// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package gc import ( "fmt" "os" "path/filepath" "runtime" "strconv" "strings" "unicode" "unicode/utf8" "cmd/compile/internal/syntax" "cmd/compile/internal/types" "cmd/internal/obj" "cmd/internal/objabi" "cmd/internal/src" ) // parseFiles concurrently parses files into *syntax.File structures. // Each declaration in every *syntax.File is converted to a syntax tree // and its root represented by *Node is appended to xtop. // Returns the total count of parsed lines. func parseFiles(filenames []string) uint { noders := make([]*noder, 0, len(filenames)) // Limit the number of simultaneously open files. sem := make(chan struct{}, runtime.GOMAXPROCS(0)+10) for _, filename := range filenames { p := &noder{ basemap: make(map[*syntax.PosBase]*src.PosBase), err: make(chan syntax.Error), } noders = append(noders, p) go func(filename string) { sem <- struct{}{} defer func() { <-sem }() defer close(p.err) base := syntax.NewFileBase(filename) f, err := os.Open(filename) if err != nil { p.error(syntax.Error{Msg: err.Error()}) return } defer f.Close() p.file, _ = syntax.Parse(base, f, p.error, p.pragma, syntax.CheckBranches) // errors are tracked via p.error }(filename) } var lines uint for _, p := range noders { for e := range p.err { p.yyerrorpos(e.Pos, "%s", e.Msg) } p.node() lines += p.file.Lines p.file = nil // release memory if nsyntaxerrors != 0 { errorexit() } // Always run testdclstack here, even when debug_dclstack is not set, as a sanity measure. testdclstack() } localpkg.Height = myheight return lines } // makeSrcPosBase translates from a *syntax.PosBase to a *src.PosBase. func (p *noder) makeSrcPosBase(b0 *syntax.PosBase) *src.PosBase { // fast path: most likely PosBase hasn't changed if p.basecache.last == b0 { return p.basecache.base } b1, ok := p.basemap[b0] if !ok { fn := b0.Filename() if b0.IsFileBase() { b1 = src.NewFileBase(fn, absFilename(fn)) } else { // line directive base p0 := b0.Pos() p0b := p0.Base() if p0b == b0 { panic("infinite recursion in makeSrcPosBase") } p1 := src.MakePos(p.makeSrcPosBase(p0b), p0.Line(), p0.Col()) b1 = src.NewLinePragmaBase(p1, fn, fileh(fn), b0.Line(), b0.Col()) } p.basemap[b0] = b1 } // update cache p.basecache.last = b0 p.basecache.base = b1 return b1 } func (p *noder) makeXPos(pos syntax.Pos) (_ src.XPos) { return Ctxt.PosTable.XPos(src.MakePos(p.makeSrcPosBase(pos.Base()), pos.Line(), pos.Col())) } func (p *noder) yyerrorpos(pos syntax.Pos, format string, args ...interface{}) { yyerrorl(p.makeXPos(pos), format, args...) } var pathPrefix string // TODO(gri) Can we eliminate fileh in favor of absFilename? func fileh(name string) string { return objabi.AbsFile("", name, pathPrefix) } func absFilename(name string) string { return objabi.AbsFile(Ctxt.Pathname, name, pathPrefix) } // noder transforms package syntax's AST into a Node tree. type noder struct { basemap map[*syntax.PosBase]*src.PosBase basecache struct { last *syntax.PosBase base *src.PosBase } file *syntax.File linknames []linkname pragcgobuf [][]string err chan syntax.Error scope ScopeID importedUnsafe bool importedEmbed bool // scopeVars is a stack tracking the number of variables declared in the // current function at the moment each open scope was opened. scopeVars []int lastCloseScopePos syntax.Pos } func (p *noder) funcBody(fn *Node, block *syntax.BlockStmt) { oldScope := p.scope p.scope = 0 funchdr(fn) if block != nil { body := p.stmts(block.List) if body == nil { body = []*Node{nod(OEMPTY, nil, nil)} } fn.Nbody.Set(body) lineno = p.makeXPos(block.Rbrace) fn.Func.Endlineno = lineno } funcbody() p.scope = oldScope } func (p *noder) openScope(pos syntax.Pos) { types.Markdcl() if trackScopes { Curfn.Func.Parents = append(Curfn.Func.Parents, p.scope) p.scopeVars = append(p.scopeVars, len(Curfn.Func.Dcl)) p.scope = ScopeID(len(Curfn.Func.Parents)) p.markScope(pos) } } func (p *noder) closeScope(pos syntax.Pos) { p.lastCloseScopePos = pos types.Popdcl() if trackScopes { scopeVars := p.scopeVars[len(p.scopeVars)-1] p.scopeVars = p.scopeVars[:len(p.scopeVars)-1] if scopeVars == len(Curfn.Func.Dcl) { // no variables were declared in this scope, so we can retract it. if int(p.scope) != len(Curfn.Func.Parents) { Fatalf("scope tracking inconsistency, no variables declared but scopes were not retracted") } p.scope = Curfn.Func.Parents[p.scope-1] Curfn.Func.Parents = Curfn.Func.Parents[:len(Curfn.Func.Parents)-1] nmarks := len(Curfn.Func.Marks) Curfn.Func.Marks[nmarks-1].Scope = p.scope prevScope := ScopeID(0) if nmarks >= 2 { prevScope = Curfn.Func.Marks[nmarks-2].Scope } if Curfn.Func.Marks[nmarks-1].Scope == prevScope { Curfn.Func.Marks = Curfn.Func.Marks[:nmarks-1] } return } p.scope = Curfn.Func.Parents[p.scope-1] p.markScope(pos) } } func (p *noder) markScope(pos syntax.Pos) { xpos := p.makeXPos(pos) if i := len(Curfn.Func.Marks); i > 0 && Curfn.Func.Marks[i-1].Pos == xpos { Curfn.Func.Marks[i-1].Scope = p.scope } else { Curfn.Func.Marks = append(Curfn.Func.Marks, Mark{xpos, p.scope}) } } // closeAnotherScope is like closeScope, but it reuses the same mark // position as the last closeScope call. This is useful for "for" and // "if" statements, as their implicit blocks always end at the same // position as an explicit block. func (p *noder) closeAnotherScope() { p.closeScope(p.lastCloseScopePos) } // linkname records a //go:linkname directive. type linkname struct { pos syntax.Pos local string remote string } func (p *noder) node() { types.Block = 1 p.importedUnsafe = false p.importedEmbed = false p.setlineno(p.file.PkgName) mkpackage(p.file.PkgName.Value) if pragma, ok := p.file.Pragma.(*Pragma); ok { pragma.Flag &^= GoBuildPragma p.checkUnused(pragma) } xtop = append(xtop, p.decls(p.file.DeclList)...) for _, n := range p.linknames { if !p.importedUnsafe { p.yyerrorpos(n.pos, "//go:linkname only allowed in Go files that import \"unsafe\"") continue } s := lookup(n.local) if n.remote != "" { s.Linkname = n.remote } else { // Use the default object symbol name if the // user didn't provide one. if myimportpath == "" { p.yyerrorpos(n.pos, "//go:linkname requires linkname argument or -p compiler flag") } else { s.Linkname = objabi.PathToPrefix(myimportpath) + "." + n.local } } } // The linker expects an ABI0 wrapper for all cgo-exported // functions. for _, prag := range p.pragcgobuf { switch prag[0] { case "cgo_export_static", "cgo_export_dynamic": if symabiRefs == nil { symabiRefs = make(map[string]obj.ABI) } symabiRefs[prag[1]] = obj.ABI0 } } pragcgobuf = append(pragcgobuf, p.pragcgobuf...) lineno = src.NoXPos clearImports() } func (p *noder) decls(decls []syntax.Decl) (l []*Node) { var cs constState for _, decl := range decls { p.setlineno(decl) switch decl := decl.(type) { case *syntax.ImportDecl: p.importDecl(decl) case *syntax.VarDecl: l = append(l, p.varDecl(decl)...) case *syntax.ConstDecl: l = append(l, p.constDecl(decl, &cs)...) case *syntax.TypeDecl: l = append(l, p.typeDecl(decl)) case *syntax.FuncDecl: l = append(l, p.funcDecl(decl)) default: panic("unhandled Decl") } } return } func (p *noder) importDecl(imp *syntax.ImportDecl) { if imp.Path.Bad { return // avoid follow-on errors if there was a syntax error } if pragma, ok := imp.Pragma.(*Pragma); ok { p.checkUnused(pragma) } val := p.basicLit(imp.Path) ipkg := importfile(&val) if ipkg == nil { if nerrors == 0 { Fatalf("phase error in import") } return } if ipkg == unsafepkg { p.importedUnsafe = true } if ipkg.Path == "embed" { p.importedEmbed = true } ipkg.Direct = true var my *types.Sym if imp.LocalPkgName != nil { my = p.name(imp.LocalPkgName) } else { my = lookup(ipkg.Name) } pack := p.nod(imp, OPACK, nil, nil) pack.Sym = my pack.Name.Pkg = ipkg switch my.Name { case ".": importdot(ipkg, pack) return case "init": yyerrorl(pack.Pos, "cannot import package as init - init must be a func") return case "_": return } if my.Def != nil { redeclare(pack.Pos, my, "as imported package name") } my.Def = asTypesNode(pack) my.Lastlineno = pack.Pos my.Block = 1 // at top level } func (p *noder) varDecl(decl *syntax.VarDecl) []*Node { names := p.declNames(decl.NameList) typ := p.typeExprOrNil(decl.Type) var exprs []*Node if decl.Values != nil { exprs = p.exprList(decl.Values) } if pragma, ok := decl.Pragma.(*Pragma); ok { if len(pragma.Embeds) > 0 { if !p.importedEmbed { // This check can't be done when building the list pragma.Embeds // because that list is created before the noder starts walking over the file, // so at that point it hasn't seen the imports. // We're left to check now, just before applying the //go:embed lines. for _, e := range pragma.Embeds { p.yyerrorpos(e.Pos, "//go:embed only allowed in Go files that import \"embed\"") } } else { exprs = varEmbed(p, names, typ, exprs, pragma.Embeds) } pragma.Embeds = nil } p.checkUnused(pragma) } p.setlineno(decl) return variter(names, typ, exprs) } // constState tracks state between constant specifiers within a // declaration group. This state is kept separate from noder so nested // constant declarations are handled correctly (e.g., issue 15550). type constState struct { group *syntax.Group typ *Node values []*Node iota int64 } func (p *noder) constDecl(decl *syntax.ConstDecl, cs *constState) []*Node { if decl.Group == nil || decl.Group != cs.group { *cs = constState{ group: decl.Group, } } if pragma, ok := decl.Pragma.