// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Simplifications that apply to all backend architectures. As an example, this // Go source code // // y := 0 * x // // can be translated into y := 0 without losing any information, which saves a // pointless multiplication instruction. Other .rules files in this directory // (for example AMD64.rules) contain rules specific to the architecture in the // filename. The rules here apply to every architecture. // // The code for parsing this file lives in rulegen.go; this file generates // ssa/rewritegeneric.go. // values are specified using the following format: // (op [auxint] {aux} arg0 arg1 ...) // the type, aux, and auxint fields are optional // on the matching side // - the type, aux, and auxint fields must match if they are specified. // - the first occurrence of a variable defines that variable. Subsequent // uses must match (be == to) the first use. // - v is defined to be the value matched. // - an additional conditional can be provided after the match pattern with "&&". // on the generated side // - the type of the top-level expression is the same as the one on the left-hand side. // - the type of any subexpressions must be specified explicitly (or // be specified in the op's type field). // - auxint will be 0 if not specified. // - aux will be nil if not specified. // blocks are specified using the following format: // (kind controlvalue succ0 succ1 ...) // controlvalue must be "nil" or a value expression // succ* fields must be variables // For now, the generated successors must be a permutation of the matched successors. // constant folding (Trunc16to8 (Const16 [c])) -> (Const8 [int64(int8(c))]) (Trunc32to8 (Const32 [c])) -> (Const8 [int64(int8(c))]) (Trunc32to16 (Const32 [c])) -> (Const16 [int64(int16(c))]) (Trunc64to8 (Const64 [c])) -> (Const8 [int64(int8(c))]) (Trunc64to16 (Const64 [c])) -> (Const16 [int64(int16(c))]) (Trunc64to32 (Const64 [c])) -> (Const32 [int64(int32(c))]) (Cvt64Fto32F (Const64F [c])) -> (Const32F [auxFrom32F(float32(auxTo64F(c)))]) (Cvt32Fto64F (Const32F [c])) -> (Const64F [c]) // c is already a 64 bit float (Cvt32to32F (Const32 [c])) -> (Const32F [auxFrom32F(float32(int32(c)))]) (Cvt32to64F (Const32 [c])) -> (Const64F [auxFrom64F(float64(int32(c)))]) (Cvt64to32F (Const64 [c])) -> (Const32F [auxFrom32F(float32(c))]) (Cvt64to64F (Const64 [c])) -> (Const64F [auxFrom64F(float64(c))]) (Cvt32Fto32 (Const32F [c])) -> (Const32 [int64(int32(auxTo32F(c)))]) (Cvt32Fto64 (Const32F [c])) -> (Const64 [int64(auxTo32F(c))]) (Cvt64Fto32 (Const64F [c])) -> (Const32 [int64(int32(auxTo64F(c)))]) (Cvt64Fto64 (Const64F [c])) -> (Const64 [int64(auxTo64F(c))]) (Round32F x:(Const32F)) -> x (Round64F x:(Const64F)) -> x (Trunc16to8 (ZeroExt8to16 x)) -> x (Trunc32to8 (ZeroExt8to32 x)) -> x (Trunc32to16 (ZeroExt8to32 x)) -> (ZeroExt8to16 x) (Trunc32to16 (ZeroExt16to32 x)) -> x (Trunc64to8 (ZeroExt8to64 x)) -> x (Trunc64to16 (ZeroExt8to64 x)) -> (ZeroExt8to16 x) (Trunc64to16 (ZeroExt16to64 x)) -> x (Trunc64to32 (ZeroExt8to64 x)) -> (ZeroExt8to32 x) (Trunc64to32 (ZeroExt16to64 x)) -> (ZeroExt16to32 x) (Trunc64to32 (ZeroExt32to64 x)) -> x (Trunc16to8 (SignExt8to16 x)) -> x (Trunc32to8 (SignExt8to32 x)) -> x (Trunc32to16 (SignExt8to32 x)) -> (SignExt8to16 x) (Trunc32to16 (SignExt16to32 x)) -> x (Trunc64to8 (SignExt8to64 x)) -> x (Trunc64to16 (SignExt8to64 x)) -> (SignExt8to16 x) (Trunc64to16 (SignExt16to64 x)) -> x (Trunc64to32 (SignExt8to64 x)) -> (SignExt8to32 x) (Trunc64to32 (SignExt16to64 x)) -> (SignExt16to32 x) (Trunc64to32 (SignExt32to64 x)) -> x (ZeroExt8to16 (Const8 [c])) -> (Const16 [int64( uint8(c))]) (ZeroExt8to32 (Const8 [c])) -> (Const32 [int64( uint8(c))]) (ZeroExt8to64 (Const8 [c])) -> (Const64 [int64( uint8(c))]) (ZeroExt16to32 (Const16 [c])) -> (Const32 [int64(uint16(c))]) (ZeroExt16to64 (Const16 [c])) -> (Const64 [int64(uint16(c))]) (ZeroExt32to64 (Const32 [c])) -> (Const64 [int64(uint32(c))]) (SignExt8to16 (Const8 [c])) -> (Const16 [int64( int8(c))]) (SignExt8to32 (Const8 [c])) -> (Const32 [int64( int8(c))]) (SignExt8to64 (Const8 [c])) -> (Const64 [int64( int8(c))]) (SignExt16to32 (Const16 [c])) -> (Const32 [int64( int16(c))]) (SignExt16to64 (Const16 [c])) -> (Const64 [int64( int16(c))]) (SignExt32to64 (Const32 [c])) -> (Const64 [int64( int32(c))]) (Neg8 (Const8 [c])) -> (Const8 [int64( -int8(c))]) (Neg16 (Const16 [c])) -> (Const16 [int64(-int16(c))]) (Neg32 (Const32 [c])) -> (Const32 [int64(-int32(c))]) (Neg64 (Const64 [c])) -> (Const64 [-c]) (Neg32F (Const32F [c])) && auxTo32F(c) != 0 -> (Const32F [auxFrom32F(-auxTo32F(c))]) (Neg64F (Const64F [c])) && auxTo64F(c) != 0 -> (Const64F [auxFrom64F(-auxTo64F(c))]) (Add8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c+d))]) (Add16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c+d))]) (Add32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c+d))]) (Add64 (Const64 [c]) (Const64 [d])) -> (Const64 [c+d]) (Add32F (Const32F [c]) (Const32F [d])) -> (Const32F [auxFrom32F(auxTo32F(c) + auxTo32F(d))]) (Add64F (Const64F [c]) (Const64F [d])) -> (Const64F [auxFrom64F(auxTo64F(c) + auxTo64F(d))]) (AddPtr x (Const64 [c])) -> (OffPtr x [c]) (AddPtr x (Const32 [c])) -> (OffPtr x [c]) (Sub8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c-d))]) (Sub16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c-d))]) (Sub32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c-d))]) (Sub64 (Const64 [c]) (Const64 [d])) -> (Const64 [c-d]) (Sub32F (Const32F [c]) (Const32F [d])) -> (Const32F [auxFrom32F(auxTo32F(c) - auxTo32F(d))]) (Sub64F (Const64F [c]) (Const64F [d])) -> (Const64F [auxFrom64F(auxTo64F(c) - auxTo64F(d))]) (Mul8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c*d))]) (Mul16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c*d))]) (Mul32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c*d))]) (Mul64 (Const64 [c]) (Const64 [d])) -> (Const64 [c*d]) (Mul32F (Const32F [c]) (Const32F [d])) -> (Const32F [auxFrom32F(auxTo32F(c) * auxTo32F(d))]) (Mul64F (Const64F [c]) (Const64F [d])) -> (Const64F [auxFrom64F(auxTo64F(c) * auxTo64F(d))]) (And8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c&d))]) (And16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c&d))]) (And32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c&d))]) (And64 (Const64 [c]) (Const64 [d])) -> (Const64 [c&d]) (Or8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c|d))]) (Or16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c|d))]) (Or32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c|d))]) (Or64 (Const64 [c]) (Const64 [d])) -> (Const64 [c|d]) (Xor8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c^d))]) (Xor16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c^d))]) (Xor32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c^d))]) (Xor64 (Const64 [c]) (Const64 [d])) -> (Const64 [c^d]) (Div8 (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(int8(c)/int8(d))]) (Div16 (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(int16(c)/int16(d))]) (Div32 (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(int32(c)/int32(d))]) (Div64 (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [c/d]) (Div8u (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(int8(uint8(c)/uint8(d)))]) (Div16u (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(int16(uint16(c)/uint16(d)))]) (Div32u (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(int32(uint32(c)/uint32(d)))]) (Div64u (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [int64(uint64(c)/uint64(d))]) (Div32F (Const32F [c]) (Const32F [d])) -> (Const32F [auxFrom32F(auxTo32F(c) / auxTo32F(d))]) (Div64F (Const64F [c]) (Const64F [d])) -> (Const64F [auxFrom64F(auxTo64F(c) / auxTo64F(d))]) (Select0 (Div128u (Const64 [0]) lo y)) -> (Div64u lo y) (Select1 (Div128u (Const64 [0]) lo y)) -> (Mod64u lo y) (Not (ConstBool [c])) -> (ConstBool [1-c]) // Convert x * 1 to x. (Mul(8|16|32|64) (Const(8|16|32|64) [1]) x) -> x // Convert x * -1 to -x. (Mul(8|16|32|64) (Const(8|16|32|64) [-1]) x) -> (Neg(8|16|32|64) x) // Convert multiplication by a power of two to a shift. (Mul8 n (Const8 [c])) && isPowerOfTwo(c) -> (Lsh8x64 n (Const64 [log2(c)])) (Mul16 n (Const16 [c])) && isPowerOfTwo(c) -> (Lsh16x64 n (Const64 [log2(c)])) (Mul32 n (Const32 [c])) && isPowerOfTwo(c) -> (Lsh32x64 n (Const64 [log2(c)])) (Mul64 n (Const64 [c])) && isPowerOfTwo(c) -> (Lsh64x64 n (Const64 [log2(c)])) (Mul8 n (Const8 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg8 (Lsh8x64 n (Const64 [log2(-c)]))) (Mul16 n (Const16 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg16 (Lsh16x64 n (Const64 [log2(-c)]))) (Mul32 n (Const32 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg32 (Lsh32x64 n (Const64 [log2(-c)]))) (Mul64 n (Const64 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg64 (Lsh64x64 n (Const64 [log2(-c)]))) (Mod8 (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(int8(c % d))]) (Mod16 (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(int16(c % d))]) (Mod32 (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(int32(c % d))]) (Mod64 (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [c % d]) (Mod8u (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(uint8(c) % uint8(d))]) (Mod16u (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(uint16(c) % uint16(d))]) (Mod32u (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(uint32(c) % uint32(d))]) (Mod64u (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [int64(uint64(c) % uint64(d))]) (Lsh64x64 (Const64 [c]) (Const64 [d])) -> (Const64 [c << uint64(d)]) (Rsh64x64 (Const64 [c]) (Const64 [d])) -> (Const64 [c >> uint64(d)]) (Rsh64Ux64 (Const64 [c]) (Const64 [d])) -> (Const64 [int64(uint64(c) >> uint64(d))]) (Lsh32x64 (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(c) << uint64(d))]) (Rsh32x64 (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(c) >> uint64(d))]) (Rsh32Ux64 (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(uint32(c) >> uint64(d)))]) (Lsh16x64 (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(c) << uint64(d))]) (Rsh16x64 (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(c) >> uint64(d))]) (Rsh16Ux64 (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(uint16(c) >> uint64(d)))]) (Lsh8x64 (Const8 [c]) (Const64 [d])) -> (Const8 [int64(int8(c) << uint64(d))]) (Rsh8x64 (Const8 [c]) (Const64 [d])) -> (Const8 [int64(int8(c) >> uint64(d))]) (Rsh8Ux64 (Const8 [c]) (Const64 [d])) -> (Const8 [int64(int8(uint8(c) >> uint64(d)))]) // Fold IsInBounds when the range of the index cannot exceed the limit. (IsInBounds (ZeroExt8to32 _) (Const32 [c])) && (1 << 8) <= c -> (ConstBool [1]) (IsInBounds (ZeroExt8to64 _) (Const64 [c])) && (1 << 8) <= c -> (ConstBool [1]) (IsInBounds (ZeroExt16to32 _) (Const32 [c])) && (1 << 16) <= c -> (ConstBool [1]) (IsInBounds (ZeroExt16to64 _) (Const64 [c])) && (1 << 16) <= c -> (ConstBool [1]) (IsInBounds x x) -> (ConstBool [0]) (IsInBounds (And8 (Const8 [c]) _) (Const8 [d])) && 0 <= c && c < d -> (ConstBool [1]) (IsInBounds (ZeroExt8to16 (And8 (Const8 [c]) _)) (Const16 [d])) && 0 <= c && c < d -> (ConstBool [1]) (IsInBounds (ZeroExt8to32 (And8 (Const8 [c]) _)) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1]) (IsInBounds (ZeroExt8to64 (And8 (Const8 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) (IsInBounds (And16 (Const16 [c]) _) (Const16 [d])) && 0 <= c && c < d -> (ConstBool [1]) (IsInBounds (ZeroExt16to32 (And16 (Const16 [c]) _)) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1]) (IsInBounds (ZeroExt16to64 (And16 (Const16 