s.TParamList[0], "func %s must have no type parameters", name) hasTParamError = true } if t := s.Type; len(t.ParamList) != 0 || len(t.ResultList) != 0 { check.softErrorf(s, "func %s must have no arguments and no return values", name) } } // don't declare init functions in the package scope - they are invisible if name == "init" { obj.parent = pkg.scope check.recordDef(s.Name, obj) // init functions must have a body if s.Body == nil { // TODO(gri) make this error message consistent with the others above check.softErrorf(obj.pos, "missing function body") } } else { check.declare(pkg.scope, s.Name, obj, nopos) } } else { // method // d.Recv != nil if !acceptMethodTypeParams && len(s.TParamList) != 0 { //check.error(d.TParamList.Pos(), invalidAST + "method must have no type parameters") check.error(s.TParamList[0], invalidAST+"method must have no type parameters") hasTParamError = true } ptr, recv, _ := check.unpackRecv(s.Recv.Type, false) // (Methods with invalid receiver cannot be associated to a type, and // methods with blank _ names are never found; no need to collect any // of them. They will still be type-checked with all the other functions.) if recv != nil && name != "_" { methods = append(methods, methodInfo{obj, ptr, recv}) } check.recordDef(s.Name, obj) } if len(s.TParamList) != 0 && !check.allowVersion(pkg, 1, 18) && !hasTParamError { check.softErrorf(s.TParamList[0], "type parameters require go1.18 or later") } info := &declInfo{file: fileScope, fdecl: s} // Methods are not package-level objects but we still track them in the // object map so that we can handle them like regular functions (if the // receiver is invalid); also we need their fdecl info when associating // them with their receiver base type, below. check.objMap[obj] = info obj.setOrder(uint32(len(check.objMap))) default: check.errorf(s, invalidAST+"unknown syntax.Decl node %T", s) } } } // verify that objects in package and file scopes have different names for _, scope := range fileScopes { for name, obj := range scope.elems { if alt := pkg.scope.Lookup(name); alt != nil { obj = resolve(name, obj) var err error_ if pkg, ok := obj.(*PkgName); ok { err.errorf(alt, "%s already declared through import of %s", alt.Name(), pkg.Imported()) err.recordAltDecl(pkg) } else { err.errorf(alt, "%s already declared through dot-import of %s", alt.Name(), obj.Pkg()) // TODO(gri) dot-imported objects don't have a position; recordAltDecl won't print anything err.recordAltDecl(obj) } check.report(&err) } } } // Now that we have all package scope objects and all methods, // associate methods with receiver base type name where possible. // Ignore methods that have an invalid receiver. They will be // type-checked later, with regular functions. if methods != nil { check.methods = make(map[*TypeName][]*Func) for i := range methods { m := &methods[i] // Determine the receiver base type and associate m with it. ptr, base := check.resolveBaseTypeName(m.ptr, m.recv) if base != nil { m.obj.hasPtrRecv = ptr check.methods[base] = append(check.methods[base], m.obj) } } } } // unpackRecv unpacks a receiver type and returns its components: ptr indicates whether // rtyp is a pointer receiver, rname is the receiver type name, and tparams are its // type parameters, if any. The type parameters are only unpacked if unpackParams is // set. If rname is nil, the receiver is unusable (i.e., the source has a bug which we // cannot easily work around). func (check *Checker) unpackRecv(rtyp syntax.Expr, unpackParams bool) (ptr bool, rname *syntax.Name, tparams []*syntax.Name) { L: // unpack receiver type // This accepts invalid receivers such as ***T and does not // work for other invalid receivers, but we don't care. The // validity of receiver expressions is checked elsewhere. for { switch t := rtyp.(type) { case *syntax.ParenExpr: rtyp = t.X // case *ast.StarExpr: // ptr = true // rtyp = t.X case *syntax.Operation: if t.Op != syntax.Mul || t.Y != nil { break } ptr = true rtyp = t.X default: break L } } // unpack type parameters, if any if ptyp, _ := rtyp.(*syntax.IndexExpr); ptyp != nil { rtyp = ptyp.X if unpackParams { for _, arg := range unpackExpr(ptyp.Index) { var par *syntax.Name switch arg := arg.(type) { case *syntax.Name: par = arg case *syntax.BadExpr: // ignore - error already reported by parser case nil: check.error(ptyp, invalidAST+"parameterized receiver contains nil parameters") default: check.errorf(arg, "receiver type parameter %s must be an identifier", arg) } if par == nil { par = syntax.NewName(arg.Pos(), "_") } tparams = append(tparams, par) } } } // unpack receiver name if name, _ := rtyp.(*syntax.Name); name != nil { rname = name } return } // resolveBaseTypeName returns the non-alias base type name for typ, and whether // there was a pointer indirection to get to it. The base type name must be declared // in package scope, and there can be at most one pointer indirection. If no such type // name exists, the returned base is nil. func (check *Checker) resolveBaseTypeName(seenPtr bool, typ syntax.Expr) (ptr bool, base *TypeName) { // Algorithm: Starting from a type expression, which may be a name, // we follow that type through alias declarations until we reach a // non-alias type name. If we encounter anything but pointer types or // parentheses we're done. If we encounter more than one pointer type // we're done. ptr = seenPtr var seen map[*TypeName]bool for { typ = unparen(typ) // check if we have a pointer type // if pexpr, _ := typ.