(*Pragma); ok { p.checkUnused(pragma) } names := p.declNames(decl.NameList) typ := p.typeExprOrNil(decl.Type) var values []*Node if decl.Values != nil { values = p.exprList(decl.Values) cs.typ, cs.values = typ, values } else { if typ != nil { yyerror("const declaration cannot have type without expression") } typ, values = cs.typ, cs.values } nn := make([]*Node, 0, len(names)) for i, n := range names { if i >= len(values) { yyerror("missing value in const declaration") break } v := values[i] if decl.Values == nil { v = treecopy(v, n.Pos) } n.Op = OLITERAL declare(n, dclcontext) n.Name.Param.Ntype = typ n.Name.Defn = v n.SetIota(cs.iota) nn = append(nn, p.nod(decl, ODCLCONST, n, nil)) } if len(values) > len(names) { yyerror("extra expression in const declaration") } cs.iota++ return nn } func (p *noder) typeDecl(decl *syntax.TypeDecl) *Node { n := p.declName(decl.Name) n.Op = OTYPE declare(n, dclcontext) // decl.Type may be nil but in that case we got a syntax error during parsing typ := p.typeExprOrNil(decl.Type) param := n.Name.Param param.Ntype = typ param.SetAlias(decl.Alias) if pragma, ok := decl.Pragma.(*Pragma); ok { if !decl.Alias { param.SetPragma(pragma.Flag & TypePragmas) pragma.Flag &^= TypePragmas } p.checkUnused(pragma) } nod := p.nod(decl, ODCLTYPE, n, nil) if param.Alias() && !langSupported(1, 9, localpkg) { yyerrorl(nod.Pos, "type aliases only supported as of -lang=go1.9") } return nod } func (p *noder) declNames(names []*syntax.Name) []*Node { nodes := make([]*Node, 0, len(names)) for _, name := range names { nodes = append(nodes, p.declName(name)) } return nodes } func (p *noder) declName(name *syntax.Name) *Node { n := dclname(p.name(name)) n.Pos = p.pos(name) return n } func (p *noder) funcDecl(fun *syntax.FuncDecl) *Node { name := p.name(fun.Name) t := p.signature(fun.Recv, fun.Type) f := p.nod(fun, ODCLFUNC, nil, nil) if fun.Recv == nil { if name.Name == "init" { name = renameinit() if t.List.Len() > 0 || t.Rlist.Len() > 0 { yyerrorl(f.Pos, "func init must have no arguments and no return values") } } if localpkg.Name == "main" && name.Name == "main" { if t.List.Len() > 0 || t.Rlist.Len() > 0 { yyerrorl(f.Pos, "func main must have no arguments and no return values") } } } else { f.Func.Shortname = name name = nblank.Sym // filled in by typecheckfunc } f.Func.Nname = newfuncnamel(p.pos(fun.Name), name) f.Func.Nname.Name.Defn = f f.Func.Nname.Name.Param.Ntype = t if pragma, ok := fun.Pragma.(*Pragma); ok { f.Func.Pragma = pragma.Flag & FuncPragmas if pragma.Flag&Systemstack != 0 && pragma.Flag&Nosplit != 0 { yyerrorl(f.Pos, "go:nosplit and go:systemstack cannot be combined") } pragma.Flag &^= FuncPragmas p.checkUnused(pragma) } if fun.Recv == nil { declare(f.Func.Nname, PFUNC) } p.funcBody(f, fun.Body) if fun.Body != nil { if f.Func.Pragma&Noescape != 0 { yyerrorl(f.Pos, "can only use //go:noescape with external func implementations") } } else { if pure_go || strings.HasPrefix(f.funcname(), "init.") { // Linknamed functions are allowed to have no body. Hopefully // the linkname target has a body. See issue 23311. isLinknamed := false for _, n := range p.linknames { if f.funcname() == n.local { isLinknamed = true break } } if !isLinknamed { yyerrorl(f.Pos, "missing function body") } } } return f } func (p *noder) signature(recv *syntax.Field, typ *syntax.FuncType) *Node { n := p.nod(typ, OTFUNC, nil, nil) if recv != nil { n.Left = p.param(recv, false, false) } n.List.Set(p.params(typ.ParamList, true)) n.Rlist.Set(p.params(typ.ResultList, false)) return n } func (p *noder) params(params []*syntax.Field, dddOk bool) []*Node { nodes := make([]*Node, 0, len(params)) for i, param := range params { p.setlineno(param) nodes = append(nodes, p.param(param, dddOk, i+1 == len(params))) } return nodes } func (p *noder) param(param *syntax.Field, dddOk, final bool) *Node { var name *types.Sym if param.Name != nil { name = p.name(param.Name) } typ := p.typeExpr(param.Type) n := p.nodSym(param, ODCLFIELD, typ, name) // rewrite ...T parameter if typ.Op == ODDD { if !dddOk { // We mark these as syntax errors to get automatic elimination // of multiple such errors per line (see yyerrorl in subr.go). yyerror("syntax error: cannot use ... in receiver or result parameter list") } else if !final { if param.Name == nil { yyerror("syntax error: cannot use ... with non-final parameter") } else { p.yyerrorpos(param.Name.Pos(), "syntax error: cannot use ... with non-final parameter %s", param.Name.Value) } } typ.Op = OTARRAY typ.Right = typ.Left typ.Left = nil n.SetIsDDD(true) if n.Left != nil { n.Left.SetIsDDD(true) } } return n } func (p *noder) exprList(expr syntax.Expr) []*Node { if list, ok := expr.(*syntax.ListExpr); ok { return p.exprs(list.ElemList) } return []*Node{p.expr(expr)} } func (p *noder) exprs(exprs []syntax.Expr) []*Node { nodes := make([]*Node, 0, len(exprs)) for _, expr := range exprs { nodes = append(nodes, p.expr(expr)) } return nodes } func (p *noder) expr(expr syntax.Expr) *Node { p.setlineno(expr) switch expr := expr.