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) (IsInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1]) (IsInBounds (ZeroExt32to64 (And32 (Const32 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) (IsInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) (IsInBounds (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(0 <= c && c < d)]) (IsInBounds (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(0 <= c && c < d)]) // (Mod64u x y) is always between 0 (inclusive) and y (exclusive). (IsInBounds (Mod32u _ y) y) -> (ConstBool [1]) (IsInBounds (Mod64u _ y) y) -> (ConstBool [1]) // Right shifting an unsigned number limits its value. (IsInBounds (ZeroExt8to64 (Rsh8Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 8 && 1< (ConstBool [1]) (IsInBounds (ZeroExt8to32 (Rsh8Ux64 _ (Const64 [c]))) (Const32 [d])) && 0 < c && c < 8 && 1< (ConstBool [1]) (IsInBounds (ZeroExt8to16 (Rsh8Ux64 _ (Const64 [c]))) (Const16 [d])) && 0 < c && c < 8 && 1< (ConstBool [1]) (IsInBounds (Rsh8Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 8 && 1< (ConstBool [1]) (IsInBounds (ZeroExt16to64 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1< (ConstBool [1]) (IsInBounds (ZeroExt16to32 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1< (ConstBool [1]) (IsInBounds (Rsh16Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 16 && 1< (ConstBool [1]) (IsInBounds (ZeroExt32to64 (Rsh32Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 32 && 1< (ConstBool [1]) (IsInBounds (Rsh32Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 32 && 1< (ConstBool [1]) (IsInBounds (Rsh64Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 64 && 1< (ConstBool [1]) (IsSliceInBounds x x) -> (ConstBool [1]) (IsSliceInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c <= d -> (ConstBool [1]) (IsSliceInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c <= d -> (ConstBool [1]) (IsSliceInBounds (Const32 [0]) _) -> (ConstBool [1]) (IsSliceInBounds (Const64 [0]) _) -> (ConstBool [1]) (IsSliceInBounds (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(0 <= c && c <= d)]) (IsSliceInBounds (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(0 <= c && c <= d)]) (IsSliceInBounds (SliceLen x) (SliceCap x)) -> (ConstBool [1]) (Eq(64|32|16|8) x x) -> (ConstBool [1]) (EqB (ConstBool [c]) (ConstBool [d])) -> (ConstBool [b2i(c == d)]) (EqB (ConstBool [0]) x) -> (Not x) (EqB (ConstBool [1]) x) -> x (Neq(64|32|16|8) x x) -> (ConstBool [0]) (NeqB (ConstBool [c]) (ConstBool [d])) -> (ConstBool [b2i(c != d)]) (NeqB (ConstBool [0]) x) -> x (NeqB (ConstBool [1]) x) -> (Not x) (NeqB (Not x) (Not y)) -> (NeqB x y) (Eq64 (Const64 [c]) (Add64 (Const64 [d]) x)) -> (Eq64 (Const64 [c-d]) x) (Eq32 (Const32 [c]) (Add32 (Const32 [d]) x)) -> (Eq32 (Const32 [int64(int32(c-d))]) x) (Eq16 (Const16 [c]) (Add16 (Const16 [d]) x)) -> (Eq16 (Const16 [int64(int16(c-d))]) x) (Eq8 (Const8 [c]) (Add8 (Const8 [d]) x)) -> (Eq8 (Const8 [int64(int8(c-d))]) x) (Neq64 (Const64 [c]) (Add64 (Const64 [d]) x)) -> (Neq64 (Const64 [c-d]) x) (Neq32 (Const32 [c]) (Add32 (Const32 [d]) x)) -> (Neq32 (Const32 [int64(int32(c-d))]) x) (Neq16 (Const16 [c]) (Add16 (Const16 [d]) x)) -> (Neq16 (Const16 [int64(int16(c-d))]) x) (Neq8 (Const8 [c]) (Add8 (Const8 [d]) x)) -> (Neq8 (Const8 [int64(int8(c-d))]) x) // Canonicalize x-const to x+(-const) (Sub64 x (Const64 [c])) && x.Op != OpConst64 -> (Add64 (Const64 [-c]) x) (Sub32 x (Const32 [c])) && x.Op != OpConst32 -> (Add32 (Const32 [int64(int32(-c))]) x) (Sub16 x (Const16 [c])) && x.Op != OpConst16 -> (Add16 (Const16 [int64(int16(-c))]) x) (Sub8 x (Const8 [c])) && x.Op != OpConst8 -> (Add8 (Const8 [int64(int8(-c))]) x) // fold negation into comparison operators (Not (Eq(64|32|16|8|B|Ptr|64F|32F) x y)) -> (Neq(64|32|16|8|B|Ptr|64F|32F) x y) (Not (Neq(64|32|16|8|B|Ptr|64F|32F) x y)) -> (Eq(64|32|16|8|B|Ptr|64F|32F) x y) (Not (Greater(64|32|16|8) x y)) -> (Leq(64|32|16|8) x y) (Not (Greater(64|32|16|8)U x y)) -> (Leq(64|32|16|8)U x y) (Not (Geq(64|32|16|8) x y)) -> (Less(64|32|16|8) x y) (Not (Geq(64|32|16|8)U x y)) -> (Less(64|32|16|8)U x y) (Not (Less(64|32|16|8) x y)) -> (Geq(64|32|16|8) x y) (Not (Less(64|32|16|8)U x y)) -> (Geq(64|32|16|8)U x y) (Not (Leq(64|32|16|8) x y)) -> (Greater(64|32|16|8) x y) (Not (Leq(64|32|16|8)U x y)) -> (Greater(64|32|16|8)U x y) // Distribute multiplication c * (d+x) -> c*d + c*x. Useful for: // a[i].b = ...; a[i+1].b = ... (Mul64 (Const64 [c]) (Add64 (Const64 [d]) x)) -> (Add64 (Const64 [c*d]) (Mul64 (Const64 [c]) x)) (Mul32 (Const32 [c]) (Add32 (Const32 [d]) x)) -> (Add32 (Const32 [int64(int32(c*d))]) (Mul32 (Const32 [c]) x)) // Rewrite x*y ± x*z to x*(y±z) (Add(64|32|16|8) (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z)) -> (Mul(64|32|16|8) x (Add(64|32|16|8) y z)) (Sub(64|32|16|8) (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z)) -> (Mul(64|32|16|8) x (Sub(64|32|16|8) y z)) // rewrite shifts of 8/16/32 bit consts into 64 bit consts to reduce // the number of the other rewrite rules for const shifts (Lsh64x32 x (Const32 [c])) -> (Lsh64x64 x (Const64 [int64(uint32(c))])) (Lsh64x16 x (Const16 [c])) -> (Lsh64x64 x (Const64 [int64(uint16(c))])) (Lsh64x8 x (Const8 [c])) -> (Lsh64x64 x (Const64 [int64(uint8(c))])) (Rsh64x32 x (Const32 [c])) -> (Rsh64x64 x (Const64 [int64(uint32(c))])) (Rsh64x16 x (Const16 [c])) -> (Rsh64x64 x (Const64 [int64(uint16(c))])) (Rsh64x8 x (Const8 [c])) -> (Rsh64x64 x (Const64 [int64(uint8(c))])) (Rsh64Ux32 x (Const32 [c])) -> (Rsh64Ux64 x (Const64 [int64(uint32(c))])) (Rsh64Ux16 x (Const16 [c])) -> (Rsh64Ux64 x (Const64 [int64(uint16(c))])) (Rsh64Ux8 x (Const8 [c])) -> (Rsh64Ux64 x (Const64 [int64(uint8(c))])) (Lsh32x32 x (Const32 [c])) -> (Lsh32x64 x (Const64 [int64(uint32(c))])) (Lsh32x16 x (Const16 [c])) -> (Lsh32x64 x (Const64 [int64(uint16(c))])) (Lsh32x8 x (Const8 [c])) -> (Lsh32x64 x (Const64 [int64(uint8(c))])) (Rsh32x32 x (Const32 [c])) -> (Rsh32x64 x (Const64 [int64(uint32(c))])) (Rsh32x16 x (Const16 [c])) -> (Rsh32x64 x (Const64 [int64(uint16(c))])) (Rsh32x8 x (Const8 [c])) -> (Rsh32x64 x (Const64 [int64(uint8(c))])) (Rsh32Ux32 x (Const32 [c])) -> (Rsh32Ux64 x (Const64 [int64(uint32(c))])) (Rsh32Ux16 x (Const16 [c])) -> (Rsh32Ux64 x (Const64 [int64(uint16(c))])) (Rsh32Ux8 x (Const8 [c])) -> (Rsh32Ux64 x (Const64 [int64(uint8(c))])) (Lsh16x32 x (Const32 [c])) -> (Lsh16x64 x (Const64 [int64(uint32(c))])) (Lsh16x16 x (Const16 [c])) -> (Lsh16x64 x (Const64 [int64(uint16(c))])) (Lsh16x8 x (Const8 [c])) -> (Lsh16x64 x (Const64 [int64(uint8(c))])) (Rsh16x32 x (Const32 [c])) -> (Rsh16x64 x (Const64 [int64(uint32(c))])) (Rsh16x16 x (Const16 [c])) -> (Rsh16x64 x (Const64 [int64(uint16(c))])) (Rsh16x8 x (Const8 [c])) -> (Rsh16x64 x (Const64 [int64(uint8(c))])) (Rsh16Ux32 x (Const32 [c])) -> (Rsh16Ux64 x (Const64 [int64(uint32(c))])) (Rsh16Ux16 x (Const16 [c])) -> (Rsh16Ux64 x (Const64 [int64(uint16(c))])) (Rsh16Ux8 x (Const8 [c])) -> (Rsh16Ux64 x (Const64 [int64(uint8(c))])) (Lsh8x32 x (Const32 [c])) -> (Lsh8x64 x (Const64 [int64(uint32(c))])) (Lsh8x16 x (Const16 [c])) -> (Lsh8x64 x (Const64 [int64(uint16(c))])) (Lsh8x8 x (Const8 [c])) -> (Lsh8x64 x (Const64 [int64(uint8(c))])) (Rsh8x32 x (Const32 [c])) -> (Rsh8x64 x (Const64 [int64(uint32(c))])) (Rsh8x16 x (Const16 [c])) -> (Rsh8x64 x (Const64 [int64(uint16(c))])) (Rsh8x8 x (Const8 [c])) -> (Rsh8x64 x (Const64 [int64(uint8(c))])) (Rsh8Ux32 x (Const32 [c])) -> (Rsh8Ux64 x (Const64 [int64(uint32(c))])) (Rsh8Ux16 x (Const16 [c])) -> (Rsh8Ux64 x (Const64 [int64(uint16(c))])) (Rsh8Ux8 x (Const8 [c])) -> (Rsh8Ux64 x (Const64 [int64(uint8(c))])) // shifts by zero (Lsh(64|32|16|8)x64 x (Const64 [0])) -> x (Rsh(64|32|16|8)x64 x (Const64 [0])) -> x (Rsh(64|32|16|8)Ux64 x (Const64 [0])) -> x // rotates by multiples of register width (RotateLeft64 x (Const64 [c])) && c%64 == 0 -> x (RotateLeft32 x (Const32 [c])) && c%32 == 0 -> x (RotateLeft16 x (Const16 [c])) && c%16 == 0 -> x (RotateLeft8 x (Const8 [c])) && c%8 == 0 -> x // zero shifted (Lsh64x(64|32|16|8) (Const64 [0]) _) -> (Const64 [0]) (Rsh64x(64|32|16|8) (Const64 [0]) _) -> (Const64 [0]) (Rsh64Ux(64|32|16|8) (Const64 [0]) _) -> (Const64 [0]) (Lsh32x(64|32|16|8) (Const32 [0]) _) -> (Const32 [0]) (Rsh32x(64|32|16|8) (Const32 [0]) _) -> (Const32 [0]) (Rsh32Ux(64|32|16|8) (Const32 [0]) _) -> (Const32 [0]) (Lsh16x(64|32|16|8) (Const16 [0]) _) -> (Const16 [0]) (Rsh16x(64|32|16|8) (Const16 [0]) _) -> (Const16 [0]) (Rsh16Ux(64|32|16|8) (Const16 [0]) _) -> (Const16 [0]) (Lsh8x(64|32|16|8) (Const8 [0]) _) -> (Const8 [0]) (Rsh8x(64|32|16|8) (Const8 [0]) _) -> (Const8 [0]) (Rsh8Ux(64|32|16|8) (Const8 [0]) _) -> (Const8 [0]) // large left shifts of all values, and right shifts of unsigned values ((Lsh64|Rsh64U)x64 _ (Const64 [c])) && uint64(c) >= 64 -> (Const64 [0]) ((Lsh32|Rsh32U)x64 _ (Const64 [c])) && uint64(c) >= 32 -> (Const32 [0]) ((Lsh16|Rsh16U)x64 _ (Const64 [c])) && uint64(c) >= 16 -> (Const16 [0]) ((Lsh8|Rsh8U)x64 _ (Const64 [c])) && uint64(c) >= 8 -> (Const8 [0]) // combine const shifts (Lsh64x64 (Lsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh64x64 x (Const64 [c+d])) (Lsh32x64 (Lsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh32x64 x (Const64 [c+d])) (Lsh16x64 (Lsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh16x64 x (Const64 [c+d])) (Lsh8x64 (Lsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh8x64 x (Const64 [c+d])) (Rsh64x64 (Rsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh64x64 x (Const64 [c+d])) (Rsh32x64 (Rsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh32x64 x (Const64 [c+d])) (Rsh16x64 (Rsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh16x64 x (Const64 [c+d])) (Rsh8x64 (Rsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh8x64 x (Const64 [c+d])) (Rsh64Ux64 (Rsh64Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh64Ux64 x (Const64 [c+d])) (Rsh32Ux64 (Rsh32Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh32Ux64 x (Const64 [c+d])) (Rsh16Ux64 (Rsh16Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh16Ux64 x (Const64 [c+d])) (Rsh8Ux64 (Rsh8Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh8Ux64 x (Const64 [c+d])) // Remove signed right shift before an unsigned right shift that extracts the sign bit. (Rsh8Ux64 (Rsh8x64 x _) (Const64 [7] )) -> (Rsh8Ux64 x (Const64 [7] )) (Rsh16Ux64 (Rsh16x64 x _) (Const64 [15])) -> (Rsh16Ux64 x (Const64 [15])) (Rsh32Ux64 (Rsh32x64 x _) (Const64 [31])) -> (Rsh32Ux64 x (Const64 [31])) (Rsh64Ux64 (Rsh64x64 x _) (Const64 [63])) -> (Rsh64Ux64 x (Const64 [63])) // ((x >> c1) << c2) >> c3 (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) -> (Rsh(64|32|16|8)Ux64 x (Const64 [c1-c2+c3])) // ((x << c1) >> c2) << c3 (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) -> (Lsh(64|32|16|8)x64 x (Const64 [c1-c2+c3])) // (x >> c) & uppermask = 0 (And64 (Const64 [m]) (Rsh64Ux64 _ (Const64 [c]))) && c >= 64-ntz(m) -> (Const64 [0]) (And32 (Const32 [m]) (Rsh32Ux64 _ (Const64 [c]))) && c >= 64-ntz(m) -> (Const32 [0]) (And16 (Const16 [m]) (Rsh16Ux64 _ (Const64 [c]))) && c >= 64-ntz(m) -> (Const16 [0]) (And8 (Const8 [m]) (Rsh8Ux64 _ (Const64 [c]))) && c >= 64-ntz(m) -> (Const8 [0]) // (x << c) & lowermask = 0 (And64 (Const64 [m]) (Lsh64x64 _ (Const64 [c]))) && c >= 64-nlz(m) -> (Const64 [0]) (And32 (Const32 [m]) (Lsh32x64 _ (Const64 [c]))) && c >= 64-nlz(m) -> (Const32 [0]) (And16 (Const16 [m]) (Lsh16x64 _ (Const64 [c]))) && c >= 64-nlz(m) -> (Const16 [0]) (And8 (Const8 [m]) (Lsh8x64 _ (Const64 [c]))) && c >= 64-nlz(m) -> (Const8 [0]) // replace shifts with zero extensions (Rsh16Ux64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) -> (ZeroExt8to16 (Trunc16to8 