(*ast.StarExpr); pexpr != nil { if pexpr, _ := typ.(*syntax.Operation); pexpr != nil && pexpr.Op == syntax.Mul && pexpr.Y == nil { // if we've already seen a pointer, we're done if ptr { return false, nil } ptr = true typ = unparen(pexpr.X) // continue with pointer base type } // typ must be a name name, _ := typ.(*syntax.Name) if name == nil { return false, nil } // name must denote an object found in the current package scope // (note that dot-imported objects are not in the package scope!) obj := check.pkg.scope.Lookup(name.Value) if obj == nil { return false, nil } // the object must be a type name... tname, _ := obj.(*TypeName) if tname == nil { return false, nil } // ... which we have not seen before if seen[tname] { return false, nil } // we're done if tdecl defined tname as a new type // (rather than an alias) tdecl := check.objMap[tname].tdecl // must exist for objects in package scope if !tdecl.Alias { return ptr, tname } // otherwise, continue resolving typ = tdecl.Type if seen == nil { seen = make(map[*TypeName]bool) } seen[tname] = true } } // packageObjects typechecks all package objects, but not function bodies. func (check *Checker) packageObjects() { // process package objects in source order for reproducible results objList := make([]Object, len(check.objMap)) i := 0 for obj := range check.objMap { objList[i] = obj i++ } sort.Sort(inSourceOrder(objList)) // add new methods to already type-checked types (from a prior Checker.Files call) for _, obj := range objList { if obj, _ := obj.(*TypeName); obj != nil && obj.typ != nil { check.collectMethods(obj) } } // We process non-alias declarations first, in order to avoid situations where // the type of an alias declaration is needed before it is available. In general // this is still not enough, as it is possible to create sufficiently convoluted // recursive type definitions that will cause a type alias to be needed before it // is available (see issue #25838 for examples). // As an aside, the cmd/compiler suffers from the same problem (#25838). var aliasList []*TypeName // phase 1 for _, obj := range objList { // If we have a type alias, collect it for the 2nd phase. if tname, _ := obj.(*TypeName); tname != nil && check.objMap[tname].tdecl.Alias { aliasList = append(aliasList, tname) continue } check.objDecl(obj, nil) } // phase 2 for _, obj := range aliasList { check.objDecl(obj, nil) } // At this point we may have a non-empty check.methods map; this means that not all // entries were deleted at the end of typeDecl because the respective receiver base // types were not found. In that case, an error was reported when declaring those // methods. We can now safely discard this map. check.methods = nil } // inSourceOrder implements the sort.Sort interface. type inSourceOrder []Object func (a inSourceOrder) Len() int { return len(a) } func (a inSourceOrder) Less(i, j int) bool { return a[i].order() < a[j].order() } func (a inSourceOrder) Swap(i, j int) { a[i], a[j] = a[j], a[i] } // unusedImports checks for unused imports. func (check *Checker) unusedImports() { // if function bodies are not checked, packages' uses are likely missing - don't check if check.conf.IgnoreFuncBodies { return } // spec: "It is illegal (...) to directly import a package without referring to // any of its exported identifiers. To import a package solely for its side-effects // (initialization), use the blank identifier as explicit package name." for _, obj := range check.imports { if !obj.used && obj.name != "_" { check.errorUnusedPkg(obj) } } } func (check *Checker) errorUnusedPkg(obj *PkgName) { // If the package was imported with a name other than the final // import path element, show it explicitly in the error message. // Note that this handles both renamed imports and imports of // packages containing unconventional package declarations. // Note that this uses / always, even on Windows, because Go import // paths always use forward slashes. path := obj.imported.path elem := path if i := strings.LastIndex(elem, "/"); i >= 0 { elem = elem[i+1:] } if obj.name == "" || obj.name == "." || obj.name == elem { if check.conf.CompilerErrorMessages { check.softErrorf(obj, "imported and not used: %q", path) } else { check.softErrorf(obj, "%q imported but not used", path) } } else { if check.conf.CompilerErrorMessages { check.softErrorf(obj, "imported and not used: %q as %s", path, obj.name) } else { check.softErrorf(obj, "%q imported but not used as %s", path, obj.name) } } } // dir makes a good-faith attempt to return the directory // portion of path. If path is empty, the result is ".". // (Per the go/build package dependency tests, we cannot import // path/filepath and simply use filepath.Dir.) func dir(path string) string { if i := strings.LastIndexAny(path, `/\`); i > 0 { return path[:i] } // i <= 0 return "." }