// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package gc import ( "cmd/compile/internal/types" "cmd/internal/sys" "unicode/utf8" ) // range func typecheckrange(n *Node) { // Typechecking order is important here: // 0. first typecheck range expression (slice/map/chan), // it is evaluated only once and so logically it is not part of the loop. // 1. typecheck produced values, // this part can declare new vars and so it must be typechecked before body, // because body can contain a closure that captures the vars. // 2. decldepth++ to denote loop body. // 3. typecheck body. // 4. decldepth--. typecheckrangeExpr(n) // second half of dance, the first half being typecheckrangeExpr n.SetTypecheck(1) ls := n.List.Slice() for i1, n1 := range ls { if n1.Typecheck() == 0 { ls[i1] = typecheck(ls[i1], ctxExpr|ctxAssign) } } decldepth++ typecheckslice(n.Nbody.Slice(), ctxStmt) decldepth-- } func typecheckrangeExpr(n *Node) { n.Right = typecheck(n.Right, ctxExpr) t := n.Right.Type if t == nil { return } // delicate little dance. see typecheckas2 ls := n.List.Slice() for i1, n1 := range ls { if n1.Name == nil || n1.Name.Defn != n { ls[i1] = typecheck(ls[i1], ctxExpr|ctxAssign) } } if t.IsPtr() && t.Elem().IsArray() { t = t.Elem() } n.Type = t var t1, t2 *types.Type toomany := false switch t.Etype { default: yyerrorl(n.Pos, "cannot range over %L", n.Right) return case TARRAY, TSLICE: t1 = types.Types[TINT] t2 = t.Elem() case TMAP: t1 = t.Key() t2 = t.Elem() case TCHAN: if !t.ChanDir().CanRecv() { yyerrorl(n.Pos, "invalid operation: range %v (receive from send-only type %v)", n.Right, n.Right.Type) return } t1 = t.Elem() t2 = nil if n.List.Len() == 2 { toomany = true } case TSTRING: t1 = types.Types[TINT] t2 = types.Runetype } if n.List.Len() > 2 || toomany { yyerrorl(n.Pos, "too many variables in range") } var v1, v2 *Node if n.List.Len() != 0 { v1 = n.List.First() } if n.List.Len() > 1 { v2 = n.List.Second() } // this is not only an optimization but also a requirement in the spec. // "if the second iteration variable is the blank identifier, the range // clause is equivalent to the same clause with only the first variable // present." if v2.isBlank() { if v1 != nil { n.List.Set1(v1) } v2 = nil } var why string if v1 != nil { if v1.Name != nil && v1.Name.Defn == n { v1.Type = t1 } else if v1.Type != nil && assignop(t1, v1.Type, &why) == 0 { yyerrorl(n.Pos, "cannot assign type %v to %L in range%s", t1, v1, why) } checkassign(n, v1) } if v2 != nil { if v2.Name != nil && v2.Name.Defn == n { v2.Type = t2 } else if v2.Type != nil && assignop(t2, v2.Type, &why) == 0 { yyerrorl(n.Pos, "cannot assign type %v to %L in range%s", t2, v2, why) } checkassign(n, v2) } } func cheapComputableIndex(width int64) bool { switch thearch.LinkArch.Family { // MIPS does not have R+R addressing // Arm64 may lack ability to generate this code in our assembler, // but the architecture supports it. case sys.PPC64, sys.S390X: return width == 1 case sys.AMD64, sys.I386, sys.ARM64, sys.ARM: switch width { case 1, 2, 4, 8: return true } } return false } // walkrange transforms various forms of ORANGE into // simpler forms. The result must be assigned back to n. // Node n may also be modified in place, and may also be // the returned