x)) (Rsh32Ux64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) -> (ZeroExt8to32 (Trunc32to8 x)) (Rsh64Ux64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) -> (ZeroExt8to64 (Trunc64to8 x)) (Rsh32Ux64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) -> (ZeroExt16to32 (Trunc32to16 x)) (Rsh64Ux64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) -> (ZeroExt16to64 (Trunc64to16 x)) (Rsh64Ux64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) -> (ZeroExt32to64 (Trunc64to32 x)) // replace shifts with sign extensions (Rsh16x64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) -> (SignExt8to16 (Trunc16to8 x)) (Rsh32x64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) -> (SignExt8to32 (Trunc32to8 x)) (Rsh64x64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) -> (SignExt8to64 (Trunc64to8 x)) (Rsh32x64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) -> (SignExt16to32 (Trunc32to16 x)) (Rsh64x64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) -> (SignExt16to64 (Trunc64to16 x)) (Rsh64x64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) -> (SignExt32to64 (Trunc64to32 x)) // constant comparisons (Eq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) -> (ConstBool [b2i(c == d)]) (Neq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) -> (ConstBool [b2i(c != d)]) (Greater(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) -> (ConstBool [b2i(c > d)]) (Geq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) -> (ConstBool [b2i(c >= d)]) (Less(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) -> (ConstBool [b2i(c < d)]) (Leq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) -> (ConstBool [b2i(c <= d)]) (Geq8 (And8 _ (Const8 [c])) (Const8 [0])) && int8(c) >= 0 -> (ConstBool [1]) (Geq16 (And16 _ (Const16 [c])) (Const16 [0])) && int16(c) >= 0 -> (ConstBool [1]) (Geq32 (And32 _ (Const32 [c])) (Const32 [0])) && int32(c) >= 0 -> (ConstBool [1]) (Geq64 (And64 _ (Const64 [c])) (Const64 [0])) && int64(c) >= 0 -> (ConstBool [1]) (Geq64 (Rsh64Ux64 _ (Const64 [c])) (Const64 [0])) && c > 0 -> (ConstBool [1]) (Greater64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) > uint64(d))]) (Greater32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) > uint32(d))]) (Greater16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) > uint16(d))]) (Greater8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) > uint8(d))]) (Geq64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) >= uint64(d))]) (Geq32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) >= uint32(d))]) (Geq16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) >= uint16(d))]) (Geq8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) >= uint8(d))]) (Less64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) < uint64(d))]) (Less32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) < uint32(d))]) (Less16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) < uint16(d))]) (Less8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) < uint8(d))]) (Leq64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) <= uint64(d))]) (Leq32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) <= uint32(d))]) (Leq16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) <= uint16(d))]) (Leq8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) <= uint8(d))]) // constant floating point comparisons (Eq32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(auxTo32F(c) == auxTo32F(d))]) (Eq64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(auxTo64F(c) == auxTo64F(d))]) (Neq32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(auxTo32F(c) != auxTo32F(d))]) (Neq64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(auxTo64F(c) != auxTo64F(d))]) (Greater32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(auxTo32F(c) > auxTo32F(d))]) (Greater64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(auxTo64F(c) > auxTo64F(d))]) (Geq32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(auxTo32F(c) >= auxTo32F(d))]) (Geq64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(auxTo64F(c) >= auxTo64F(d))]) (Less32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(auxTo32F(c) < auxTo32F(d))]) (Less64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(auxTo64F(c) < auxTo64F(d))]) (Leq32F (Const32F [c]) (Const32F [d])) -> (ConstBool [b2i(auxTo32F(c) <= auxTo32F(d))]) (Leq64F (Const64F [c]) (Const64F [d])) -> (ConstBool [b2i(auxTo64F(c) <= auxTo64F(d))]) // simplifications (Or(64|32|16|8) x x) -> x (Or(64|32|16|8) (Const(64|32|16|8) [0]) x) -> x (Or(64|32|16|8) (Const(64|32|16|8) [-1]) _) -> (Const(64|32|16|8) [-1]) (And(64|32|16|8) x x) -> x (And(64|32|16|8) (Const(64|32|16|8) [-1]) x) -> x (And(64|32|16|8) (Const(64|32|16|8) [0]) _) -> (Const(64|32|16|8) [0]) (Xor(64|32|16|8) x x) -> (Const(64|32|16|8) [0]) (Xor(64|32|16|8) (Const(64|32|16|8) [0]) x) -> x (Add(64|32|16|8) (Const(64|32|16|8) [0]) x) -> x (Sub(64|32|16|8) x x) -> (Const(64|32|16|8) [0]) (Mul(64|32|16|8) (Const(64|32|16|8) [0]) _) -> (Const(64|32|16|8) [0]) (Com(64|32|16|8) (Com(64|32|16|8) x)) -> x (Com(64|32|16|8) (Const(64|32|16|8) [c])) -> (Const(64|32|16|8) [^c]) (Neg(64|32|16|8) (Sub(64|32|16|8) x y)) -> (Sub(64|32|16|8) y x) // ^(x-1) == ^x+1 == -x (Add(64|32|16|8) (Const(64|32|16|8) [1]) (Com(64|32|16|8) x)) -> (Neg(64|32|16|8) x) (Com(64|32|16|8) (Add(64|32|16|8) (Const(64|32|16|8) [-1]) x)) -> (Neg(64|32|16|8) x) // -(-x) == x (Neg(64|32|16|8) (Neg(64|32|16|8) x)) -> x // -^x == x+1 (Neg(64|32|16|8) (Com(64|32|16|8) x)) -> (Add(64|32|16|8) (Const(64|32|16|8) [1]) x) (And(64|32|16|8) x (And(64|32|16|8) x y)) -> (And(64|32|16|8) x y) (Or(64|32|16|8) x (Or(64|32|16|8) x y)) -> (Or(64|32|16|8) x y) (Xor(64|32|16|8) x (Xor(64|32|16|8) x y)) -> y // Ands clear bits. Ors set bits. // If a subsequent Or will set all the bits // that an And cleared, we can skip the And. // This happens in bitmasking code like: // x &^= 3 << shift // clear two old bits // x |= v << shift // set two new bits // when shift is a small constant and v ends up a constant 3. (Or8 (And8 x (Const8 [c2])) (Const8 [c1])) && ^(c1 | c2) == 0 -> (Or8 (Const8 [c1]) x) (Or16 (And16 x (Const16 [c2])) (Const16 [c1])) && ^(c1 | c2) == 0 -> (Or16 (Const16 [c1]) x) (Or32 (And32 x (Const32 [c2])) (Const32 [c1])) && ^(c1 | c2) == 0 -> (Or32 (Const32 [c1]) x) (Or64 (And64 x (Const64 [c2])) (Const64 [c1])) && ^(c1 | c2) == 0 -> (Or64 (Const64 [c1]) x) (Trunc64to8 (And64 (Const64 [y]) x)) && y&0xFF == 0xFF -> (Trunc64to8 x) (Trunc64to16 (And64 (Const64 [y]) x)) && y&0xFFFF == 0xFFFF -> (Trunc64to16 x) (Trunc64to32 (And64 (Const64 [y]) x)) && y&0xFFFFFFFF == 0xFFFFFFFF -> (Trunc64to32 x) (Trunc32to8 (And32 (Const32 [y]) x)) && y&0xFF == 0xFF -> (Trunc32to8 x) (Trunc32to16 (And32 (Const32 [y]) x)) && y&0xFFFF == 0xFFFF -> (Trunc32to16 x) (Trunc16to8 (And16 (Const16 [y]) x)) && y&0xFF == 0xFF -> (Trunc16to8 x) (ZeroExt8to64 (Trunc64to8 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 56 -> x (ZeroExt16to64 (Trunc64to16 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 48 -> x (ZeroExt32to64 (Trunc64to32 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 32 -> x (ZeroExt8to32 (Trunc32to8 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 24 -> x (ZeroExt16to32 (Trunc32to16 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 16 -> x (ZeroExt8to16 (Trunc16to8 x:(Rsh16Ux64 _ (Const64 [s])))) && s >= 8 -> x (SignExt8to64 (Trunc64to8 x:(Rsh64x64 _ (Const64 [s])))) && s >= 56 -> x (SignExt16to64 (Trunc64to16 x:(Rsh64x64 _ (Const64 [s])))) && s >= 48 -> x (SignExt32to64 (Trunc64to32 x:(Rsh64x64 _ (Const64 [s])))) && s >= 32 -> x (SignExt8to32 (Trunc32to8 x:(Rsh32x64 _ (Const64 [s])))) && s >= 24 -> x (SignExt16to32 (Trunc32to16 x:(Rsh32x64 _ (Const64 [s])))) && s >= 16 -> x (SignExt8to16 (Trunc16to8 x:(Rsh16x64 _ (Const64 [s])))) && s >= 8 -> x (Slicemask (Const32 [x])) && x > 0 -> (Const32 [-1]) (Slicemask (Const32 [0])) -> (Const32 [0]) (Slicemask (Const64 [x])) && x > 0 -> (Const64 [-1]) (Slicemask (Const64 [0])) -> (Const64 [0]) // simplifications often used for lengths. e.g. len(s[i:i+5])==5 (Sub(64|32|16|8) (Add(64|32|16|8) x y) x) -> y (Sub(64|32|16|8) (Add(64|32|16|8) x y) y) -> x // basic phi simplifications (Phi (Const8 [c]) (Const8 [c])) -> (Const8 [c]) (Phi (Const16 [c]) (Const16 [c])) -> (Const16 [c]) (Phi (Const32 [c]) (Const32 [c])) -> (Const32 [c]) (Phi (Const64 [c]) (Const64 [c])) -> (Const64 [c]) // slice and interface comparisons // The frontend ensures that we can only compare against nil, // so we need only compare the first word (interface type or slice ptr). (EqInter x y) -> (EqPtr (ITab x) (ITab y)) (NeqInter x y) -> (NeqPtr (ITab x) (ITab y)) (EqSlice x y) -> (EqPtr (SlicePtr x) (SlicePtr y)) (NeqSlice x y) -> (NeqPtr (SlicePtr x) (SlicePtr y)) // Load of store of same address, with compatibly typed value and same size (Load p1 (Store {t2} p2 x _)) && isSamePtr(p1, p2) && t1.Compare(x.Type) == types.CMPeq && t1.Size() == sizeof(t2) -> x (Load p1 (Store {t2} p2 _ (Store {t3} p3 x _))) && isSamePtr(p1, p3) && t1.Compare(x.Type) == types.CMPeq && t1.Size() == sizeof(t2) && disjoint(p3, sizeof(t3), p2, sizeof(t2)) -> x (Load p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 x _)))) && isSamePtr(p1, p4) && t1.Compare(x.Type) == types.CMPeq && t1.Size() == sizeof(t2) && disjoint(p4, sizeof(t4), p2, sizeof(t2)) && disjoint(p4, sizeof(t4), p3, sizeof(t3)) -> x (Load p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 x _))))) && isSamePtr(p1, p5) && t1.Compare(x.Type) == types.CMPeq && t1.Size() == sizeof(t2) && disjoint(p5, sizeof(t5), p2, sizeof(t2)) && disjoint(p5, sizeof(t5), p3, sizeof(t3)) && disjoint(p5, sizeof(t5), p4, sizeof(t4)) -> x // Pass constants through math.Float{32,64}bits and math.Float{32,64}frombits (Load p1 (Store {t2} p2 (Const64 [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 8 && is64BitFloat(t1) -> (Const64F [x]) (Load p1 (Store {t2} p2 (Const32 [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 4 && is32BitFloat(t1) -> (Const32F [auxFrom32F(math.Float32frombits(uint32(x)))]) (Load p1 (Store {t2} p2 (Const64F [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 8 && is64BitInt(t1) -> (Const64 [x]) (Load p1 (Store {t2} p2 (Const32F [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 4 && is32BitInt(t1) -> (Const32 [int64(int32(math.Float32bits(auxTo32F(x))))]) // Float Loads up to Zeros so they can be constant folded. (Load op:(OffPtr [o1] p1) (Store {t2} p2 _ mem:(Zero [n] p3 _))) && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p3) && fe.CanSSA(t1) && disjoint(op, t1.Size(), p2, sizeof(t2)) -> @mem.Block (Load (OffPtr [o1] p3) mem) (Load op:(OffPtr [o1] p1) (Store {t2} p2 _ (Store {t3} p3 _ mem:(Zero [n] p4 _)))) && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p4) && fe.CanSSA(t1) && disjoint(op, t1.Size(), p2, sizeof(t2)) && disjoint(op, t1.Size(), p3, sizeof(t3)) -> @mem.Block (Load (OffPtr [o1] p4) mem) (Load op:(OffPtr [o1] p1) (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ mem:(Zero [n] p5 _))))) && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p5) && fe.CanSSA(t1) && disjoint(op, t1.Size(), p2, sizeof(t2)) && disjoint(op, t1.Size(), p3, sizeof(t3)) && disjoint(op, t1.Size(), p4, sizeof(t4)) -> @mem.Block (Load (OffPtr [o1] p5) mem) (Load op:(OffPtr [o1] p1) (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 _ mem:(Zero [n] p6 _)))))) && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p6) && fe.CanSSA(t1) && disjoint(op, t1.Size(), p2, sizeof(t2)) && disjoint(op, t1.Size(), p3, sizeof(t3)) && disjoint(op, t1.Size(), p4, sizeof(t4)) && disjoint(op, t1.Size(), p5, sizeof(t5)) -> @mem.Block (Load (OffPtr [o1] p6) mem) // Zero to Load forwarding. (Load (OffPtr [o] p1) (Zero [n] p2 _)) && t1.IsBoolean() && isSamePtr(p1, p2) && n >= o + 1 -> (ConstBool [0]) (Load (OffPtr [o] p1) (Zero [n] p2 _)) && is8BitInt(t1) && isSamePtr(p1, p2) && n >= o + 1 -> (Const8 [0]) (Load (OffPtr [o] p1) (Zero [n] p2 _)) && is16BitInt(t1) && isSamePtr(p1, p2) && n >= o + 2 -> (Const16 [0]) (Load (OffPtr [o] p1) (Zero [n] p2 _)) && is32BitInt(t1) && isSamePtr(p1, p2) && n >= o + 4 -> (Const32 [0]) (Load (OffPtr [o] p1) (Zero [n] p2 _)) && is64BitInt(t1) && isSamePtr(p1, p2) && n >= o + 8 -> (Const64 [0]) (Load (OffPtr [o] p1) (Zero [n] p2 _)) && is32BitFloat(t1) && isSamePtr(p1, p2) && n >= o + 4 -> (Const32F [0]) (Load (OffPtr [o] p1) (Zero [n] p2 _)) && is64BitFloat(t1) && isSamePtr(p1, p2) && n >= o + 8 -> (Const64F [0]) // Eliminate stores of values that have just been loaded from the same location. // We also handle the common case where there are some intermediate stores. (Store {t1} p1 (Load p2 mem) mem) && isSamePtr(p1, p2) && t2.Size() == sizeof(t1) -> mem (Store {t1} p1 (Load p2 oldmem) mem:(Store {t3} p3 _ oldmem)) && isSamePtr(p1, p2) && t2.Size() == sizeof(t1) && disjoint(p1, sizeof(t1), p3, sizeof(t3)) -> mem (Store {t1} p1 (Load p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ oldmem))) && isSamePtr(p1, p2) && t2.Size() == sizeof(t1) && disjoint(p1, sizeof(t1), p3, sizeof(t3)) && disjoint(p1, sizeof(t1), p4, sizeof(t4)) -> mem (Store {t1} p1 (Load p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 _ oldmem)))) && isSamePtr(p1, p2) && t2.Size() == sizeof(t1) && disjoint(p1, sizeof(t1), p3, sizeof(t3)) && disjoint(p1, sizeof(t1), p4, sizeof(t4)) && disjoint(p1, sizeof(t1), p5, sizeof(t5)) -> mem // Don't Store zeros to cleared variables. (Store {t} (OffPtr [o] p1) x mem:(Zero [n] p2 _)) && isConstZero(x) && o >= 0 && sizeof(t) + o <= n && isSamePtr(p1, p2) -> mem (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Zero [n] p3 _))) && isConstZero(x) && o1 >= 0 && sizeof(t1) + o1 <= n && isSamePtr(p1, p3) && disjoint(op, sizeof(t1), p2, sizeof(t2)) -> mem (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Zero [n] p4 _)))) && isConstZero(x) && o1 >= 0 && sizeof(t1) + o1 <= n && isSamePtr(p1, p4) && disjoint(op, sizeof(t1), p2, sizeof(t2)) && disjoint(op, sizeof(t1), p3, sizeof(t3)) -> mem (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Zero [n] p5 _))))) && isConstZero(x) && o1 >= 0 && sizeof(t1) + o1 <= n && isSamePtr(p1, p5) && disjoint(op, sizeof(t1), p2, sizeof(t2)) && disjoint(op, sizeof(t1), p3, sizeof(t3)) && disjoint(op, sizeof(t1), p4, sizeof(t4)) -> mem // Collapse OffPtr (OffPtr (OffPtr p [b]) [a]) -> (OffPtr p [a+b]) (OffPtr p [0]) && v.Type.Compare(p.Type) == types.CMPeq -> p // indexing operations // Note: bounds check has already been done (PtrIndex ptr idx) && config.PtrSize == 4 -> (AddPtr ptr (Mul32 idx (Const32 [t.Elem().Size()]))) (PtrIndex ptr idx) && config.PtrSize == 8 -> (AddPtr ptr (Mul64 idx (Const64 [t.Elem().Size()]))) // struct operations (StructSelect (StructMake1 x)) -> x (StructSelect [0] (StructMake2 x _)) -> x (StructSelect [1] (StructMake2 _ x)) -> x (StructSelect [0] (StructMake3 x _ _)) -> x (StructSelect [1] (StructMake3 _ x _)) -> x (StructSelect [2] (StructMake3 _ _ x)) -> x (StructSelect [0] (StructMake4 x _ _ _)) -> x (StructSelect [1] (StructMake4 _ x _ _)) -> x (StructSelect [2] (StructMake4 _ _ x _)) -> x (StructSelect [3] (StructMake4 _ _ _ x)) -> x (Load _ _) && t.IsStruct() && t.NumFields() == 0 && fe.CanSSA(t) -> (StructMake0) (Load ptr mem) && t.IsStruct() && t.NumFields() == 1 && fe.CanSSA(t) -> (StructMake1 (Load (OffPtr [0] ptr) mem)) (Load ptr mem) && t.IsStruct() && t.NumFields() == 2 && fe.CanSSA(t) -> (StructMake2 (Load (OffPtr [0] ptr) mem) (Load (OffPtr [t.FieldOff(1)] ptr) mem)) (Load ptr mem) && t.IsStruct() && t.NumFields() == 3 && fe.CanSSA(t) -> (StructMake3 (Load (OffPtr [0] ptr) mem) (Load (OffPtr [t.FieldOff(1)] ptr) mem) (Load (OffPtr [t.FieldOff(2)] ptr) mem)) (Load ptr mem) && t.IsStruct() && t.NumFields() == 4 && fe.CanSSA(t) -> (StructMake4 (Load (OffPtr [0] ptr) mem) (Load (OffPtr [t.FieldOff(1)] ptr) mem) (Load (OffPtr [t.FieldOff(2)] ptr) mem) (Load (OffPtr [t.FieldOff(3)] ptr) mem)) (StructSelect [i] x:(Load ptr mem)) && !fe.CanSSA(t) -> @x.Block (Load (OffPtr [t.FieldOff(int(i))] ptr) mem) (Store _ (StructMake0) mem) -> mem (Store dst (StructMake1 f0) mem) -> (Store {t.FieldType(0)} (OffPtr [0] dst) f0 mem) (Store dst (StructMake2 f0 f1) mem) -> (Store {t.FieldType(1)} (OffPtr [t.FieldOff(1)] dst) f1 (Store {t.FieldType(0)} (OffPtr [0] dst) f0 mem)) (Store dst (StructMake3 f0 f1 f2) mem) -> (Store {t.FieldType(2)} (OffPtr [t.FieldOff(2)] dst) f2 (Store {t.FieldType(1)} (OffPtr [t.FieldOff(1)] dst) f1 (Store {t.FieldType(0)} (OffPtr [0] dst) f0 mem))) (Store dst (StructMake4 f0 f1 f2 f3) mem) -> (Store {t.FieldType(3)} (OffPtr [t.FieldOff(3)] dst) f3 (Store {t.FieldType(2)} (OffPtr [t.FieldOff(2)] dst) f2 (Store {t.FieldType(1)} (OffPtr [t.FieldOff(1)] dst) f1 (Store {t.FieldType(0)} (OffPtr [0] dst) f0 mem)))) // Putting struct{*byte} and similar into direct interfaces. (IMake typ (StructMake1 val)) -> (IMake typ val) (StructSelect [0] (IData x)) -> (IData x) // un-SSAable values use mem->mem copies (Store {t} dst (Load src mem) mem) && !fe.CanSSA(t.(*types.Type)) -> (Move {t} [sizeof(t)] dst src mem) (Store {t} dst (Load src mem) (VarDef {x} mem)) && !fe.CanSSA(t.(*types.Type)) -> (Move {t} [sizeof(t)] dst src (VarDef {x} mem)) // array ops (ArraySelect (ArrayMake1 x)) -> x (Load _ _) && t.IsArray() && t.NumElem() == 0 -> (ArrayMake0) (Load ptr mem) && t.IsArray() && t.NumElem() == 1 && fe.CanSSA(t) -> (ArrayMake1 (Load ptr mem)) (Store _ (ArrayMake0) mem) -> mem (Store dst (ArrayMake1 e) mem) -> (Store {e.Type} dst e mem) // Putting [1]*byte and similar into direct interfaces. (IMake typ (ArrayMake1 val)) -> (IMake typ val) (ArraySelect [0] (IData x)) -> (IData x) // string ops // Decomposing StringMake and lowering of StringPtr and StringLen // happens in a later pass, dec, so that these operations are available // to other passes for optimizations. (StringPtr (StringMake (Addr {s} base) _)) -> (Addr {s} base) (StringLen (StringMake _ (Const64 [c]))) -> (Const64 [c]) (ConstString {s}) && config.PtrSize == 4 && s.(string) == "" -> (StringMake (ConstNil) (Const32 [0])) (ConstString {s}) && config.PtrSize == 8 && s.(string) == "" -> (StringMake (ConstNil) (Const64 [0])) (ConstString {s}) && config.PtrSize == 4 && s.(string) != "" -> (StringMake (Addr {fe.StringData(s.(string))} (SB)) (Const32 [int64(len(s.(string)))])) (ConstString {s}) && config.PtrSize == 8 && s.(string) != "" -> (StringMake (Addr {fe.StringData(s.(string))} (SB)) (Const64 [int64(len(s.(string)))])) // slice ops // Only a few slice rules are provided here. See dec.rules for // a more comprehensive set. (SliceLen (SliceMake _ (Const64 [c]) _)) -> (Const64 [c]) (SliceCap (SliceMake _ _ (Const64 [c]))) -> (Const64 [c]) (SliceLen (SliceMake _ (Const32 [c]) _)) -> (Const32 [c]) (SliceCap (SliceMake _ _ (Const32 [c]))) -> (Const32 [c]) (SlicePtr (SliceMake (SlicePtr x) _ _)) -> (SlicePtr x) (SliceLen (SliceMake _ (SliceLen x) _)) -> (SliceLen x) (SliceCap (SliceMake _ _ (SliceCap x))) -> (SliceCap x) (SliceCap (SliceMake _ _ (SliceLen x))) -> (SliceLen x) (ConstSlice) && config.PtrSize == 4 -> (SliceMake (ConstNil ) (Const32 [0]) (Const32 [0])) (ConstSlice) && config.PtrSize == 8 -> (SliceMake (ConstNil ) (Const64 [0]) (Const64 [0])) // interface ops (ConstInterface) -> (IMake (ConstNil ) (ConstNil )) (NilCheck (GetG mem) mem) -> mem (If (Not cond) yes no) -> (If cond no yes) (If (ConstBool [c]) yes no) && c == 1 -> (First yes no) (If (ConstBool [c]) yes no) && c == 0 -> (First no yes) // Get rid of Convert ops for pointer arithmetic on unsafe.Pointer. (Convert (Add(64|32) (Convert ptr mem) off) mem) -> (Add(64|32) ptr off) (Convert (Convert ptr mem) mem) -> ptr // strength reduction of divide by a constant. // See ../magic.go for a detailed description of these algorithms. // Unsigned divide by power of 2. Strength reduce to a shift. (Div8u n (Const8 [c])) && isPowerOfTwo(c&0xff) -> (Rsh8Ux64 n (Const64 [log2(c&0xff)])) (Div16u n (Const16 [c])) && isPowerOfTwo(c&0xffff) -> (Rsh16Ux64 n (Const64 [log2(c&0xffff)])) (Div32u n (Const32 [c])) && isPowerOfTwo(c&0xffffffff) -> (Rsh32Ux64 n (Const64 [log2(c&0xffffffff)])) (Div64u n (Const64 [c])) && isPowerOfTwo(c) -> (Rsh64Ux64 n (Const64 [log2(c)])) (Div64u n (Const64 [-1<<63])) -> (Rsh64Ux64 n (Const64 [63])) // Signed non-negative divide by power of 2. (Div8 n (Const8 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xff) -> (Rsh8Ux64 n (Const64 [log2(c&0xff)])) (Div16 n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffff) -> (Rsh16Ux64 n (Const64 [log2(c&0xffff)])) (Div32 n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffffffff) -> (Rsh32Ux64 n (Const64 [log2(c&0xffffffff)])) (Div64 n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo(c) -> (Rsh64Ux64 n (Const64 [log2(c)])) (Div64 n (Const64 [-1<<63])) && isNonNegative(n) -> (Const64 [0]) // Unsigned divide, not a power of 2. Strength reduce to a multiply. // For 8-bit divides, we just do a direct 9-bit by 8-bit multiply. (Div8u x (Const8 [c])) && umagicOK(8, c) -> (Trunc32to8 (Rsh32Ux64 (Mul32 (Const32 [int64(1<<8+umagic(8,c).m)]) (ZeroExt8to32 x)) (Const64 [8+umagic(8,c).s]))) // For 16-bit divides on 64-bit machines, we do a direct 17-bit by 16-bit multiply. (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 8 -> (Trunc64to16 (Rsh64Ux64 (Mul64 (Const64 [int64(1<<16+umagic(16,c).m)]) (ZeroExt16to64 x)) (Const64 [16+umagic(16,c).s]))) // For 16-bit divides on 32-bit machines (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 && umagic(16,c).m&1 == 0 -> (Trunc32to16 (Rsh32Ux64 (Mul32 (Const32 [int64(1<<15+umagic(16,c).m/2)]) (ZeroExt16to32 x)) (Const64 [16+umagic(16,c).s-1]))) (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 && c&1 == 0 -> (Trunc32to16 (Rsh32Ux64 (Mul32 (Const32 [int64(1<<15+(umagic(16,c).m+1)/2)]) (Rsh32Ux64 (ZeroExt16to32 x) (Const64 [1]))) (Const64 [16+umagic(16,c).s-2]))) (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 && config.useAvg -> (Trunc32to16 (Rsh32Ux64 (Avg32u (Lsh32x64 (ZeroExt16to32 x) (Const64 [16])) (Mul32 (Const32 [int64(umagic(16,c).m)]) (ZeroExt16to32 x))) (Const64 [16+umagic(16,c).s-1]))) // For 32-bit divides on 32-bit machines (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 && umagic(32,c).m&1 == 0 && config.useHmul -> (Rsh32Ux64 (Hmul32u (Const32 [int64(int32(1<<31+umagic(32,c).m/2))]) x) (Const64 [umagic(32,c).s-1])) (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 && c&1 == 0 && config.useHmul -> (Rsh32Ux64 (Hmul32u (Const32 [int64(int32(1<<31+(umagic(32,c).m+1)/2))]) (Rsh32Ux64 x (Const64 [1]))) (Const64 [umagic(32,c).s-2])) (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 && config.useAvg && config.useHmul -> (Rsh32Ux64 (Avg32u x (Hmul32u (Const32 [int64(int32(umagic(32,c).m))]) x)) (Const64 [umagic(32,c).s-1])) // For 32-bit divides on 64-bit machines // We'll use a regular (non-hi) multiply for this case. (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 && umagic(32,c).m&1 == 0 -> (Trunc64to32 (Rsh64Ux64 (Mul64 (Const64 [int64(1<<31+umagic(32,c).m/2)]) (ZeroExt32to64 x)) (Const64 [32+umagic(32,c).s-1]))) (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 && c&1 == 0 -> (Trunc64to32 (Rsh64Ux64 (Mul64 (Const64 [int64(1<<31+(umagic(32,c).m+1)/2)]) (Rsh64Ux64 (ZeroExt32to64 x) (Const64 [1]))) (Const64 [32+umagic(32,c).s-2]))) (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 && config.useAvg -> (Trunc64to32 (Rsh64Ux64 (Avg64u (Lsh64x64 (ZeroExt32to64 x) (Const64 [32])) (Mul64 (Const64 [int64(umagic(32,c).m)]) (ZeroExt32to64 x))) (Const64 [32+umagic(32,c).s-1]))) // For 64-bit divides on 64-bit machines // (64-bit divides on 32-bit machines are lowered to a runtime call by the walk pass.) (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 && umagic(64,c).m&1 == 0 && config.useHmul -> (Rsh64Ux64 (Hmul64u (Const64 [int64(1<<63+umagic(64,c).m/2)]) x) (Const64 [umagic(64,c).s-1])) (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 && c&1 == 0 && config.useHmul -> (Rsh64Ux64 (Hmul64u (Const64 [int64(1<<63+(umagic(64,c).m+1)/2)]) (Rsh64Ux64 x (Const64 [1]))) (Const64 [umagic(64,c).s-2])) (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 && config.useAvg && config.useHmul -> (Rsh64Ux64 (Avg64u x (Hmul64u (Const64 [int64(umagic(64,c).m)]) x)) (Const64 [umagic(64,c).s-1])) // Signed divide by a negative constant. Rewrite to divide by a positive constant. (Div8 n (Const8 [c])) && c < 0 && c != -1<<7 -> (Neg8 (Div8 n (Const8 [-c]))) (Div16 n (Const16 [c])) && c < 0 && c != -1<<15 -> (Neg16 (Div16 n (Const16 [-c]))) (Div32 n (Const32 [c])) && c < 0 && c != -1<<31 -> (Neg32 (Div32 n (Const32 [-c]))) (Div64 n (Const64 [c])) && c < 0 && c != -1<<63 -> (Neg64 (Div64 n (Const64 [-c]))) // Dividing by the most-negative number. Result is always 0 except // if the input is also the most-negative number. // We can detect that using the sign bit of x & -x. (Div8 x (Const8 [-1<<7 ])) -> (Rsh8Ux64 (And8 x (Neg8 x)) (Const64 [7 ])) (Div16 x (Const16 [-1<<15])) -> (Rsh16Ux64 (And16 x (Neg16 x)) (Const64 [15])) (Div32 x (Const32 [-1<<31])) -> (Rsh32Ux64 (And32 x (Neg32 x)) (Const64 [31])) (Div64 x (Const64 [-1<<63])) -> (Rsh64Ux64 (And64 x (Neg64 x)) (Const64 [63])) // Signed divide by power of 2. // n / c = n >> log(c) if n >= 0 // = (n+c-1) >> log(c) if n < 0 // We conditionally add c-1 by adding n>>63>>(64-log(c)) (first shift signed, second shift unsigned). (Div8 n (Const8 [c])) && isPowerOfTwo(c) -> (Rsh8x64 (Add8 n (Rsh8Ux64 (Rsh8x64 n (Const64 [ 7])) (Const64 [ 8-log2(c)]))) (Const64 [log2(c)])) (Div16 n (Const16 [c])) && isPowerOfTwo(c) -> (Rsh16x64 (Add16 n (Rsh16Ux64 (Rsh16x64 n (Const64 [15])) (Const64 [16-log2(c)]))) (Const64 [log2(c)])) (Div32 n (Const32 [c])) && isPowerOfTwo(c) -> (Rsh32x64 (Add32 n (Rsh32Ux64 (Rsh32x64 n (Const64 [31])) (Const64 [32-log2(c)]))) (Const64 [log2(c)])) (Div64 n (Const64 [c])) && isPowerOfTwo(c) -> (Rsh64x64 (Add64 n (Rsh64Ux64 (Rsh64x64 n (Const64 [63])) (Const64 [64-log2(c)]))) (Const64 [log2(c)])) // Signed divide, not a power of 2. Strength reduce to a multiply. (Div8 x (Const8 [c])) && smagicOK(8,c) -> (Sub8 (Rsh32x64 (Mul32 (Const32 [int64(smagic(8,c).m)]) (SignExt8to32 x)) (Const64 [8+smagic(8,c).s])) (Rsh32x64 (SignExt8to32 x) (Const64 [31]))) (Div16 x (Const16 [c])) && smagicOK(16,c) -> (Sub16 (Rsh32x64 (Mul32 (Const32 [int64(smagic(16,c).m)]) (SignExt16to32 x)) (Const64 [16+smagic(16,c).s])) (Rsh32x64 (SignExt16to32 x) (Const64 [31]))) (Div32 x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 8 -> (Sub32 (Rsh64x64 (Mul64 (Const64 [int64(smagic(32,c).m)]) (SignExt32to64 x)) (Const64 [32+smagic(32,c).s])) (Rsh64x64 (SignExt32to64 x) (Const64 [63]))) (Div32 x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 4 && smagic(32,c).m&1 == 0 && config.useHmul -> (Sub32 (Rsh32x64 (Hmul32 (Const32 [int64(int32(smagic(32,c).m/2))]) x) (Const64 [smagic(32,c).s-1])) (Rsh32x64 x (Const64 [31]))) (Div32 x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 4 && smagic(32,c).m&1 != 0 && config.useHmul -> (Sub32 (Rsh32x64 (Add32 (Hmul32 (Const32 [int64(int32(smagic(32,c).m))]) x) x) (Const64 [smagic(32,c).s])) (Rsh32x64 x (Const64 [31]))) (Div64 x (Const64 [c])) && smagicOK(64,c) && smagic(64,c).m&1 == 0 && config.useHmul -> (Sub64 (Rsh64x64 (Hmul64 (Const64 [int64(smagic(64,c).m/2)]) x) (Const64 [smagic(64,c).s-1])) (Rsh64x64 x (Const64 [63]))) (Div64 x (Const64 [c])) && smagicOK(64,c) && smagic(64,c).m&1 != 0 && config.useHmul -> (Sub64 (Rsh64x64 (Add64 (Hmul64 (Const64 [int64(smagic(64,c).m)]) x) x) (Const64 [smagic(64,c).s])) (Rsh64x64 x (Const64 [63]))) // Unsigned mod by power of 2 constant. (Mod8u n (Const8 [c])) && isPowerOfTwo(c&0xff) -> (And8 n (Const8 [(c&0xff)-1])) (Mod16u n (Const16 [c])) && isPowerOfTwo(c&0xffff) -> (And16 n (Const16 [(c&0xffff)-1])) (Mod32u n (Const32 [c])) && isPowerOfTwo(c&0xffffffff) -> (And32 n (Const32 [(c&0xffffffff)-1])) (Mod64u n (Const64 [c])) && isPowerOfTwo(c) -> (And64 n (Const64 [c-1])) (Mod64u n (Const64 [-1<<63])) -> (And64 n (Const64 [1<<63-1])) // Signed non-negative mod by power of 2 constant. (Mod8 n (Const8 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xff) -> (And8 n (Const8 [(c&0xff)-1])) (Mod16 n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffff) -> (And16 n (Const16 [(c&0xffff)-1])) (Mod32 n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo(c&0xffffffff) -> (And32 n (Const32 [(c&0xffffffff)-1])) (Mod64 n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo(c) -> (And64 n (Const64 [c-1])) (Mod64 n (Const64 [-1<<63])) && isNonNegative(n) -> n // Signed mod by negative constant. (Mod8 n (Const8 [c])) && c < 0 && c != -1<<7 -> (Mod8 n (Const8 [-c])) (Mod16 n (Const16 [c])) && c < 0 && c != -1<<15 -> (Mod16 n (Const16 [-c])) (Mod32 n (Const32 [c])) && c < 0 && c != -1<<31 -> (Mod32 n (Const32 [-c])) (Mod64 n (Const64 [c])) && c < 0 && c != -1<<63 -> (Mod64 n (Const64 [-c])) // All other mods by constants, do A%B = A-(A/B*B). // This implements % with two * and a bunch of ancillary ops. // One of the * is free if the user's code also computes A/B. (Mod8 x (Const8 [c])) && x.Op != OpConst8 && (c > 0 || c == -1<<7) -> (Sub8 x (Mul8 (Div8 x (Const8 [c])) (Const8 [c]))) (Mod16 x (Const16 [c])) && x.Op != OpConst16 && (c > 0 || c == -1<<15) -> (Sub16 x (Mul16 (Div16 x (Const16 [c])) (Const16 [c]))) (Mod32 x (Const32 [c])) && x.Op != OpConst32 && (c > 0 || c == -1<<31) -> (Sub32 x (Mul32 (Div32 x (Const32 [c])) (Const32 [c]))) (Mod64 x (Const64 [c])) && x.Op != OpConst64 && (c > 0 || c == -1<<63) -> (Sub64 x (Mul64 (Div64 x (Const64 [c])) (Const64 [c]))) (Mod8u x (Const8 [c])) && x.Op != OpConst8 && c > 0 && umagicOK(8, c) -> (Sub8 x (Mul8 (Div8u x (Const8 [c])) (Const8 [c]))) (Mod16u x (Const16 [c])) && x.Op != OpConst16 && c > 0 && umagicOK(16,c) -> (Sub16 x (Mul16 (Div16u x (Const16 [c])) (Const16 [c]))) (Mod32u x (Const32 [c])) && x.Op != OpConst32 && c > 0 && umagicOK(32,c) -> (Sub32 x (Mul32 (Div32u x (Const32 [c])) (Const32 [c]))) (Mod64u x (Const64 [c])) && x.Op != OpConst64 && c > 0 && umagicOK(64,c) -> (Sub64 x (Mul64 (Div64u x (Const64 [c])) (Const64 [c]))) // For architectures without rotates on less than 32-bits, promote these checks to 32-bit. (Eq8 (Mod8u x (Const8 [c])) (Const8 [0])) && x.Op != OpConst8 && udivisibleOK(8,c) && !hasSmallRotate(config) -> (Eq32 (Mod32u (ZeroExt8to32 x) (Const32 [c&0xff])) (Const32 [0])) (Eq16 (Mod16u x (Const16 [c])) (Const16 [0])) && x.Op != OpConst16 && udivisibleOK(16,c) && !hasSmallRotate(config) -> (Eq32 (Mod32u (ZeroExt16to32 x) (Const32 [c&0xffff])) (Const32 [0])) (Eq8 (Mod8 x (Const8 [c])) (Const8 [0])) && x.Op != OpConst8 && sdivisibleOK(8,c) && !hasSmallRotate(config) -> (Eq32 (Mod32 (SignExt8to32 x) (Const32 [c])) (Const32 [0])) (Eq16 (Mod16 x (Const16 [c])) (Const16 [0])) && x.Op != OpConst16 && sdivisibleOK(16,c) && !hasSmallRotate(config) -> (Eq32 (Mod32 (SignExt16to32 x) (Const32 [c])) (Const32 [0])) // Divisibility checks x%c == 0 convert to multiply and rotate. // Note, x%c == 0 is rewritten as x == c*(x/c) during the opt pass // where (x/c) is performed using multiplication with magic constants. // To rewrite x%c == 0 requires pattern matching the rewritten expression // and checking that the division by the same constant wasn't already calculated. // This check is made by counting uses of the magic constant multiplication. // Note that if there were an intermediate opt pass, this rule could be applied // directly on the Div op and magic division rewrites could be delayed to late opt. // Unsigned divisibility checks convert to multiply and rotate. (Eq8 x (Mul8 (Const8 [c]) (Trunc32to8 (Rsh32Ux64 mul:(Mul32 (Const32 [m]) (ZeroExt8to32 x)) (Const64 [s]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(1<<8+umagic(8,c).m) && s == 8+umagic(8,c).s && x.Op != OpConst8 && udivisibleOK(8,c) -> (Leq8U (RotateLeft8 (Mul8 (Const8 [int64(int8(udivisible(8,c).m))]) x) (Const8 [int64(8-udivisible(8,c).k)]) ) (Const8 [int64(int8(udivisible(8,c).max))]) ) (Eq16 x (Mul16 (Const16 [c]) (Trunc64to16 (Rsh64Ux64 mul:(Mul64 (Const64 [m]) (ZeroExt16to64 x)) (Const64 [s]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(1<<16+umagic(16,c).m) && s == 16+umagic(16,c).s && x.Op != OpConst16 && udivisibleOK(16,c) -> (Leq16U (RotateLeft16 (Mul16 (Const16 [int64(int16(udivisible(16,c).m))]) x) (Const16 [int64(16-udivisible(16,c).k)]) ) (Const16 [int64(int16(udivisible(16,c).max))]) ) (Eq16 x (Mul16 (Const16 [c]) (Trunc32to16 (Rsh32Ux64 mul:(Mul32 (Const32 [m]) (ZeroExt16to32 x)) (Const64 [s]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(1<<15+umagic(16,c).m/2) && s == 16+umagic(16,c).s-1 && x.Op != OpConst16 && udivisibleOK(16,c) -> (Leq16U (RotateLeft16 (Mul16 (Const16 [int64(int16(udivisible(16,c).m))]) x) (Const16 [int64(16-udivisible(16,c).k)]) ) (Const16 [int64(int16(udivisible(16,c).max))]) ) (Eq16 x (Mul16 (Const16 [c]) (Trunc32to16 (Rsh32Ux64 mul:(Mul32 (Const32 [m]) (Rsh32Ux64 (ZeroExt16to32 x) (Const64 [1]))) (Const64 [s]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(1<<15+(umagic(16,c).m+1)/2) && s == 16+umagic(16,c).s-2 && x.Op != OpConst16 && udivisibleOK(16,c) -> (Leq16U (RotateLeft16 (Mul16 (Const16 [int64(int16(udivisible(16,c).m))]) x) (Const16 [int64(16-udivisible(16,c).k)]) ) (Const16 [int64(int16(udivisible(16,c).max))]) ) (Eq16 x (Mul16 (Const16 [c]) (Trunc32to16 (Rsh32Ux64 (Avg32u (Lsh32x64 (ZeroExt16to32 x) (Const64 [16])) mul:(Mul32 (Const32 [m]) (ZeroExt16to32 x))) (Const64 [s]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(umagic(16,c).m) && s == 16+umagic(16,c).s-1 && x.Op != OpConst16 && udivisibleOK(16,c) -> (Leq16U (RotateLeft16 (Mul16 (Const16 [int64(int16(udivisible(16,c).m))]) x) (Const16 [int64(16-udivisible(16,c).k)]) ) (Const16 [int64(int16(udivisible(16,c).max))]) ) (Eq32 x (Mul32 (Const32 [c]) (Rsh32Ux64 mul:(Hmul32u (Const32 [m]) x) (Const64 [s])) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(int32(1<<31+umagic(32,c).m/2)) && s == umagic(32,c).s-1 && x.Op != OpConst32 && udivisibleOK(32,c) -> (Leq32U (RotateLeft32 (Mul32 (Const32 [int64(int32(udivisible(32,c).m))]) x) (Const32 [int64(32-udivisible(32,c).k)]) ) (Const32 [int64(int32(udivisible(32,c).max))]) ) (Eq32 x (Mul32 (Const32 [c]) (Rsh32Ux64 mul:(Hmul32u (Const32 [m]) (Rsh32Ux64 x (Const64 [1]))) (Const64 [s])) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(int32(1<<31+(umagic(32,c).m+1)/2)) && s == umagic(32,c).s-2 && x.Op != OpConst32 && udivisibleOK(32,c) -> (Leq32U (RotateLeft32 (Mul32 (Const32 [int64(int32(udivisible(32,c).m))]) x) (Const32 [int64(32-udivisible(32,c).k)]) ) (Const32 [int64(int32(udivisible(32,c).max))]) ) (Eq32 x (Mul32 (Const32 [c]) (Rsh32Ux64 (Avg32u x mul:(Hmul32u (Const32 [m]) x)) (Const64 [s])) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(int32(umagic(32,c).m)) && s == umagic(32,c).s-1 && x.Op != OpConst32 && udivisibleOK(32,c) -> (Leq32U (RotateLeft32 (Mul32 (Const32 [int64(int32(udivisible(32,c).m))]) x) (Const32 [int64(32-udivisible(32,c).k)]) ) (Const32 [int64(int32(udivisible(32,c).max))]) ) (Eq32 x (Mul32 (Const32 [c]) (Trunc64to32 (Rsh64Ux64 mul:(Mul64 (Const64 [m]) (ZeroExt32to64 x)) (Const64 [s]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(1<<31+umagic(32,c).m/2) && s == 32+umagic(32,c).s-1 && x.Op != OpConst32 && udivisibleOK(32,c) -> (Leq32U (RotateLeft32 (Mul32 (Const32 [int64(int32(udivisible(32,c).m))]) x) (Const32 [int64(32-udivisible(32,c).k)]) ) (Const32 [int64(int32(udivisible(32,c).max))]) ) (Eq32 x (Mul32 (Const32 [c]) (Trunc64to32 (Rsh64Ux64 mul:(Mul64 (Const64 [m]) (Rsh64Ux64 (ZeroExt32to64 x) (Const64 [1]))) (Const64 [s]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(1<<31+(umagic(32,c).m+1)/2) && s == 32+umagic(32,c).s-2 && x.Op != OpConst32 && udivisibleOK(32,c) -> (Leq32U (RotateLeft32 (Mul32 (Const32 [int64(int32(udivisible(32,c).m))]) x) (Const32 [int64(32-udivisible(32,c).k)]) ) (Const32 [int64(int32(udivisible(32,c).max))]) ) (Eq32 x (Mul32 (Const32 [c]) (Trunc64to32 (Rsh64Ux64 (Avg64u (Lsh64x64 (ZeroExt32to64 x) (Const64 [32])) mul:(Mul64 (Const64 [m]) (ZeroExt32to64 x))) (Const64 [s]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(umagic(32,c).m) && s == 32+umagic(32,c).s-1 && x.Op != OpConst32 && udivisibleOK(32,c) -> (Leq32U (RotateLeft32 (Mul32 (Const32 [int64(int32(udivisible(32,c).m))]) x) (Const32 [int64(32-udivisible(32,c).k)]) ) (Const32 [int64(int32(udivisible(32,c).max))]) ) (Eq64 x (Mul64 (Const64 [c]) (Rsh64Ux64 mul:(Hmul64u (Const64 [m]) x) (Const64 [s])) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(1<<63+umagic(64,c).m/2) && s == umagic(64,c).s-1 && x.Op != OpConst64 && udivisibleOK(64,c) -> (Leq64U (RotateLeft64 (Mul64 (Const64 [int64(udivisible(64,c).m)]) x) (Const64 [int64(64-udivisible(64,c).k)]) ) (Const64 [int64(udivisible(64,c).max)]) ) (Eq64 x (Mul64 (Const64 [c]) (Rsh64Ux64 mul:(Hmul64u (Const64 [m]) (Rsh64Ux64 x (Const64 [1]))) (Const64 [s])) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(1<<63+(umagic(64,c).m+1)/2) && s == umagic(64,c).s-2 && x.Op != OpConst64 && udivisibleOK(64,c) -> (Leq64U (RotateLeft64 (Mul64 (Const64 [int64(udivisible(64,c).m)]) x) (Const64 [int64(64-udivisible(64,c).k)]) ) (Const64 [int64(udivisible(64,c).max)]) ) (Eq64 x (Mul64 (Const64 [c]) (Rsh64Ux64 (Avg64u x mul:(Hmul64u (Const64 [m]) x)) (Const64 [s])) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(umagic(64,c).m) && s == umagic(64,c).s-1 && x.Op != OpConst64 && udivisibleOK(64,c) -> (Leq64U (RotateLeft64 (Mul64 (Const64 [int64(udivisible(64,c).m)]) x) (Const64 [int64(64-udivisible(64,c).k)]) ) (Const64 [int64(udivisible(64,c).max)]) ) // Signed divisibility checks convert to multiply, add and rotate. (Eq8 x (Mul8 (Const8 [c]) (Sub8 (Rsh32x64 mul:(Mul32 (Const32 [m]) (SignExt8to32 x)) (Const64 [s])) (Rsh32x64 (SignExt8to32 x) (Const64 [31]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(smagic(8,c).m) && s == 8+smagic(8,c).s && x.Op != OpConst8 && sdivisibleOK(8,c) -> (Leq8U (RotateLeft8 (Add8 (Mul8 (Const8 [int64(int8(sdivisible(8,c).m))]) x) (Const8 [int64(int8(sdivisible(8,c).a))]) ) (Const8 [int64(8-sdivisible(8,c).k)]) ) (Const8 [int64(int8(sdivisible(8,c).max))]) ) (Eq16 x (Mul16 (Const16 [c]) (Sub16 (Rsh32x64 mul:(Mul32 (Const32 [m]) (SignExt16to32 x)) (Const64 [s])) (Rsh32x64 (SignExt16to32 x) (Const64 [31]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(smagic(16,c).m) && s == 16+smagic(16,c).s && x.Op != OpConst16 && sdivisibleOK(16,c) -> (Leq16U (RotateLeft16 (Add16 (Mul16 (Const16 [int64(int16(sdivisible(16,c).m))]) x) (Const16 [int64(int16(sdivisible(16,c).a))]) ) (Const16 [int64(16-sdivisible(16,c).k)]) ) (Const16 [int64(int16(sdivisible(16,c).max))]) ) (Eq32 x (Mul32 (Const32 [c]) (Sub32 (Rsh64x64 mul:(Mul64 (Const64 [m]) (SignExt32to64 x)) (Const64 [s])) (Rsh64x64 (SignExt32to64 x) (Const64 [63]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(smagic(32,c).m) && s == 32+smagic(32,c).s && x.Op != OpConst32 && sdivisibleOK(32,c) -> (Leq32U (RotateLeft32 (Add32 (Mul32 (Const32 [int64(int32(sdivisible(32,c).m))]) x) (Const32 [int64(int32(sdivisible(32,c).a))]) ) (Const32 [int64(32-sdivisible(32,c).k)]) ) (Const32 [int64(int32(sdivisible(32,c).max))]) ) (Eq32 x (Mul32 (Const32 [c]) (Sub32 (Rsh32x64 mul:(Hmul32 (Const32 [m]) x) (Const64 [s])) (Rsh32x64 x (Const64 [31]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(int32(smagic(32,c).m/2)) && s == smagic(32,c).s-1 && x.Op != OpConst32 && sdivisibleOK(32,c) -> (Leq32U (RotateLeft32 (Add32 (Mul32 (Const32 [int64(int32(sdivisible(32,c).m))]) x) (Const32 [int64(int32(sdivisible(32,c).a))]) ) (Const32 [int64(32-sdivisible(32,c).k)]) ) (Const32 [int64(int32(sdivisible(32,c).max))]) ) (Eq32 x (Mul32 (Const32 [c]) (Sub32 (Rsh32x64 (Add32 mul:(Hmul32 (Const32 [m]) x) x) (Const64 [s])) (Rsh32x64 x (Const64 [31]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(int32(smagic(32,c).m)) && s == smagic(32,c).s && x.Op != OpConst32 && sdivisibleOK(32,c) -> (Leq32U (RotateLeft32 (Add32 (Mul32 (Const32 [int64(int32(sdivisible(32,c).m))]) x) (Const32 [int64(int32(sdivisible(32,c).a))]) ) (Const32 [int64(32-sdivisible(32,c).k)]) ) (Const32 [int64(int32(sdivisible(32,c).max))]) ) (Eq64 x (Mul64 (Const64 [c]) (Sub64 (Rsh64x64 mul:(Hmul64 (Const64 [m]) x) (Const64 [s])) (Rsh64x64 x (Const64 [63]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(smagic(64,c).m/2) && s == smagic(64,c).s-1 && x.Op != OpConst64 && sdivisibleOK(64,c) -> (Leq64U (RotateLeft64 (Add64 (Mul64 (Const64 [int64(sdivisible(64,c).m)]) x) (Const64 [int64(sdivisible(64,c).a)]) ) (Const64 [int64(64-sdivisible(64,c).k)]) ) (Const64 [int64(sdivisible(64,c).max)]) ) (Eq64 x (Mul64 (Const64 [c]) (Sub64 (Rsh64x64 (Add64 mul:(Hmul64 (Const64 [m]) x) x) (Const64 [s])) (Rsh64x64 x (Const64 [63]))) ) ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 && m == int64(smagic(64,c).m) && s == smagic(64,c).s && x.Op != OpConst64 && sdivisibleOK(64,c) -> (Leq64U (RotateLeft64 (Add64 (Mul64 (Const64 [int64(sdivisible(64,c).m)]) x) (Const64 [int64(sdivisible(64,c).a)]) ) (Const64 [int64(64-sdivisible(64,c).k)]) ) (Const64 [int64(sdivisible(64,c).max)]) ) // Divisibility check for signed integers for power of two constant are simple mask. // However, we must match against the rewritten n%c == 0 -> n - c*(n/c) == 0 -> n == c*(n/c) // where n/c contains fixup code to handle signed n. ((Eq8|Neq8) n (Lsh8x64 (Rsh8x64 (Add8 n (Rsh8Ux64 (Rsh8x64 n (Const64 [ 7])) (Const64 [kbar]))) (Const64 [k])) (Const64 [k])) ) && k > 0 && k < 7 && kbar == 8 - k -> ((Eq8|Neq8) (And8 n (Const8 [int64(1< [0])) ((Eq16|Neq16) n (Lsh16x64 (Rsh16x64 (Add16 n (Rsh16Ux64 (Rsh16x64 n (Const64 [15])) (Const64 [kbar]))) (Const64 [k])) (Const64 [k])) ) && k > 0 && k < 15 && kbar == 16 - k -> ((Eq16|Neq16) (And16 n (Const16 [int64(1< [0])) ((Eq32|Neq32) n (Lsh32x64 (Rsh32x64 (Add32 n (Rsh32Ux64 (Rsh32x64 n (Const64 [31])) (Const64 [kbar]))) (Const64 [k])) (Const64 [k])) ) && k > 0 && k < 31 && kbar == 32 - k -> ((Eq32|Neq32) (And32 n (Const32 [int64(1< [0])) ((Eq64|Neq64) n (Lsh64x64 (Rsh64x64 (Add64 n (Rsh64Ux64 (Rsh64x64 n (Const64 [63])) (Const64 [kbar]))) (Const64 [k])) (Const64 [k])) ) && k > 0 && k < 63 && kbar == 64 - k -> ((Eq64|Neq64) (And64 n (Const64 [int64(1< [0])) (Eq(8|16|32|64) s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 -> (Eq(8|16|32|64) x y) (Neq(8|16|32|64) s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 -> (Neq(8|16|32|64) x y) // Optimize bitsets (Eq(8|16|32|64) (And(8|16|32|64) x (Const(8|16|32|64) [y])) (Const(8|16|32|64) [y])) && isPowerOfTwo(y) -> (Neq(8|16|32|64) (And(8|16|32|64) x (Const(8|16|32|64) [y])) (Const(8|16|32|64) [0])) (Neq(8|16|32|64) (And(8|16|32|64) x (Const(8|16|32|64) [y])) (Const(8|16|32|64) [y])) && isPowerOfTwo(y) -> (Eq(8|16|32|64) (And(8|16|32|64) x (Const(8|16|32|64) [y])) (Const(8|16|32|64) [0])) // Reassociate expressions involving // constants such that constants come first, // exposing obvious constant-folding opportunities. // Reassociate (op (op y C) x) to (op C (op x y)) or similar, where C // is constant, which pushes constants to the outside // of the expression. At that point, any constant-folding // opportunities should be obvious. // x + (C + z) -> C + (x + z) (Add64 (Add64 i:(Const64 ) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Add64 z x)) (Add32 (Add32 i:(Const32 ) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Add32 z x)) (Add16 (Add16 i:(Const16 ) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Add16 z x)) (Add8 (Add8 i:(Const8 ) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Add8 z x)) // x + (C - z) -> C + (x - z) (Add64 (Sub64 i:(Const64 ) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 x z)) (Add32 (Sub32 i:(Const32 ) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 x z)) (Add16 (Sub16 i:(Const16 ) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 x z)) (Add8 (Sub8 i:(Const8 ) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Sub8 x z)) (Add64 x (Sub64 i:(Const64 ) z)) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 x z)) (Add32 x (Sub32 i:(Const32 ) z)) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 x z)) (Add16 x (Sub16 i:(Const16 ) z)) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 x z)) (Add8 x (Sub8 i:(Const8 ) z)) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Sub8 x z)) // x + (z - C) -> (x + z) - C (Add64 (Sub64 z i:(Const64 )) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 x z) i) (Add32 (Sub32 z i:(Const32 )) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 x z) i) (Add16 (Sub16 z i:(Const16 )) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 x z) i) (Add8 (Sub8 z i:(Const8 )) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Sub8 (Add8 x z) i) (Add64 x (Sub64 z i:(Const64 ))) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 x z) i) (Add32 x (Sub32 z i:(Const32 ))) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 x z) i) (Add16 x (Sub16 z i:(Const16 ))) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 x z) i) (Add8 x (Sub8 z i:(Const8 ))) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Sub8 (Add8 x z) i) // x - (C - z) -> x + (z - C) -> (x + z) - C (Sub64 x (Sub64 i:(Const64 ) z)) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 x z) i) (Sub32 x (Sub32 i:(Const32 ) z)) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 x z) i) (Sub16 x (Sub16 i:(Const16 ) z)) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 x z) i) (Sub8 x (Sub8 i:(Const8 ) z)) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Sub8 (Add8 x z) i) // x - (z - C) -> x + (C - z) -> (x - z) + C (Sub64 x (Sub64 z i:(Const64 ))) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 x z)) (Sub32 x (Sub32 z i:(Const32 ))) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 x z)) (Sub16 x (Sub16 z i:(Const16 ))) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 x z)) (Sub8 x (Sub8 z i:(Const8 ))) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Sub8 x z)) // x & (C & z) -> C & (x & z) (And64 (And64 i:(Const64 ) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (And64 i (And64 z x)) (And32 (And32 i:(Const32 ) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (And32 i (And32 z x)) (And16 (And16 i:(Const16 ) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (And16 i (And16 z x)) (And8 (And8 i:(Const8 ) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (And8 i (And8 z x)) // x | (C | z) -> C | (x | z) (Or64 (Or64 i:(Const64 ) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Or64 i (Or64 z x)) (Or32 (Or32 i:(Const32 ) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Or32 