(type) { case nil, *syntax.BadExpr: return nil case *syntax.Name: return p.mkname(expr) case *syntax.BasicLit: n := nodlit(p.basicLit(expr)) n.SetDiag(expr.Bad) // avoid follow-on errors if there was a syntax error return n case *syntax.CompositeLit: n := p.nod(expr, OCOMPLIT, nil, nil) if expr.Type != nil { n.Right = p.expr(expr.Type) } l := p.exprs(expr.ElemList) for i, e := range l { l[i] = p.wrapname(expr.ElemList[i], e) } n.List.Set(l) lineno = p.makeXPos(expr.Rbrace) return n case *syntax.KeyValueExpr: // use position of expr.Key rather than of expr (which has position of ':') return p.nod(expr.Key, OKEY, p.expr(expr.Key), p.wrapname(expr.Value, p.expr(expr.Value))) case *syntax.FuncLit: return p.funcLit(expr) case *syntax.ParenExpr: return p.nod(expr, OPAREN, p.expr(expr.X), nil) case *syntax.SelectorExpr: // parser.new_dotname obj := p.expr(expr.X) if obj.Op == OPACK { obj.Name.SetUsed(true) return importName(obj.Name.Pkg.Lookup(expr.Sel.Value)) } n := nodSym(OXDOT, obj, p.name(expr.Sel)) n.Pos = p.pos(expr) // lineno may have been changed by p.expr(expr.X) return n case *syntax.IndexExpr: return p.nod(expr, OINDEX, p.expr(expr.X), p.expr(expr.Index)) case *syntax.SliceExpr: op := OSLICE if expr.Full { op = OSLICE3 } n := p.nod(expr, op, p.expr(expr.X), nil) var index [3]*Node for i, x := range &expr.Index { if x != nil { index[i] = p.expr(x) } } n.SetSliceBounds(index[0], index[1], index[2]) return n case *syntax.AssertExpr: return p.nod(expr, ODOTTYPE, p.expr(expr.X), p.typeExpr(expr.Type)) case *syntax.Operation: if expr.Op == syntax.Add && expr.Y != nil { return p.sum(expr) } x := p.expr(expr.X) if expr.Y == nil { return p.nod(expr, p.unOp(expr.Op), x, nil) } return p.nod(expr, p.binOp(expr.Op), x, p.expr(expr.Y)) case *syntax.CallExpr: n := p.nod(expr, OCALL, p.expr(expr.Fun), nil) n.List.Set(p.exprs(expr.ArgList)) n.SetIsDDD(expr.HasDots) return n case *syntax.ArrayType: var len *Node if expr.Len != nil { len = p.expr(expr.Len) } else { len = p.nod(expr, ODDD, nil, nil) } return p.nod(expr, OTARRAY, len, p.typeExpr(expr.Elem)) case *syntax.SliceType: return p.nod(expr, OTARRAY, nil, p.typeExpr(expr.Elem)) case *syntax.DotsType: return p.nod(expr, ODDD, p.typeExpr(expr.Elem), nil) case *syntax.StructType: return p.structType(expr) case *syntax.InterfaceType: return p.interfaceType(expr) case *syntax.FuncType: return p.signature(nil, expr) case *syntax.MapType: return p.nod(expr, OTMAP, p.typeExpr(expr.Key), p.typeExpr(expr.Value)) case *syntax.ChanType: n := p.nod(expr, OTCHAN, p.typeExpr(expr.Elem), nil) n.SetTChanDir(p.chanDir(expr.Dir)) return n case *syntax.TypeSwitchGuard: n := p.nod(expr, OTYPESW, nil, p.expr(expr.X)) if expr.Lhs != nil { n.Left = p.declName(expr.Lhs) if n.Left.isBlank() { yyerror("invalid variable name %v in type switch", n.Left) } } return n } panic("unhandled Expr") } // sum efficiently handles very large summation expressions (such as // in issue #16394). In particular, it avoids left recursion and // collapses string literals. func (p *noder) sum(x syntax.Expr) *Node { // While we need to handle long sums with asymptotic // efficiency, the vast majority of sums are very small: ~95% // have only 2 or 3 operands, and ~99% of string literals are // never concatenated. adds := make([]*syntax.Operation, 0, 2) for { add, ok := x.(*syntax.Operation) if !ok || add.Op != syntax.Add || add.Y == nil { break } adds = append(adds, add) x = add.X } // nstr is the current rightmost string literal in the // summation (if any), and chunks holds its accumulated // substrings. // // Consider the expression x + "a" + "b" + "c" + y. When we // reach the string literal "a", we assign nstr to point to // its corresponding Node and initialize chunks to {"a"}. // Visiting the subsequent string literals "b" and "c", we // simply append their values to chunks. Finally, when we // reach the non-constant operand y, we'll join chunks to form // "abc" and reassign the "a" string literal's value. // // N.B., we need to be careful about named string constants // (indicated by Sym != nil) because 1) we can't modify their // value, as doing so would affect other uses of the string // constant, and 2) they may have types, which we need to // handle correctly. For now, we avoid these problems by // treating named string constants the same as non-constant // operands. var nstr *Node chunks := make([]string, 0, 1) n := p.expr(x) if Isconst(n, CTSTR) && n.Sym == nil { nstr = n chunks = append(chunks, nstr.StringVal()) } for i := len(adds) - 1; i >= 0; i-- { add := adds[i] r := p.expr(add.Y) if Isconst(r, CTSTR) && r.Sym == nil { if nstr != nil { // Collapse r into nstr instead of adding to n. chunks = append(chunks, r.StringVal()) continue } nstr = r chunks = append(chunks, nstr.StringVal()) } else { if len(chunks) > 1 { nstr.SetVal(Val{U: strings.Join(chunks, "")}) } nstr = nil chunks = chunks[:0] } n = p.nod(add, OADD, n, r) } if len(chunks) > 1 { nstr.SetVal(Val{U: strings.Join(chunks, "")}) } return n } func (p *noder) typeExpr(typ syntax.Expr) *Node { // TODO(mdempsky): Be