node. func walkrange(n *Node) *Node { if isMapClear(n) { m := n.Right lno := setlineno(m) n = mapClear(m) lineno = lno return n } // variable name conventions: // ohv1, hv1, hv2: hidden (old) val 1, 2 // ha, hit: hidden aggregate, iterator // hn, hp: hidden len, pointer // hb: hidden bool // a, v1, v2: not hidden aggregate, val 1, 2 t := n.Type a := n.Right lno := setlineno(a) n.Right = nil var v1, v2 *Node l := n.List.Len() if l > 0 { v1 = n.List.First() } if l > 1 { v2 = n.List.Second() } if v2.isBlank() { v2 = nil } if v1.isBlank() && v2 == nil { v1 = nil } if v1 == nil && v2 != nil { Fatalf("walkrange: v2 != nil while v1 == nil") } // n.List has no meaning anymore, clear it // to avoid erroneous processing by racewalk. n.List.Set(nil) var ifGuard *Node translatedLoopOp := OFOR var body []*Node var init []*Node switch t.Etype { default: Fatalf("walkrange") case TARRAY, TSLICE: if arrayClear(n, v1, v2, a) { lineno = lno return n } // order.stmt arranged for a copy of the array/slice variable if needed. ha := a hv1 := temp(types.Types[TINT]) hn := temp(types.Types[TINT]) init = append(init, nod(OAS, hv1, nil)) init = append(init, nod(OAS, hn, nod(OLEN, ha, nil))) n.Left = nod(OLT, hv1, hn) n.Right = nod(OAS, hv1, nod(OADD, hv1, nodintconst(1))) // for range ha { body } if v1 == nil { break } // for v1 := range ha { body } if v2 == nil { body = []*Node{nod(OAS, v1, hv1)} break } // for v1, v2 := range ha { body } if cheapComputableIndex(n.Type.Elem().Width) { // v1, v2 = hv1, ha[hv1] tmp := nod(OINDEX, ha, hv1) tmp.SetBounded(true) // Use OAS2 to correctly handle assignments // of the form "v1, a[v1] := range". a := nod(OAS2, nil, nil) a.List.Set2(v1, v2) a.Rlist.Set2(hv1, tmp) body = []*Node{a} break } // TODO(austin): OFORUNTIL is a strange beast, but is // necessary for expressing the control flow we need // while also making "break" and "continue" work. It // would be nice to just lower ORANGE during SSA, but // racewalk needs to see many of the operations // involved in ORANGE's implementation. If racewalk // moves into SSA, consider moving ORANGE into SSA and // eliminating OFORUNTIL. // TODO(austin): OFORUNTIL inhibits bounds-check // elimination on the index variable (see #20711). // Enhance the prove pass to understand this. ifGuard = nod(OIF, nil, nil) ifGuard.Left = nod(OLT, hv1, hn) translatedLoopOp = OFORUNTIL hp := temp(types.NewPtr(n.Type.Elem())) tmp := nod(OINDEX, ha, nodintconst(0)) tmp.SetBounded(true) init = append(init, nod(OAS, hp, nod(OADDR, tmp, nil))) // Use OAS2 to correctly handle assignments // of the form "v1, a[v1] := range". a := nod(OAS2, nil, nil) a.List.Set2(v1, v2) a.Rlist.Set2(hv1, nod(ODEREF, hp, nil)) body = append(body, a) // Advance pointer as part of the late increment. // // This runs *after* the condition check, so we know // advancing the pointer is safe and won't go past the // end of the allocation. a = nod(OAS, hp, addptr(hp, t.Elem().Width)) a = typecheck(a, ctxStmt) n.List.Set1(a) case TMAP: // order.stmt allocated the iterator for us. // we only use a once, so no copy needed. ha := a hit := prealloc[n] th := hit.Type n.Left = nil keysym := th.Field(0).Sym // depends on layout of iterator struct. See reflect.go:hiter elemsym := th.Field(1).Sym // ditto fn := syslook("mapiterinit") fn = substArgTypes(fn, t.Key(), t.Elem(), th) init = append(init, mkcall1(fn, nil, nil, typename(t), ha, nod(OADDR, hit, nil))) n.Left = nod(ONE, nodSym(ODOT, hit, keysym), nodnil()) fn = syslook("mapiternext") fn = substArgTypes(fn, th) n.Right = mkcall1(fn, nil, nil, nod(OADDR, hit, nil)) key := nodSym(ODOT, hit, keysym) key = nod(ODEREF, key, nil) if v1 == nil { body = nil } else if v2 == nil { body = []*Node{nod(OAS, v1, key)} } else { elem := nodSym(ODOT, hit, elemsym) elem = nod(ODEREF, elem, nil) a := nod(OAS2, nil, nil) a.List.Set2(v1, v2) a.Rlist.Set2(key, elem) body = []*Node{a} } case TCHAN: // order.stmt arranged for a copy of the channel variable. ha := a n.Left = nil hv1 := temp(t.Elem()) hv1.SetTypecheck(1) if t.Elem().HasPointers() { init = append(init, nod(OAS, hv1, nil)) } hb := temp(types.Types[TBOOL]) n.Left = nod(ONE, hb, nodbool(false)) a := nod(OAS2RECV, nil, nil) a.SetTypecheck(1) a.List.Set2(hv1, hb) a.Right = nod(ORECV, ha, nil) n.Left.Ninit.Set1(a) if v1 == nil { body = nil } else { body = []*Node{nod(OAS, v1, hv1)} } // Zero hv1. This prevents hv1 from being the sole, inaccessible // reference to an otherwise GC-able value during the next channel receive. // See issue 15281. body = append(body, nod(OAS, hv1, nil)) case TSTRING: // Transform string range statements like "for v1, v2 = range a" into // // ha := a // for hv1 := 0; hv1 < len(ha); { // hv1t := hv1 // hv2 := rune(ha[hv1]) // if hv2 < utf8.RuneSelf { // hv1++ // } else { // hv2, hv1 = decoderune(ha, hv1) // } // v1, v2 = hv1t, hv2 // // original body // } // order.stmt arranged for a copy of the string variable. ha := a hv1 := temp(types.Types[TINT]) hv1t := temp(types.Types[TINT]) hv2 := temp(types.Runetype) // hv1 := 0 init = append(init, nod(OAS, hv1, nil)) // hv1 < len(ha) n.Left = nod(OLT, hv1, nod(OLEN, ha, nil)) if v1 != nil { // hv1t = hv1 body = append(body, nod(OAS, hv1t, hv1)) } // hv2 := rune(ha[hv1]) nind := nod(OINDEX, ha, hv1) nind.SetBounded(true) body = append(body, nod(OAS, hv2, conv(nind, types.Runetype))) // if hv2 < utf8.RuneSelf nif := nod(OIF, nil, nil) nif.Left = nod(OLT, hv2, nodintconst(utf8.RuneSelf)) // hv1++ nif.Nbody.Set1(nod(OAS, hv1, nod(OADD, hv1, nodintconst(1)))) // } else { eif := nod(OAS2, nil, nil) nif.Rlist.Set1(eif) // hv2, hv1 = decoderune(ha, hv1) eif.List.Set2(hv2, hv1) fn := syslook("decoderune") eif.Rlist.Set1(mkcall1(fn, fn.Type.Results(), nil, ha, hv1)) body = append(body, nif) if v1 != nil { if v2 != nil { // v1, v2 = hv1t, hv2 a := nod(OAS2, nil, nil) a.List.Set2(v1, v2) a.Rlist.Set2(hv1t, hv2) body = append(body, a) } else { // v1 = hv1t body = append(body, nod(OAS, v1, hv1t)) } } } n.Op = translatedLoopOp typecheckslice(init, ctxStmt) if ifGuard != nil { ifGuard.Ninit.Append(init...) ifGuard = typecheck(ifGuard, ctxStmt) } else { n.Ninit.Append(init...) } typecheckslice(n.Left.Ninit.Slice(), ctxStmt) n.Left = typecheck(n.Left, ctxExpr) n.Left = defaultlit(n.Left, nil) n.Right = typecheck(n.Right, ctxStmt) typecheckslice(body, ctxStmt) n.Nbody.Prepend(body...) if ifGuard != nil { ifGuard.Nbody.Set1(n) n = ifGuard } n = walkstmt(n) lineno = lno return n } // isMapClear checks if n is of the form: // // for k := range m { // delete(m, k) // } // // where == for keys of map m is reflexive. func isMapClear(n *Node) bool { if Debug['N'] != 0 || instrumenting { return false } if n.Op != ORANGE || n.Type.Etype != TMAP || n.List.Len() != 1 { return false } k := n.List.First() if k == nil || k.isBlank() { return false } // Require k to be a new variable name. if k.Name == nil || k.Name.Defn != n { return false } if n.Nbody.Len() != 1 { return false } stmt := n.Nbody.First() // only stmt in body if stmt == nil || stmt.Op != ODELETE { return false } m := n.Right if !samesafeexpr(stmt.List.First(), m) || !samesafeexpr(stmt.List.Second(), k) { return false } // Keys where equality is not reflexive can not be deleted from maps. if !isreflexive(m.Type.Key()) { return false } return true } // mapClear constructs a call to runtime.mapclear for the map m. func mapClear(m *Node) *Node { t := m.Type // instantiate mapclear(typ *type, hmap map[any]any) fn := syslook("mapclear") fn = substArgTypes(fn, t.Key(), t.Elem()) n := mkcall1(fn, nil, nil, typename(t), m) n = typecheck(n, ctxStmt) n = walkstmt(n) return n } // Lower n into runtime·memclr if possible, for // fast zeroing of slices and arrays (issue 5373). // Look for instances of // // for i := range a { // a[i] = zero // } // // in which the evaluation of a is side-effect-free. // // Parameters are as in walkrange: "for v1, v2 = range a". func arrayClear(n, v1, v2, a *Node) bool { if Debug['N'] != 0 || instrumenting { return false } if v1 == nil || v2 != nil { return false } if n.Nbody.Len() != 1 || n.Nbody.First() == nil { return false } stmt := n.Nbody.First() // only stmt in body if stmt.Op != OAS || stmt.Left.Op != OINDEX { return false } if !samesafeexpr(stmt.Left.Left, a) || !samesafeexpr(stmt.Left.Right, v1) { return false } elemsize := n.Type.Elem().Width if elemsize <= 0 || !isZero(stmt.Right) { return false } // Convert to // if len(a) != 0 { // hp = &a[0] // hn = len(a)*sizeof(elem(a)) // memclr{NoHeap,Has}Pointers(hp, hn) // i = len(a) - 1 // } n.Op = OIF n.Nbody.Set(nil) n.Left = nod(ONE, nod(OLEN, a, nil), nodintconst(0)) // hp = &a[0] hp := temp(types.Types[TUNSAFEPTR]) tmp := nod(OINDEX, a, nodintconst(0)) tmp.SetBounded(true) tmp = nod(OADDR, tmp, nil) tmp = convnop(tmp, types.Types[TUNSAFEPTR]) n.Nbody.Append(nod(OAS, hp, tmp)) // hn = len(a) * sizeof(elem(a)) hn := temp(types.Types[TUINTPTR]) tmp = nod(OLEN, a, nil) tmp = nod(OMUL, tmp, nodintconst(elemsize)) tmp = conv(tmp, types.Types[TUINTPTR]) n.Nbody.Append(nod(OAS, hn, tmp)) var fn *Node if a.Type.Elem().HasPointers() { // memclrHasPointers(hp, hn) Curfn.Func.setWBPos(stmt.Pos) fn = mkcall("memclrHasPointers", nil, nil, hp, hn) } else { // memclrNoHeapPointers(hp, hn) fn = mkcall("memclrNoHeapPointers", nil, nil, hp, hn) } n.Nbody.Append(fn) // i = len(a) - 1 v1 = nod(OAS, v1, nod(OSUB, nod(OLEN, a, nil), nodintconst(1))) n.Nbody.Append(v1) n.Left = typecheck(n.Left, ctxExpr) n.Left = defaultlit(n.Left, nil) typecheckslice(n.Nbody.Slice(), ctxStmt) n = walkstmt(n) return true } // addptr returns (*T)(uintptr(p) + n). func addptr(p *Node, n int64) *Node { t := p.Type p = nod(OCONVNOP, p, nil) p.Type = types.Types[TUINTPTR] p = nod(OADD, p, nodintconst(n)) p = nod(OCONVNOP, p, nil) p.Type = t return p }