// Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package types2 import "cmd/compile/internal/syntax" // ---------------------------------------------------------------------------- // API // An Interface represents an interface type. type Interface struct { obj *TypeName // corresponding declared object; or nil (for better error messages) methods []*Func // ordered list of explicitly declared methods embeddeds []Type // ordered list of explicitly embedded elements embedPos *[]syntax.Pos // positions of embedded elements; or nil (for error messages) - use pointer to save space complete bool // indicates that all fields (except for tset) are set up tset *_TypeSet // type set described by this interface, computed lazily } // typeSet returns the type set for interface t. func (t *Interface) typeSet() *_TypeSet { return computeInterfaceTypeSet(nil, nopos, t) } // emptyInterface represents the empty interface var emptyInterface = Interface{complete: true, tset: &topTypeSet} // NewInterface returns a new interface for the given methods and embedded types. // NewInterface takes ownership of the provided methods and may modify their types // by setting missing receivers. // // Deprecated: Use NewInterfaceType instead which allows arbitrary embedded types. func NewInterface(methods []*Func, embeddeds []*Named) *Interface { tnames := make([]Type, len(embeddeds)) for i, t := range embeddeds { tnames[i] = t } return NewInterfaceType(methods, tnames) } // NewInterfaceType returns a new interface for the given methods and embedded types. // NewInterfaceType takes ownership of the provided methods and may modify their types // by setting missing receivers. func NewInterfaceType(methods []*Func, embeddeds []Type) *Interface { if len(methods) == 0 && len(embeddeds) == 0 { return &emptyInterface } // set method receivers if necessary typ := new(Interface) for _, m := range methods { if sig := m.typ.(*Signature); sig.recv == nil { sig.recv = NewVar(m.pos, m.pkg, "", typ) } } // sort for API stability sortMethods(methods) typ.methods = methods typ.embeddeds = embeddeds typ.complete = true return typ } // NumExplicitMethods returns the number of explicitly declared methods of interface t. func (t *Interface) NumExplicitMethods() int { return len(t.methods) } // ExplicitMethod returns the i'th explicitly declared method of interface t for 0 <= i < t.NumExplicitMethods(). // The methods are ordered by their unique Id. func (t *Interface) ExplicitMethod(i int) *Func { return t.methods[i] } // NumEmbeddeds returns the number of embedded types in interface t. func (t *Interface) NumEmbeddeds() int { return len(t.embeddeds) } // Embedded returns the i'th embedded defined (*Named) type of interface t for 0 <= i < t.NumEmbeddeds(). // The result is nil if the i'th embedded type is not a defined type. // // Deprecated: Use EmbeddedType which is not restricted to defined (*Named) types. func (t *Interface) Embedded(i int) *Named { tname, _ := t.embeddeds[i].(*Named); return tname } // EmbeddedType returns the i'th embedded type of interface t for 0 <= i < t.NumEmbeddeds(). func (t *Interface) EmbeddedType(i int) Type { return t.embeddeds[i] } // NumMethods returns the total number of methods of interface t. func (t *Interface) NumMethods() int { return t.typeSet().NumMethods() } // Method returns the i'th method of interface t for 0 <= i < t.NumMethods(). // The methods are ordered by their unique Id. func (t *Interface) Method(i int) *Func { return t.typeSet().Method(i) } // Empty reports whether t is the empty interface. func (t *Interface) Empty() bool { return t.typeSet().IsAll() } // IsComparable reports whether each type in interface t's type set is comparable. func (t *Interface) IsComparable() bool { return t.typeSet().IsComparable() } // IsConstraint reports whether interface t is not just a method set. func (t *Interface) IsConstraint() bool { return t.typeSet().IsConstraint() } func (t *Interface) Underlying() Type { return t } func (t *Interface) String() string { return TypeString(t, nil) } // ---------------------------------------------------------------------------- // Implementation func (check *Checker) interfaceType(ityp *Interface, iface *syntax.InterfaceType, def *Named) { var tlist []syntax.Expr // types collected from all type lists var tname *syntax.Name // most recent "type" name addEmbedded := func(pos syntax.Pos, typ Type) { ityp.embeddeds = append(ityp.embeddeds, typ) if ityp.embedPos == nil { ityp.embedPos = new([]syntax.Pos) } *ityp.embedPos = append(*ityp.embedPos, pos) } for _, f := range iface.MethodList { if f.Name == nil { // We have an embedded type; possibly a union of types. addEmbedded(posFor(f.Type), parseUnion(check, flattenUnion(nil, f.Type))) continue } // f.Name != nil // We have a method with name f.Name, or a type of a type list (f.Name.Value == "type"). name := f.Name.Value if name == "_" { if check.conf.CompilerErrorMessages { check.error(f.Name, "methods must have a unique non-blank name") } else { check.error(f.Name, "invalid method name _") } continue // ignore } // TODO(gri) Remove type list handling once the parser doesn't accept type lists anymore. if name == "type" { // Report an error for the first type list per interface // if we don't allow type lists, but continue. if !check.conf.AllowTypeLists && tlist == nil { check.softErrorf(f.Name, "use generalized embedding syntax instead of a type list") } // For now, collect all type list entries as if it // were a single union, where each union element is // of the form ~T. op := new(syntax.Operation) // We should also set the position (but there is no setter); // we don't care because this code will eventually go away. op.Op = syntax.Tilde op.X = f.Type tlist = append(tlist, op) // Report an error if we have multiple type lists in an // interface, but only if they are permitted in the first place. if check.conf.AllowTypeLists && tname != nil && tname != f.Name { check.error(f.Name, "cannot have multiple type lists in an interface") } tname = f.Name continue } typ := check.typ(f.Type) sig, _ := typ.(*Signature) if sig == nil { if typ != Typ[Invalid] { check.errorf(f.Type, invalidAST+"%s is not a method signature", typ) } continue // ignore } // Always type-check method type parameters but complain if they are not enabled. // (This extra check is needed here because interface method signatures don't have // a receiver specification.) if sig.tparams != nil && !acceptMethodTypeParams { check.error(f.Type, "methods cannot have type parameters") } // use named receiver type if available (for better error messages) var recvTyp Type = ityp if def != nil { recvTyp = def } sig.recv = NewVar(f.Name.Pos(), check.pkg, "", recvTyp) m := NewFunc(f.Name.Pos(), check.pkg, name, sig) check.recordDef(f.Name, m) ityp.methods = append(ityp.methods, m) } // If we saw a type list, add it like an embedded union. if tlist != nil { // Types T in a type list are added as ~T expressions but we don't // have the position of the '~'. Use the first type position instead. addEmbedded(tlist[0].(*syntax.Operation).X.Pos(), parseUnion(check, tlist)) } // All methods and embedded elements for this interface are collected; // i.e., this interface is may be used in a type set computation. ityp.complete = true if len(ityp.methods) == 0 && len(ityp.embeddeds) == 0 { // empty interface ityp.tset = &topTypeSet return } // sort for API stability // (don't sort embeddeds: they must correspond to *embedPos entries) sortMethods(ityp.methods) // Compute type set with a non-nil *Checker as soon as possible // to report any errors. Subsequent uses of type sets will use // this computed type set and won't need to pass in a *Checker. check.later(func() { computeInterfaceTypeSet(check, iface.Pos(), ityp) }) } func flattenUnion(list []syntax.Expr, x syntax.Expr) []syntax.Expr { if o, _ := x.(*syntax.Operation); o != nil && o.Op == syntax.Or { list = flattenUnion(list, o.X) x = o.Y } return append(list, x) }