// Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file implements typechecking of index/slice expressions. package types2 import ( "cmd/compile/internal/syntax" "go/constant" ) // If e is a valid function instantiation, indexExpr returns true. // In that case x represents the uninstantiated function value and // it is the caller's responsibility to instantiate the function. func (check *Checker) indexExpr(x *operand, e *syntax.IndexExpr) (isFuncInst bool) { check.exprOrType(x, e.X) switch x.mode { case invalid: check.use(e.Index) return false case typexpr: // type instantiation x.mode = invalid x.typ = check.varType(e) if x.typ != Typ[Invalid] { x.mode = typexpr } return false case value: if sig := asSignature(x.typ); sig != nil && sig.TParams().Len() > 0 { // function instantiation return true } } // ordinary index expression valid := false length := int64(-1) // valid if >= 0 switch typ := under(x.typ).(type) { case *Basic: if isString(typ) { valid = true if x.mode == constant_ { length = int64(len(constant.StringVal(x.val))) } // an indexed string always yields a byte value // (not a constant) even if the string and the // index are constant x.mode = value x.typ = universeByte // use 'byte' name } case *Array: valid = true length = typ.len if x.mode != variable { x.mode = value } x.typ = typ.elem case *Pointer: if typ := asArray(typ.base); typ != nil { valid = true length = typ.len x.mode = variable x.typ = typ.elem } case *Slice: valid = true x.mode = variable x.typ = typ.elem case *Map: index := check.singleIndex(e) if index == nil { x.mode = invalid return false } var key operand check.expr(&key, index) check.assignment(&key, typ.key, "map index") // ok to continue even if indexing failed - map element type is known x.mode = mapindex x.typ = typ.elem x.expr = e return false case *TypeParam: // TODO(gri) report detailed failure cause for better error messages var tkey, telem Type // tkey != nil if we have maps if typ.underIs(func(u Type) bool { var key, elem Type alen := int64(-1) // valid if >= 0 switch t := u.(type) { case *Basic: if !isString(t) { return false } elem = universeByte case *Array: elem = t.elem alen = t.len case *Pointer: a, _ := under(t.base).(*Array) if a == nil { return false } elem = a.elem alen = a.len case *Slice: elem = t.elem case *Map: key = t.key elem = t.elem default: return false } assert(elem != nil) if telem == nil { // first type tkey, telem = key, elem length = alen } else { // all map keys must be identical (incl. all nil) if !Identical(key, tkey) { return false } // all element types must be identical if !Identical(elem, telem) { return false } tkey, telem = key, elem // track the minimal length for arrays if alen >= 0 && alen < length { length = alen } } return true }) { // For maps, the index expression must be assignable to the map key type. if tkey != nil { index := check.singleIndex(e) if index == nil { x.mode = invalid return false } var key operand check.expr(&key, index) check.assignment(&key, tkey, "map index") // ok to continue even if indexing failed - map element type is known x.mode = mapindex x.typ = telem x.expr = e return false } // no maps valid = true x.mode = variable x.typ = telem } } if !valid { check.errorf(x, invalidOp+"cannot index %s", x) x.mode = invalid return false } index := check.singleIndex(e) if index == nil { x.mode = invalid return false } // In pathological (invalid) cases (e.g.: type T1 [][[]T1{}[0][0]]T0) // the element type may be accessed before it's set. Make sure we have // a valid type. if x.typ == nil { x.typ = Typ[Invalid] } check.index(index, length) return false } func (check *Checker) sliceExpr(x *operand, e *syntax.SliceExpr) { check.expr(x, e.X) if x.mode == invalid { check.use(e.Index[:]...) return } valid := false length := int64(-1) // valid if >= 0 switch typ := under(x.typ).(type) { case *Basic: if isString(typ) { if e.Full { check.error(x, invalidOp+"3-index slice of string") x.mode = invalid return } valid = true if x.mode == constant_ { length = int64(len(constant.StringVal(x.val))) } // spec: "For untyped string operands the result // is a non-constant value of type string." if typ.kind == UntypedString { x.typ = Typ[String] } } case *Array: valid = true length = typ.len if x.mode != variable { check.errorf(x, invalidOp+"%s (slice of unaddressable value)", x) x.mode = invalid return } x.typ = &Slice{elem: typ.elem} case *Pointer: if typ := asArray(typ.base); typ != nil { valid = true length = typ.len x.typ = &Slice{elem: typ.elem} } case *Slice: valid = true // x.typ doesn't change case *TypeParam: check.error(x, "generic slice expressions not yet implemented") x.mode = invalid return } if !valid { check.errorf(x, invalidOp+"cannot slice %s", x) x.mode = invalid return } x.mode = value // spec: "Only the first index may be omitted; it defaults to 0." if e.Full && (e.Index[1] == nil || e.Index[2] == nil) { check.error(e, invalidAST+"2nd and 3rd index required in 3-index slice") x.mode = invalid return } // check indices var ind [3]int64 for i, expr := range e.Index { x := int64(-1) switch { case expr != nil: // The "capacity" is only known statically for strings, arrays, // and pointers to arrays, and it is the same as the length for // those types. max := int64(-1) if length >= 0 { max = length + 1 } if _, v := check.index(expr, max); v >= 0 { x = v } case i == 0: // default is 0 for the first index x = 0 case length >= 0: // default is length (== capacity) otherwise x = length } ind[i] = x } // constant indices must be in range // (check.index already checks that existing indices >= 0) L: for i, x := range ind[:len(ind)-1] { if x > 0 { for _, y := range ind[i+1:] { if y >= 0 && x > y { check.errorf(e, "invalid slice indices: %d > %d", x, y) break L // only report one error, ok to continue } } } } } // singleIndex returns the (single) index from the index expression e. // If the index is missing, or if there are multiple indices, an error // is reported and the result is nil. func (check *Checker) singleIndex(e *syntax.IndexExpr) syntax.Expr { index := e.Index if index == nil { check.errorf(e, invalidAST+"missing index for %s", e.X) return nil } if l, _ := index.(*syntax.ListExpr); l != nil { if n := len(l.ElemList); n <= 1 { check.errorf(e, invalidAST+"invalid use of ListExpr for index expression %v with %d indices", e, n) return nil } // len(l.ElemList) > 1 check.error(l.ElemList[1], invalidOp+"more than one index") index = l.ElemList[0] // continue with first index } return index } // index checks an index expression for validity. // If max >= 0, it is the upper bound for index. // If the result typ is != Typ[Invalid], index is valid and typ is its (possibly named) integer type. // If the result val >= 0, index is valid and val is its constant int value. func (check *Checker) index(index syntax.Expr, max int64) (typ Type, val int64) { typ = Typ[Invalid] val = -1 var x operand check.expr(&x, index) if !check.isValidIndex(&x, "index", false) { return } if x.mode != constant_ { return x.typ, -1 } if x.val.Kind() == constant.Unknown { return } v, ok := constant.Int64Val(x.val) assert(ok) if max >= 0 && v >= max { if check.conf.CompilerErrorMessages { check.errorf(&x, invalidArg+"array index %s out of bounds [0:%d]", x.val.String(), max) } else { check.errorf(&x, invalidArg+"index %s is out of bounds", &x) } return } // 0 <= v [ && v < max ] return x.typ, v } // isValidIndex checks whether operand x satisfies the criteria for integer // index values. If allowNegative is set, a constant operand may be negative. // If the operand is not valid, an error is reported (using what as context) // and the result is false. func (check *Checker) isValidIndex(x *operand, what string, allowNegative bool) bool { if x.mode == invalid { return false } // spec: "a constant index that is untyped is given type int" check.convertUntyped(x, Typ[Int]) if x.mode == invalid { return false } // spec: "the index x must be of integer type or an untyped constant" if !isInteger(x.typ) { check.errorf(x, invalidArg+"%s %s must be integer", what, x) return false } if x.mode == constant_ { // spec: "a constant index must be non-negative ..." if !allowNegative && constant.Sign(x.val) < 0 { check.errorf(x, invalidArg+"%s %s must not be negative", what, x) return false } // spec: "... and representable by a value of type int" if !representableConst(x.val, check, Typ[Int], &x.val) { check.errorf(x, invalidArg+"%s %s overflows int", what, x) return false } } return true } // indexElts checks the elements (elts) of an array or slice composite literal // against the literal's element type (typ), and the element indices against // the literal length if known (length >= 0). It returns the length of the // literal (maximum index value + 1). func (check *Checker) indexedElts(elts []syntax.Expr, typ Type, length int64) int64 { visited := make(map[int64]bool, len(elts)) var index, max int64 for _, e := range elts { // determine and check index validIndex := false eval := e if kv, _ := e.(*syntax.KeyValueExpr); kv != nil { if typ, i := check.index(kv.Key, length); typ != Typ[Invalid] { if i >= 0 { index = i validIndex = true } else { check.errorf(e, "index %s must be integer constant", kv.Key) } } eval = kv.Value } else if length >= 0 && index >= length { check.errorf(e, "index %d is out of bounds (>= %d)", index, length) } else { validIndex = true } // if we have a valid index, check for duplicate entries if validIndex { if visited[index] { check.errorf(e, "duplicate index %d in array or slice literal", index) } visited[index] = true } index++ if index > max { max = index } // check element against composite literal element type var x operand check.exprWithHint(&x, eval, typ) check.assignment(&x, typ, "array or slice literal") } return max }