stricter? typecheck should handle errors anyway. return p.expr(typ) } func (p *noder) typeExprOrNil(typ syntax.Expr) *Node { if typ != nil { return p.expr(typ) } return nil } func (p *noder) chanDir(dir syntax.ChanDir) types.ChanDir { switch dir { case 0: return types.Cboth case syntax.SendOnly: return types.Csend case syntax.RecvOnly: return types.Crecv } panic("unhandled ChanDir") } func (p *noder) structType(expr *syntax.StructType) *Node { l := make([]*Node, 0, len(expr.FieldList)) for i, field := range expr.FieldList { p.setlineno(field) var n *Node if field.Name == nil { n = p.embedded(field.Type) } else { n = p.nodSym(field, ODCLFIELD, p.typeExpr(field.Type), p.name(field.Name)) } if i < len(expr.TagList) && expr.TagList[i] != nil { n.SetVal(p.basicLit(expr.TagList[i])) } l = append(l, n) } p.setlineno(expr) n := p.nod(expr, OTSTRUCT, nil, nil) n.List.Set(l) return n } func (p *noder) interfaceType(expr *syntax.InterfaceType) *Node { l := make([]*Node, 0, len(expr.MethodList)) for _, method := range expr.MethodList { p.setlineno(method) var n *Node if method.Name == nil { n = p.nodSym(method, ODCLFIELD, importName(p.packname(method.Type)), nil) } else { mname := p.name(method.Name) sig := p.typeExpr(method.Type) sig.Left = fakeRecv() n = p.nodSym(method, ODCLFIELD, sig, mname) ifacedcl(n) } l = append(l, n) } n := p.nod(expr, OTINTER, nil, nil) n.List.Set(l) return n } func (p *noder) packname(expr syntax.Expr) *types.Sym { switch expr := expr.(type) { case *syntax.Name: name := p.name(expr) if n := oldname(name); n.Name != nil && n.Name.Pack != nil { n.Name.Pack.Name.SetUsed(true) } return name case *syntax.SelectorExpr: name := p.name(expr.X.(*syntax.Name)) def := asNode(name.Def) if def == nil { yyerror("undefined: %v", name) return name } var pkg *types.Pkg if def.Op != OPACK { yyerror("%v is not a package", name) pkg = localpkg } else { def.Name.SetUsed(true) pkg = def.Name.Pkg } return pkg.Lookup(expr.Sel.Value) } panic(fmt.Sprintf("unexpected packname: %#v", expr)) } func (p *noder) embedded(typ syntax.Expr) *Node { op, isStar := typ.(*syntax.Operation) if isStar { if op.Op != syntax.Mul || op.Y != nil { panic("unexpected Operation") } typ = op.X } sym := p.packname(typ) n := p.nodSym(typ, ODCLFIELD, importName(sym), lookup(sym.Name)) n.SetEmbedded(true) if isStar { n.Left = p.nod(op, ODEREF, n.Left, nil) } return n } func (p *noder) stmts(stmts []syntax.Stmt) []*Node { return p.stmtsFall(stmts, false) } func (p *noder) stmtsFall(stmts []syntax.Stmt, fallOK bool) []*Node { var nodes []*Node for i, stmt := range stmts { s := p.stmtFall(stmt, fallOK && i+1 == len(stmts)) if s == nil { } else if s.Op == OBLOCK && s.Ninit.Len() == 0 { nodes = append(nodes, s.List.Slice()...) } else { nodes = append(nodes, s) } } return nodes } func (p *noder) stmt(stmt syntax.Stmt) *Node { return p.stmtFall(stmt, false) } func (p *noder) stmtFall(stmt syntax.Stmt, fallOK bool) *Node { p.setlineno(stmt) switch stmt := stmt.(type) { case *syntax.EmptyStmt: return nil case *syntax.LabeledStmt: return p.labeledStmt(stmt, fallOK) case *syntax.BlockStmt: l := p.blockStmt(stmt) if len(l) == 0 { // TODO(mdempsky): Line number? return nod(OEMPTY, nil, nil) } return liststmt(l) case *syntax.ExprStmt: return p.wrapname(stmt, p.expr(stmt.X)) case *syntax.SendStmt: return p.nod(stmt, OSEND, p.expr(stmt.Chan), p.expr(stmt.Value)) case *syntax.DeclStmt: return liststmt(p.decls(stmt.DeclList)) case *syntax.AssignStmt: if stmt.Op != 0 && stmt.Op != syntax.Def { n := p.nod(stmt, OASOP, p.expr(stmt.Lhs), p.expr(stmt.Rhs)) n.SetImplicit(stmt.Rhs == syntax.ImplicitOne) n.SetSubOp(p.binOp(stmt.Op)) return n } n := p.nod(stmt, OAS, nil, nil) // assume common case rhs := p.exprList(stmt.Rhs) lhs := p.assignList(stmt.Lhs, n, stmt.Op == syntax.Def) if len(lhs) == 1 && len(rhs) == 1 { // common case n.Left = lhs[0] n.Right = rhs[0] } else { n.Op = OAS2 n.List.Set(lhs) n.Rlist.Set(rhs) } return n case *syntax.BranchStmt: var op Op switch stmt.Tok { case syntax.Break: op = OBREAK case syntax.Continue: op = OCONTINUE case syntax.Fallthrough: if !fallOK { yyerror("fallthrough statement out of place") } op = OFALL case syntax.Goto: op = OGOTO default: panic("unhandled BranchStmt") } n := p.nod(stmt, op, nil, nil) if stmt.Label != nil { n.Sym = p.name(stmt.Label) } return n case *syntax.CallStmt: var op Op switch stmt.Tok { case syntax.Defer: op = ODEFER case syntax.Go: op = OGO default: panic("unhandled CallStmt") } return p.nod(stmt, op, p.expr(stmt.Call), nil) case *syntax.ReturnStmt: var results []*Node if stmt.Results != nil { results = p.exprList(stmt.Results) } n := p.nod(stmt, ORETURN, nil, nil) n.List.Set(results) if n.List.Len() == 0 && Curfn != nil { for _, ln := range Curfn.Func.Dcl { if ln.Class() == PPARAM { continue } if ln.Class() != PPARAMOUT { break } if asNode(ln.Sym.Def) != ln { yyerror("%s is shadowed during return", ln.Sym.Name) } } } return n case *syntax.IfStmt: return p.ifStmt(stmt) case *syntax.ForStmt: return p.forStmt(stmt) case *syntax.SwitchStmt: return p.switchStmt(stmt) case *syntax.SelectStmt: return p.selectStmt(stmt) } panic("unhandled Stmt") } func (p *noder) assignList(expr syntax.Expr, defn *Node, colas bool) []*Node { if !colas { return p.exprList(expr) } defn.SetColas(true) var exprs []syntax.Expr if list, ok := expr.