i (Or32 z x)) (Or16 (Or16 i:(Const16 ) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Or16 i (Or16 z x)) (Or8 (Or8 i:(Const8 ) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Or8 i (Or8 z x)) // x ^ (C ^ z) -> C ^ (x ^ z) (Xor64 (Xor64 i:(Const64 ) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Xor64 i (Xor64 z x)) (Xor32 (Xor32 i:(Const32 ) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Xor32 i (Xor32 z x)) (Xor16 (Xor16 i:(Const16 ) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Xor16 i (Xor16 z x)) (Xor8 (Xor8 i:(Const8 ) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Xor8 i (Xor8 z x)) // C + (D + x) -> (C + D) + x (Add64 (Const64 [c]) (Add64 (Const64 [d]) x)) -> (Add64 (Const64 [c+d]) x) (Add32 (Const32 [c]) (Add32 (Const32 [d]) x)) -> (Add32 (Const32 [int64(int32(c+d))]) x) (Add16 (Const16 [c]) (Add16 (Const16 [d]) x)) -> (Add16 (Const16 [int64(int16(c+d))]) x) (Add8 (Const8 [c]) (Add8 (Const8 [d]) x)) -> (Add8 (Const8 [int64(int8(c+d))]) x) // C + (D - x) -> (C + D) - x (Add64 (Const64 [c]) (Sub64 (Const64 [d]) x)) -> (Sub64 (Const64 [c+d]) x) (Add32 (Const32 [c]) (Sub32 (Const32 [d]) x)) -> (Sub32 (Const32 [int64(int32(c+d))]) x) (Add16 (Const16 [c]) (Sub16 (Const16 [d]) x)) -> (Sub16 (Const16 [int64(int16(c+d))]) x) (Add8 (Const8 [c]) (Sub8 (Const8 [d]) x)) -> (Sub8 (Const8 [int64(int8(c+d))]) x) // C + (x - D) -> (C - D) + x (Add64 (Const64 [c]) (Sub64 x (Const64 [d]))) -> (Add64 (Const64 [c-d]) x) (Add32 (Const32 [c]) (Sub32 x (Const32 [d]))) -> (Add32 (Const32 [int64(int32(c-d))]) x) (Add16 (Const16 [c]) (Sub16 x (Const16 [d]))) -> (Add16 (Const16 [int64(int16(c-d))]) x) (Add8 (Const8 [c]) (Sub8 x (Const8 [d]))) -> (Add8 (Const8 [int64(int8(c-d))]) x) // C - (x - D) -> (C + D) - x (Sub64 (Const64 [c]) (Sub64 x (Const64 [d]))) -> (Sub64 (Const64 [c+d]) x) (Sub32 (Const32 [c]) (Sub32 x (Const32 [d]))) -> (Sub32 (Const32 [int64(int32(c+d))]) x) (Sub16 (Const16 [c]) (Sub16 x (Const16 [d]))) -> (Sub16 (Const16 [int64(int16(c+d))]) x) (Sub8 (Const8 [c]) (Sub8 x (Const8 [d]))) -> (Sub8 (Const8 [int64(int8(c+d))]) x) // C - (D - x) -> (C - D) + x (Sub64 (Const64 [c]) (Sub64 (Const64 [d]) x)) -> (Add64 (Const64 [c-d]) x) (Sub32 (Const32 [c]) (Sub32 (Const32 [d]) x)) -> (Add32 (Const32 [int64(int32(c-d))]) x) (Sub16 (Const16 [c]) (Sub16 (Const16 [d]) x)) -> (Add16 (Const16 [int64(int16(c-d))]) x) (Sub8 (Const8 [c]) (Sub8 (Const8 [d]) x)) -> (Add8 (Const8 [int64(int8(c-d))]) x) // C & (D & x) -> (C & D) & x (And64 (Const64 [c]) (And64 (Const64 [d]) x)) -> (And64 (Const64 [c&d]) x) (And32 (Const32 [c]) (And32 (Const32 [d]) x)) -> (And32 (Const32 [int64(int32(c&d))]) x) (And16 (Const16 [c]) (And16 (Const16 [d]) x)) -> (And16 (Const16 [int64(int16(c&d))]) x) (And8 (Const8 [c]) (And8 (Const8 [d]) x)) -> (And8 (Const8 [int64(int8(c&d))]) x) // C | (D | x) -> (C | D) | x (Or64 (Const64 [c]) (Or64 (Const64 [d]) x)) -> (Or64 (Const64 [c|d]) x) (Or32 (Const32 [c]) (Or32 (Const32 [d]) x)) -> (Or32 (Const32 [int64(int32(c|d))]) x) (Or16 (Const16 [c]) (Or16 (Const16 [d]) x)) -> (Or16 (Const16 [int64(int16(c|d))]) x) (Or8 (Const8 [c]) (Or8 (Const8 [d]) x)) -> (Or8 (Const8 [int64(int8(c|d))]) x) // C ^ (D ^ x) -> (C ^ D) ^ x (Xor64 (Const64 [c]) (Xor64 (Const64 [d]) x)) -> (Xor64 (Const64 [c^d]) x) (Xor32 (Const32 [c]) (Xor32 (Const32 [d]) x)) -> (Xor32 (Const32 [int64(int32(c^d))]) x) (Xor16 (Const16 [c]) (Xor16 (Const16 [d]) x)) -> (Xor16 (Const16 [int64(int16(c^d))]) x) (Xor8 (Const8 [c]) (Xor8 (Const8 [d]) x)) -> (Xor8 (Const8 [int64(int8(c^d))]) x) // C * (D * x) = (C * D) * x (Mul64 (Const64 [c]) (Mul64 (Const64 [d]) x)) -> (Mul64 (Const64 [c*d]) x) (Mul32 (Const32 [c]) (Mul32 (Const32 [d]) x)) -> (Mul32 (Const32 [int64(int32(c*d))]) x) (Mul16 (Const16 [c]) (Mul16 (Const16 [d]) x)) -> (Mul16 (Const16 [int64(int16(c*d))]) x) (Mul8 (Const8 [c]) (Mul8 (Const8 [d]) x)) -> (Mul8 (Const8 [int64(int8(c*d))]) x) // floating point optimizations (Mul(32|64)F x (Const(32|64)F [auxFrom64F(1)])) -> x (Mul32F x (Const32F [auxFrom32F(-1)])) -> (Neg32F x) (Mul64F x (Const64F [auxFrom64F(-1)])) -> (Neg64F x) (Mul32F x (Const32F [auxFrom32F(2)])) -> (Add32F x x) (Mul64F x (Const64F [auxFrom64F(2)])) -> (Add64F x x) (Div32F x (Const32F [c])) && reciprocalExact32(auxTo32F(c)) -> (Mul32F x (Const32F [auxFrom32F(1/auxTo32F(c))])) (Div64F x (Const64F [c])) && reciprocalExact64(auxTo64F(c)) -> (Mul64F x (Const64F [auxFrom64F(1/auxTo64F(c))])) (Sqrt (Const64F [c])) -> (Const64F [auxFrom64F(math.Sqrt(auxTo64F(c)))]) // recognize runtime.newobject and don't Zero/Nilcheck it (Zero (Load (OffPtr [c] (SP)) mem) mem) && mem.Op == OpStaticCall && isSameSym(mem.Aux, "runtime.newobject") && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value -> mem (Store (Load (OffPtr [c] (SP)) mem) x mem) && isConstZero(x) && mem.Op == OpStaticCall && isSameSym(mem.Aux, "runtime.newobject") && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value -> mem (Store (OffPtr (Load (OffPtr [c] (SP)) mem)) x mem) && isConstZero(x) && mem.Op == OpStaticCall && isSameSym(mem.Aux, "runtime.newobject") && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value -> mem // nil checks just need to rewrite to something useless. // they will be deadcode eliminated soon afterwards. (NilCheck (Load (OffPtr [c] (SP)) (StaticCall {sym} _)) _) && isSameSym(sym, "runtime.newobject") && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value && warnRule(fe.Debug_checknil(), v, "removed nil check") -> (Invalid) (NilCheck (OffPtr (Load (OffPtr [c] (SP)) (StaticCall {sym} _))) _) && isSameSym(sym, "runtime.newobject") && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value && warnRule(fe.Debug_checknil(), v, "removed nil check") -> (Invalid) // Evaluate constant address comparisons. (EqPtr x x) -> (ConstBool [1]) (NeqPtr x x) -> (ConstBool [0]) (EqPtr (Addr {a} _) (Addr {b} _)) -> (ConstBool [b2i(a == b)]) (EqPtr (Addr {a} _) (OffPtr [o] (Addr {b} _))) -> (ConstBool [b2i(a == b && o == 0)]) (EqPtr (OffPtr [o1] (Addr {a} _)) (OffPtr [o2] (Addr {b} _))) -> (ConstBool [b2i(a == b && o1 == o2)]) (NeqPtr (Addr {a} _) (Addr {b} _)) -> (ConstBool [b2i(a != b)]) (NeqPtr (Addr {a} _) (OffPtr [o] (Addr {b} _))) -> (ConstBool [b2i(a != b || o != 0)]) (NeqPtr (OffPtr [o1] (Addr {a} _)) (OffPtr [o2] (Addr {b} _))) -> (ConstBool [b2i(a != b || o1 != o2)]) (EqPtr (LocalAddr {a} _ _) (LocalAddr {b} _ _)) -> (ConstBool [b2i(a == b)]) (EqPtr (LocalAddr {a} _ _) (OffPtr [o] (LocalAddr {b} _ _))) -> (ConstBool [b2i(a == b && o == 0)]) (EqPtr (OffPtr [o1] (LocalAddr {a} _ _)) (OffPtr [o2] (LocalAddr {b} _ _))) -> (ConstBool [b2i(a == b && o1 == o2)]) (NeqPtr (LocalAddr {a} _ _) (LocalAddr {b} _ _)) -> (ConstBool [b2i(a != b)]) (NeqPtr (LocalAddr {a} _ _) (OffPtr [o] (LocalAddr {b} _ _))) -> (ConstBool [b2i(a != b || o != 0)]) (NeqPtr (OffPtr [o1] (LocalAddr {a} _ _)) (OffPtr [o2] (LocalAddr {b} _ _))) -> (ConstBool [b2i(a != b || o1 != o2)]) (EqPtr (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) -> (ConstBool [b2i(o1 == 0)]) (NeqPtr (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) -> (ConstBool [b2i(o1 != 0)]) (EqPtr (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) -> (ConstBool [b2i(o1 == o2)]) (NeqPtr (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) -> (ConstBool [b2i(o1 != o2)]) (EqPtr (Const(32|64) [c]) (Const(32|64) [d])) -> (ConstBool [b2i(c == d)]) (NeqPtr (Const(32|64) [c]) (Const(32|64) [d])) -> (ConstBool [b2i(c != d)]) (EqPtr (LocalAddr _ _) (Addr _)) -> (ConstBool [0]) (EqPtr (OffPtr (LocalAddr _ _)) (Addr _)) -> (ConstBool [0]) (EqPtr (LocalAddr _ _) (OffPtr (Addr _))) -> (ConstBool [0]) (EqPtr (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) -> (ConstBool [0]) (NeqPtr (LocalAddr _ _) (Addr _)) -> (ConstBool [1]) (NeqPtr (OffPtr (LocalAddr _ _)) (Addr _)) -> (ConstBool [1]) (NeqPtr (LocalAddr _ _) (OffPtr (Addr _))) -> (ConstBool [1]) (NeqPtr (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) -> (ConstBool [1]) // Simplify address comparisons. (EqPtr (AddPtr p1 o1) p2) && isSamePtr(p1, p2) -> (Not (IsNonNil o1)) (NeqPtr (AddPtr p1 o1) p2) && isSamePtr(p1, p2) -> (IsNonNil o1) (EqPtr (Const(32|64) [0]) p) -> (Not (IsNonNil p)) (NeqPtr (Const(32|64) [0]) p) -> (IsNonNil p) (EqPtr (ConstNil) p) -> (Not (IsNonNil p)) (NeqPtr (ConstNil) p) -> (IsNonNil p) // Evaluate constant user nil checks. (IsNonNil (ConstNil)) -> (ConstBool [0]) (IsNonNil (Const(32|64) [c])) -> (ConstBool [b2i(c != 0)]) (IsNonNil (Addr _)) -> (ConstBool [1]) (IsNonNil (LocalAddr _ _)) -> (ConstBool [1]) // Inline small or disjoint runtime.memmove calls with constant length. (StaticCall {sym} s1:(Store _ (Const(64|32) [sz]) s2:(Store _ src s3:(Store {t} _ dst mem)))) && isSameSym(sym,"runtime.memmove") && t.(*types.Type).IsPtr() // avoids TUINTPTR, see issue 30061 && s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1 && isInlinableMemmove(dst,src,sz,config) && clobber(s1) && clobber(s2) && clobber(s3) -> (Move {t.(*types.Type).Elem()} [sz] dst src mem) // De-virtualize interface calls into static calls. // Note that (ITab (IMake)) doesn't get // rewritten until after the first opt pass, // so this rule should trigger reliably. (InterCall [argsize] (Load (OffPtr [off] (ITab (IMake (Addr {itab} (SB)) _))) _) mem) && devirt(v, itab, off) != nil -> (StaticCall [argsize] {devirt(v, itab, off)} mem) // Move and Zero optimizations. // Move source and destination may overlap. // Convert Moves into Zeros when the source is known to be zeros. (Move {t} [n] dst1 src mem:(Zero {t} [n] dst2 _)) && isSamePtr(src, dst2) -> (Zero {t} [n] dst1 mem) (Move {t} [n] dst1 src mem:(VarDef (Zero {t} [n] dst0 _))) && isSamePtr(src, dst0) -> (Zero {t} [n] dst1 mem) // Don't Store to variables that are about to be overwritten by Move/Zero. (Zero {t1} [n] p1 store:(Store {t2} (OffPtr [o2] p2) _ mem)) && isSamePtr(p1, p2) && store.Uses == 1 && n >= o2 + sizeof(t2) && clobber(store) -> (Zero {t1} [n] p1 mem) (Move {t1} [n] dst1 src1 store:(Store {t2} op:(OffPtr [o2] dst2) _ mem)) && isSamePtr(dst1, dst2) && store.Uses == 1 && n >= o2 + sizeof(t2) && disjoint(src1, n, op, sizeof(t2)) && clobber(store) -> (Move {t1} [n] dst1 src1 mem) // Don't Move to variables that are immediately completely overwritten. (Zero {t} [n] dst1 move:(Move {t} [n] dst2 _ mem)) && move.Uses == 1 && isSamePtr(dst1, dst2) && clobber(move) -> (Zero {t} [n] dst1 mem) (Move {t} [n] dst1 src1 move:(Move {t} [n] dst2 _ mem)) && move.Uses == 1 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) && clobber(move) -> (Move {t} [n] dst1 src1 mem) (Zero {t} [n] dst1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem))) && move.Uses == 1 && vardef.Uses == 1 && isSamePtr(dst1, dst2) && clobber(move) && clobber(vardef) -> (Zero {t} [n] dst1 (VarDef {x} mem)) (Move {t} [n] dst1 src1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem))) && move.Uses == 1 && vardef.Uses == 1 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) && clobber(move) && clobber(vardef) -> (Move {t} [n] dst1 src1 (VarDef {x} mem)) (Store {t1} op1:(OffPtr [o1] p1) d1 m2:(Store {t2} op2:(OffPtr [0] p2) d2 m3:(Move [n] p3 _ mem))) && m2.Uses == 1 && m3.Uses == 1 && o1 == sizeof(t2) && n == sizeof(t2) + sizeof(t1) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && clobber(m2) && clobber(m3) -> (Store {t1} op1 d1 (Store {t2} op2 d2 mem)) (Store {t1} op1:(OffPtr [o1] p1) d1 m2:(Store {t2} op2:(OffPtr [o2] p2) d2 m3:(Store {t3} op3:(OffPtr [0] p3) d3 m4:(Move [n] p4 _ mem)))) && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && o2 == sizeof(t3) && o1-o2 == sizeof(t2) && n == sizeof(t3) + sizeof(t2) + sizeof(t1) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && clobber(m2) && clobber(m3) && clobber(m4) -> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem))) (Store {t1} op1:(OffPtr [o1] p1) d1 m2:(Store {t2} op2:(OffPtr [o2] p2) d2 m3:(Store {t3} op3:(OffPtr [o3] p3) d3 m4:(Store {t4} op4:(OffPtr [0] p4) d4 m5:(Move [n] p5 _ mem))))) && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1 && o3 == sizeof(t4) && o2-o3 == sizeof(t3) && o1-o2 == sizeof(t2) && n == sizeof(t4) + sizeof(t3) + sizeof(t2) + sizeof(t1) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && clobber(m2) && clobber(m3) && clobber(m4) && clobber(m5) -> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem)))) // Don't Zero variables that are immediately completely overwritten // before being accessed. (Move {t} [n] dst1 src1 zero:(Zero {t} [n] dst2 mem)) && zero.Uses == 1 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) && clobber(zero) -> (Move {t} [n] dst1 src1 mem) (Move {t} [n] dst1 src1 vardef:(VarDef {x} zero:(Zero {t} [n] dst2 mem))) && zero.Uses == 1 && vardef.Uses == 1 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) && clobber(zero) && clobber(vardef) -> (Move {t} [n] dst1 src1 (VarDef {x} mem)) (Store {t1} op1:(OffPtr [o1] p1) d1 m2:(Store {t2} op2:(OffPtr [0] p2) d2 m3:(Zero [n] p3 mem))) && m2.Uses == 1 && m3.Uses == 1 && o1 == sizeof(t2) && n == sizeof(t2) + sizeof(t1) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && clobber(m2) && clobber(m3) -> (Store {t1} op1 d1 (Store {t2} op2 d2 mem)) (Store {t1} op1:(OffPtr [o1] p1) d1 m2:(Store {t2} op2:(OffPtr [o2] p2) d2 m3:(Store {t3} op3:(OffPtr [0] p3) d3 m4:(Zero [n] p4 mem)))) && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && o2 == sizeof(t3) && o1-o2 == sizeof(t2) && n == sizeof(t3) + sizeof(t2) + sizeof(t1) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && clobber(m2) && clobber(m3) && clobber(m4) -> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem))) (Store {t1} op1:(OffPtr [o1] p1) d1 m2:(Store {t2} op2:(OffPtr [o2] p2) d2 m3:(Store {t3} op3:(OffPtr [o3] p3) d3 m4:(Store {t4} op4:(OffPtr [0] p4) d4 m5:(Zero [n] p5 mem))))) && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1 && o3 == sizeof(t4) && o2-o3 == sizeof(t3) && o1-o2 == sizeof(t2) && n == sizeof(t4) + sizeof(t3) + sizeof(t2) + sizeof(t1) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && clobber(m2) && clobber(m3) && clobber(m4) && clobber(m5) -> (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem)))) // Don't Move from memory if the values are likely to already be // in registers. (Move {t1} [n] dst p1 mem:(Store {t2} op2:(OffPtr [o2] p2) d1 (Store {t3} op3:(OffPtr [0] p3) d2 _))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && alignof(t2) <= alignof(t1) && alignof(t3) <= alignof(t1) && registerizable(b, t2) && registerizable(b, t3) && o2 == sizeof(t3) && n == sizeof(t2) + sizeof(t3) -> (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [0] dst) d2 mem)) (Move {t1} [n] dst p1 mem:(Store {t2} op2:(OffPtr [o2] p2) d1 (Store {t3} op3:(OffPtr [o3] p3) d2 (Store {t4} op4:(OffPtr [0] p4) d3 _)))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && alignof(t2) <= alignof(t1) && alignof(t3) <= alignof(t1) && alignof(t4) <= alignof(t1) && registerizable(b, t2) && registerizable(b, t3) && registerizable(b, t4) && o3 == sizeof(t4) && o2-o3 == sizeof(t3) && n == sizeof(t2) + sizeof(t3) + sizeof(t4) -> (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [o3] dst) d2 (Store {t4} (OffPtr [0] dst) d3 mem))) (Move {t1} [n] dst p1 mem:(Store {t2} op2:(OffPtr [o2] p2) d1 (Store {t3} op3:(OffPtr [o3] p3) d2 (Store {t4} op4:(OffPtr [o4] p4) d3 (Store {t5} op5:(OffPtr [0] p5) d4 _))))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && alignof(t2) <= alignof(t1) && alignof(t3) <= alignof(t1) && alignof(t4) <= alignof(t1) && alignof(t5) <= alignof(t1) && registerizable(b, t2) && registerizable(b, t3) && registerizable(b, t4) && registerizable(b, t5) && o4 == sizeof(t5) && o3-o4 == sizeof(t4) && o2-o3 == sizeof(t3) && n == sizeof(t2) + sizeof(t3) + sizeof(t4) + sizeof(t5) -> (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [o3] dst) d2 (Store {t4} (OffPtr [o4] dst) d3 (Store {t5} (OffPtr [0] dst) d4 mem)))) // Same thing but with VarDef in the middle. (Move {t1} [n] dst p1 mem:(VarDef (Store {t2} op2:(OffPtr [o2] p2) d1 (Store {t3} op3:(OffPtr [0] p3) d2 _)))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && alignof(t2) <= alignof(t1) && alignof(t3) <= alignof(t1) && registerizable(b, t2) && registerizable(b, t3) && o2 == sizeof(t3) && n == sizeof(t2) + sizeof(t3) -> (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [0] dst) d2 mem)) (Move {t1} [n] dst p1 mem:(VarDef (Store {t2} op2:(OffPtr [o2] p2) d1 (Store {t3} op3:(OffPtr [o3] p3) d2 (Store {t4} op4:(OffPtr [0] p4) d3 _))))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && alignof(t2) <= alignof(t1) && alignof(t3) <= alignof(t1) && alignof(t4) <= alignof(t1) && registerizable(b, t2) && registerizable(b, t3) && registerizable(b, t4) && o3 == sizeof(t4) && o2-o3 == sizeof(t3) && n == sizeof(t2) + sizeof(t3) + sizeof(t4) -> (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [o3] dst) d2 (Store {t4} (OffPtr [0] dst) d3 mem))) (Move {t1} [n] dst p1 mem:(VarDef (Store {t2} op2:(OffPtr [o2] p2) d1 (Store {t3} op3:(OffPtr [o3] p3) d2 (Store {t4} op4:(OffPtr [o4] p4) d3 (Store {t5} op5:(OffPtr [0] p5) d4 _)))))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && alignof(t2) <= alignof(t1) && alignof(t3) <= alignof(t1) && alignof(t4) <= alignof(t1) && alignof(t5) <= alignof(t1) && registerizable(b, t2) && registerizable(b, t3) && registerizable(b, t4) && registerizable(b, t5) && o4 == sizeof(t5) && o3-o4 == sizeof(t4) && o2-o3 == sizeof(t3) && n == sizeof(t2) + sizeof(t3) + sizeof(t4) + sizeof(t5) -> (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [o3] dst) d2 (Store {t4} (OffPtr [o4] dst) d3 (Store {t5} (OffPtr [0] dst) d4 mem)))) // Prefer to Zero and Store than to Move. (Move {t1} [n] dst p1 mem:(Store {t2} op2:(OffPtr [o2] p2) d1 (Zero {t3} [n] p3 _))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && alignof(t2) <= alignof(t1) && alignof(t3) <= alignof(t1) && registerizable(b, t2) && n >= o2 + sizeof(t2) -> (Store {t2} (OffPtr [o2] dst) d1 (Zero {t1} [n] dst mem)) (Move {t1} [n] dst p1 mem:(Store {t2} (OffPtr [o2] p2) d1 (Store {t3} (OffPtr [o3] p3) d2 (Zero {t4} [n] p4 _)))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && alignof(t2) <= alignof(t1) && alignof(t3) <= alignof(t1) && alignof(t4) <= alignof(t1) && registerizable(b, t2) && registerizable(b, t3) && n >= o2 + sizeof(t2) && n >= o3 + sizeof(t3) -> (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [o3] dst) d2 (Zero {t1} [n] dst mem))) (Move {t1} [n] dst p1 mem:(Store {t2} (OffPtr [o2] p2) d1 (Store {t3} (OffPtr [o3] p3) d2 (Store {t4} (OffPtr [o4] p4) d3 (Zero {t5} [n] p5 _))))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && alignof(t2) <= alignof(t1) && alignof(t3) <= alignof(t1) && alignof(t4) <= alignof(t1) && alignof(t5) <= alignof(t1) && registerizable(b, t2) && registerizable(b, t3) && registerizable(b, t4) && n >= o2 + sizeof(t2) && n >= o3 + sizeof(t3) && n >= o4 + sizeof(t4) -> (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [o3] dst) d2 (Store {t4} (OffPtr [o4] dst) d3 (Zero {t1} [n] dst mem)))) (Move {t1} [n] dst p1 mem:(Store {t2} (OffPtr [o2] p2) d1 (Store {t3} (OffPtr [o3] p3) d2 (Store {t4} (OffPtr [o4] p4) d3 (Store {t5} (OffPtr [o5] p5) d4 (Zero {t6} [n] p6 _)))))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6) && alignof(t2) <= alignof(t1) && alignof(t3) <= alignof(t1) && alignof(t4) <= alignof(t1) && alignof(t5) <= alignof(t1) && alignof(t6) <= alignof(t1) && registerizable(b, t2) && registerizable(b, t3) && registerizable(b, t4) && registerizable(b, t5) && n >= o2 + sizeof(t2) && n >= o3 + sizeof(t3) && n >= o4 + sizeof(t4) && n >= o5 + sizeof(t5) -> (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [o3] dst) d2 (Store {t4} (OffPtr [o4] dst) d3 (Store {t5} (OffPtr [o5] dst) d4 (Zero {t1} [n] dst mem))))) (Move {t1} [n] dst p1 mem:(VarDef (Store {t2} op2:(OffPtr [o2] p2) d1 (Zero {t3} [n] p3 _)))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && alignof(t2) <= alignof(t1) && alignof(t3) <= alignof(t1) && registerizable(b, t2) && n >= o2 + sizeof(t2) -> (Store {t2} (OffPtr [o2] dst) d1 (Zero {t1} [n] dst mem)) (Move {t1} [n] dst p1 mem:(VarDef (Store {t2} (OffPtr [o2] p2) d1 (Store {t3} (OffPtr [o3] p3) d2 (Zero {t4} [n] p4 _))))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && alignof(t2) <= alignof(t1) && alignof(t3) <= alignof(t1) && alignof(t4) <= alignof(t1) && registerizable(b, t2) && registerizable(b, t3) && n >= o2 + sizeof(t2) && n >= o3 + sizeof(t3) -> (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [o3] dst) d2 (Zero {t1} [n] dst mem))) (Move {t1} [n] dst p1 mem:(VarDef (Store {t2} (OffPtr [o2] p2) d1 (Store {t3} (OffPtr [o3] p3) d2 (Store {t4} (OffPtr [o4] p4) d3 (Zero {t5} [n] p5 _)))))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && alignof(t2) <= alignof(t1) && alignof(t3) <= alignof(t1) && alignof(t4) <= alignof(t1) && alignof(t5) <= alignof(t1) && registerizable(b, t2) && registerizable(b, t3) && registerizable(b, t4) && n >= o2 + sizeof(t2) && n >= o3 + sizeof(t3) && n >= o4 + sizeof(t4) -> (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [o3] dst) d2 (Store {t4} (OffPtr [o4] dst) d3 (Zero {t1} [n] dst mem)))) (Move {t1} [n] dst p1 mem:(VarDef (Store {t2} (OffPtr [o2] p2) d1 (Store {t3} (OffPtr [o3] p3) d2 (Store {t4} (OffPtr [o4] p4) d3 (Store {t5} (OffPtr [o5] p5) d4 (Zero {t6} [n] p6 _))))))) && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6) && alignof(t2) <= alignof(t1) && alignof(t3) <= alignof(t1) && alignof(t4) <= alignof(t1) && alignof(t5) <= alignof(t1) && alignof(t6) <= alignof(t1) && registerizable(b, t2) && registerizable(b, t3) && registerizable(b, t4) && registerizable(b, t5) && n >= o2 + sizeof(t2) && n >= o3 + sizeof(t3) && n >= o4 + sizeof(t4) && n >= o5 + sizeof(t5) -> (Store {t2} (OffPtr [o2] dst) d1 (Store {t3} (OffPtr [o3] dst) d2 (Store {t4} (OffPtr [o4] dst) d3 (Store {t5} (OffPtr [o5] dst) d4 (Zero {t1} [n] dst mem))))) (StaticCall {sym} x) && needRaceCleanup(sym,v) -> x // Collapse moving A -> B -> C into just A -> C. // Later passes (deadstore, elim unread auto) will remove the A -> B move, if possible. // This happens most commonly when B is an autotmp inserted earlier // during compilation to ensure correctness. // Take care that overlapping moves are preserved. // Restrict this optimization to the stack, to avoid duplicating loads from the heap; // see CL 145208 for discussion. (Move {t1} [s] dst tmp1 midmem:(Move {t2} [s] tmp2 src _)) && t1.(*types.Type).Compare(t2.(*types.Type)) == types.CMPeq && isSamePtr(tmp1, tmp2) && isStackPtr(src) && disjoint(src, s, tmp2, s) && (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config)) -> (Move {t1} [s] dst src midmem) // Same, but for large types that require VarDefs. (Move {t1} [s] dst tmp1 midmem:(VarDef (Move {t2} [s] tmp2 src _))) && t1.(*types.Type).Compare(t2.(*types.Type)) == types.CMPeq && isSamePtr(tmp1, tmp2) && isStackPtr(src) && disjoint(src, s, tmp2, s) && (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config)) -> (Move {t1} [s] dst src midmem) // Elide self-moves. This only happens rarely (e.g test/fixedbugs/bug277.go). // However, this rule is needed to prevent the previous rule from looping forever in such cases. (Move dst src mem) && isSamePtr(dst, src) -> mem