(*syntax.ListExpr); ok { exprs = list.ElemList } else { exprs = []syntax.Expr{expr} } res := make([]*Node, len(exprs)) seen := make(map[*types.Sym]bool, len(exprs)) newOrErr := false for i, expr := range exprs { p.setlineno(expr) res[i] = nblank name, ok := expr.(*syntax.Name) if !ok { p.yyerrorpos(expr.Pos(), "non-name %v on left side of :=", p.expr(expr)) newOrErr = true continue } sym := p.name(name) if sym.IsBlank() { continue } if seen[sym] { p.yyerrorpos(expr.Pos(), "%v repeated on left side of :=", sym) newOrErr = true continue } seen[sym] = true if sym.Block == types.Block { res[i] = oldname(sym) continue } newOrErr = true n := newname(sym) declare(n, dclcontext) n.Name.Defn = defn defn.Ninit.Append(nod(ODCL, n, nil)) res[i] = n } if !newOrErr { yyerrorl(defn.Pos, "no new variables on left side of :=") } return res } func (p *noder) blockStmt(stmt *syntax.BlockStmt) []*Node { p.openScope(stmt.Pos()) nodes := p.stmts(stmt.List) p.closeScope(stmt.Rbrace) return nodes } func (p *noder) ifStmt(stmt *syntax.IfStmt) *Node { p.openScope(stmt.Pos()) n := p.nod(stmt, OIF, nil, nil) if stmt.Init != nil { n.Ninit.Set1(p.stmt(stmt.Init)) } if stmt.Cond != nil { n.Left = p.expr(stmt.Cond) } n.Nbody.Set(p.blockStmt(stmt.Then)) if stmt.Else != nil { e := p.stmt(stmt.Else) if e.Op == OBLOCK && e.Ninit.Len() == 0 { n.Rlist.Set(e.List.Slice()) } else { n.Rlist.Set1(e) } } p.closeAnotherScope() return n } func (p *noder) forStmt(stmt *syntax.ForStmt) *Node { p.openScope(stmt.Pos()) var n *Node if r, ok := stmt.Init.(*syntax.RangeClause); ok { if stmt.Cond != nil || stmt.Post != nil { panic("unexpected RangeClause") } n = p.nod(r, ORANGE, nil, p.expr(r.X)) if r.Lhs != nil { n.List.Set(p.assignList(r.Lhs, n, r.Def)) } } else { n = p.nod(stmt, OFOR, nil, nil) if stmt.Init != nil { n.Ninit.Set1(p.stmt(stmt.Init)) } if stmt.Cond != nil { n.Left = p.expr(stmt.Cond) } if stmt.Post != nil { n.Right = p.stmt(stmt.Post) } } n.Nbody.Set(p.blockStmt(stmt.Body)) p.closeAnotherScope() return n } func (p *noder) switchStmt(stmt *syntax.SwitchStmt) *Node { p.openScope(stmt.Pos()) n := p.nod(stmt, OSWITCH, nil, nil) if stmt.Init != nil { n.Ninit.Set1(p.stmt(stmt.Init)) } if stmt.Tag != nil { n.Left = p.expr(stmt.Tag) } tswitch := n.Left if tswitch != nil && tswitch.Op != OTYPESW { tswitch = nil } n.List.Set(p.caseClauses(stmt.Body, tswitch, stmt.Rbrace)) p.closeScope(stmt.Rbrace) return n } func (p *noder) caseClauses(clauses []*syntax.CaseClause, tswitch *Node, rbrace syntax.Pos) []*Node { nodes := make([]*Node, 0, len(clauses)) for i, clause := range clauses { p.setlineno(clause) if i > 0 { p.closeScope(clause.Pos()) } p.openScope(clause.Pos()) n := p.nod(clause, OCASE, nil, nil) if clause.Cases != nil { n.List.Set(p.exprList(clause.Cases)) } if tswitch != nil && tswitch.Left != nil { nn := newname(tswitch.Left.Sym) declare(nn, dclcontext) n.Rlist.Set1(nn) // keep track of the instances for reporting unused nn.Name.Defn = tswitch } // Trim trailing empty statements. We omit them from // the Node AST anyway, and it's easier to identify // out-of-place fallthrough statements without them. body := clause.Body for len(body) > 0 { if _, ok := body[len(body)-1].(*syntax.EmptyStmt); !ok { break } body = body[:len(body)-1] } n.Nbody.Set(p.stmtsFall(body, true)) if l := n.Nbody.Len(); l > 0 && n.Nbody.Index(l-1).Op == OFALL { if tswitch != nil { yyerror("cannot fallthrough in type switch") } if i+1 == len(clauses) { yyerror("cannot fallthrough final case in switch") } } nodes = append(nodes, n) } if len(clauses) > 0 { p.closeScope(rbrace) } return nodes } func (p *noder) selectStmt(stmt *syntax.SelectStmt) *Node { n := p.nod(stmt, OSELECT, nil, nil) n.List.Set(p.commClauses(stmt.Body, stmt.Rbrace)) return n } func (p *noder) commClauses(clauses []*syntax.CommClause, rbrace syntax.Pos) []*Node { nodes := make([]*Node, 0, len(clauses)) for i, clause := range clauses { p.setlineno(clause) if i > 0 { p.closeScope(clause.Pos()) } p.openScope(clause.Pos()) n := p.nod(clause, OCASE, nil, nil) if clause.Comm != nil { n.List.Set1(p.stmt(clause.Comm)) } n.Nbody.Set(p.stmts(clause.Body)) nodes = append(nodes, n) } if len(clauses) > 0 { p.closeScope(rbrace) } return nodes } func (p *noder) labeledStmt(label *syntax.LabeledStmt, fallOK bool) *Node { lhs := p.nodSym(label, OLABEL, nil, p.name(label.Label)) var ls *Node if label.Stmt != nil { // TODO(mdempsky): Should always be present. ls = p.stmtFall(label.Stmt, fallOK) } lhs.Name.Defn = ls l := []*Node{lhs} if ls != nil { if ls.Op == OBLOCK && ls.Ninit.Len() == 0 { l = append(l, ls.List.Slice()...) } else { l = append(l, ls) } } return liststmt(l) } var unOps = [...]Op{ syntax.Recv: ORECV, syntax.Mul: ODEREF, syntax.And: OADDR, syntax.Not: ONOT, syntax.Xor: OBITNOT, syntax.Add: OPLUS, syntax.Sub: ONEG, } func (p *noder) unOp(op syntax.Operator) Op { if uint64(op) >= uint64(len(unOps)) || unOps[op] == 0 { panic("invalid Operator") } return unOps[op] } var binOps = [...]Op{ syntax.OrOr: OOROR, syntax.AndAnd: OANDAND, syntax.Eql: OEQ, syntax.Neq: ONE, syntax.Lss: OLT, syntax.Leq: OLE, syntax.Gtr: OGT, syntax.Geq: OGE, syntax.Add: OADD, syntax.Sub: OSUB, syntax.Or: OOR, syntax.Xor: OXOR, syntax.Mul: OMUL, syntax.Div: ODIV, syntax.Rem: OMOD, syntax.And: OAND, syntax.AndNot: OANDNOT, syntax.Shl: OLSH, syntax.Shr: ORSH, } func (p *noder) binOp(op syntax.Operator) Op { if uint64(op) >= uint64(len(binOps)) || binOps[op] == 0 { panic("invalid Operator") } return binOps[op] } // checkLangCompat reports an error if the representation of a numeric // literal is not compatible with the current language version. func checkLangCompat(lit *syntax.BasicLit) { s := lit.Value if len(s) <= 2 || langSupported(1, 13, localpkg) { return } // len(s) > 2 if strings.Contains(s, "_") { yyerrorv("go1.13", "underscores in numeric literals") return } if s[0] != '0' { return } base := s[1] if base == 'b' || base == 'B' { yyerrorv("go1.13", "binary literals") return } if base == 'o' || base == 'O' { yyerrorv("go1.13", "0o/0O-style octal literals") return } if lit.Kind != syntax.IntLit && (base == 'x' || base == 'X') { yyerrorv("go1.13", "hexadecimal floating-point literals") } } func (p *noder) basicLit(lit *syntax.BasicLit) Val { // We don't use the errors of the conversion routines to determine // if a literal string is valid because the conversion routines may // accept a wider syntax than the language permits. Rely on lit.Bad // instead. switch s := lit.Value; lit.Kind { case syntax.IntLit: checkLangCompat(lit) x := new(Mpint) if !lit.Bad { x.SetString(s) } return Val{U: x} case syntax.FloatLit: checkLangCompat(lit) x := newMpflt() if !lit.Bad { x.SetString(s) } return Val{U: x} case syntax.ImagLit: checkLangCompat(lit) x := newMpcmplx() if !lit.Bad { x.Imag.SetString(strings.TrimSuffix(s, "i")) } return Val{U: x} case syntax.RuneLit: x := new(Mpint) x.Rune = true if !lit.Bad { u, _ := strconv.Unquote(s) var r rune if len(u) == 1 { r = rune(u[0]) } else { r, _ = utf8.DecodeRuneInString(u) } x.SetInt64(int64(r)) } return Val{U: x} case syntax.StringLit: var x string if !lit.Bad { if len(s) > 0 && s[0] == '`' { // strip carriage returns from raw string s = strings.Replace(s, "\r", "", -1) } x, _ = strconv.Unquote(s) } return Val{U: x} default: panic("unhandled BasicLit kind") } } func (p *noder) name(name *syntax.Name) *types.Sym { return lookup(name.Value) } func (p *noder) mkname(name *syntax.Name) *Node { // TODO(mdempsky): Set line number? return mkname(p.name(name)) } func (p *noder) wrapname(n syntax.Node, x *Node) *Node { // These nodes do not carry line numbers. // Introduce a wrapper node to give them the correct line. switch x.Op { case OTYPE, OLITERAL: if x.Sym == nil { break } fallthrough case ONAME, ONONAME, OPACK: x = p.nod(n, OPAREN, x, nil) x.SetImplicit(true) } return x } func (p *noder) nod(orig syntax.Node, op Op, left, right *Node) *Node { return nodl(p.pos(orig), op, left, right) } func (p *noder) nodSym(orig syntax.Node, op Op, left *Node, sym *types.Sym) *Node { n := nodSym(op, left, sym) n.Pos = p.pos(orig) return n } func (p *noder) pos(n syntax.Node) src.XPos { // TODO(gri): orig.Pos() should always be known - fix package syntax xpos := lineno if pos := n.Pos(); pos.IsKnown() { xpos = p.makeXPos(pos) } return xpos } func (p *noder) setlineno(n syntax.Node) { if n != nil { lineno = p.pos(n) } } // error is called concurrently if files are parsed concurrently. func (p *noder) error(err error) { p.err <- err.(syntax.Error) } // pragmas that are allowed in the std lib, but don't have // a syntax.Pragma value (see lex.go) associated with them. var allowedStdPragmas = map[string]bool{ "go:cgo_export_static": true, "go:cgo_export_dynamic": true, "go:cgo_import_static": true, "go:cgo_import_dynamic": true, "go:cgo_ldflag": true, "go:cgo_dynamic_linker": true, "go:embed": true, "go:generate": true, } // *Pragma is the value stored in a syntax.Pragma during parsing. type Pragma struct { Flag PragmaFlag // collected bits Pos []PragmaPos // position of each individual flag Embeds []PragmaEmbed } type PragmaPos struct { Flag PragmaFlag Pos syntax.Pos } type PragmaEmbed struct { Pos syntax.Pos Patterns []string } func (p *noder) checkUnused(pragma *Pragma) { for _, pos := range pragma.Pos { if pos.Flag&pragma.Flag != 0 { p.yyerrorpos(pos.Pos, "misplaced compiler directive") } } if len(pragma.Embeds) > 0 { for _, e := range pragma.Embeds { p.yyerrorpos(e.Pos, "misplaced go:embed directive") } } } func (p *noder) checkUnusedDuringParse(pragma *Pragma) { for _, pos := range pragma.Pos { if pos.Flag&pragma.Flag != 0 { p.error(syntax.Error{Pos: pos.Pos, Msg: "misplaced compiler directive"}) } } if len(pragma.Embeds) > 0 { for _, e := range pragma.Embeds { p.error(syntax.Error{Pos: e.Pos, Msg: "misplaced go:embed directive"}) } } } // pragma is called concurrently if files are parsed concurrently. func (p *noder) pragma(pos syntax.Pos, blankLine bool, text string, old syntax.Pragma) syntax.Pragma { pragma, _ := old.(*Pragma) if pragma == nil { pragma = new(Pragma) } if text == "" { // unused pragma; only called with old != nil. p.checkUnusedDuringParse(pragma) return nil } if strings.HasPrefix(text, "line ") { // line directives are handled by syntax package panic("unreachable") } if !blankLine { // directive must be on line by itself p.error(syntax.Error{Pos: pos, Msg: "misplaced compiler directive"}) return pragma } switch { case strings.HasPrefix(text, "go:linkname "): f := strings.Fields(text) if !(2 <= len(f) && len(f) <= 3) { p.error(syntax.Error{Pos: pos, Msg: "usage: //go:linkname localname [linkname]"}) break } // The second argument is optional. If omitted, we use // the default object symbol name for this and // linkname only serves to mark this symbol as // something that may be referenced via the object // symbol name from another package. var target string if len(f) == 3 { target = f[2] } p.linknames = append(p.linknames, linkname{pos, f[1], target}) case text == "go:embed", strings.HasPrefix(text, "go:embed "): args, err := parseGoEmbed(text[len("go:embed"):]) if err != nil { p.error(syntax.Error{Pos: pos, Msg: err.Error()}) } if len(args) == 0 { p.error(syntax.Error{Pos: pos, Msg: "usage: //go:embed pattern..."}) break } pragma.Embeds = append(pragma.Embeds, PragmaEmbed{pos, args}) case strings.HasPrefix(text, "go:cgo_import_dynamic "): // This is permitted for general use because Solaris // code relies on it in golang.org/x/sys/unix and others. fields := pragmaFields(text) if len(fields) >= 4 { lib := strings.Trim(fields[3], `"`) if lib != "" && !safeArg(lib) && !isCgoGeneratedFile(pos) { p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("invalid library name %q in cgo_import_dynamic directive", lib)}) } p.pragcgo(pos, text) pragma.Flag |= pragmaFlag("go:cgo_import_dynamic") break } fallthrough case strings.HasPrefix(text, "go:cgo_"): // For security, we disallow //go:cgo_* directives other // than cgo_import_dynamic outside cgo-generated files. // Exception: they are allowed in the standard library, for runtime and syscall. if !isCgoGeneratedFile(pos) && !compiling_std { p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("//%s only allowed in cgo-generated code", text)}) } p.pragcgo(pos, text) fallthrough // because of //go:cgo_unsafe_args default: verb := text if i := strings.Index(text, " "); i >= 0 { verb = verb[:i] } flag := pragmaFlag(verb) const runtimePragmas = Systemstack | Nowritebarrier | Nowritebarrierrec | Yeswritebarrierrec if !compiling_runtime && flag&runtimePragmas != 0 { p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("//%s only allowed in runtime", verb)}) } if flag == 0 && !allowedStdPragmas[verb] && compiling_std { p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("//%s is not allowed in the standard library", verb)}) } pragma.Flag |= flag pragma.Pos = append(pragma.Pos, PragmaPos{flag, pos}) } return pragma } // isCgoGeneratedFile reports whether pos is in a file // generated by cgo, which is to say a file with name // beginning with "_cgo_". Such files are allowed to // contain cgo directives, and for security reasons // (primarily misuse of linker flags), other files are not. // See golang.org/issue/23672. func isCgoGeneratedFile(pos syntax.Pos) bool { return strings.HasPrefix(filepath.Base(filepath.Clean(fileh(pos.Base().Filename()))), "_cgo_") } // safeArg reports whether arg is a "safe" command-line argument, // meaning that when it appears in a command-line, it probably // doesn't have some special meaning other than its own name. // This is copied from SafeArg in cmd/go/internal/load/pkg.go. func safeArg(name string) bool { if name == "" { return false } c := name[0] return '0' <= c && c <= '9' || 'A' <= c && c <= 'Z' || 'a' <= c && c <= 'z' || c == '.' || c == '_' || c == '/' || c >= utf8.RuneSelf } func mkname(sym *types.Sym) *Node { n := oldname(sym) if n.Name != nil && n.Name.Pack != nil { n.Name.Pack.Name.SetUsed(true) } return n } // parseGoEmbed parses the text following "//go:embed" to extract the glob patterns. // It accepts unquoted space-separated patterns as well as double-quoted and back-quoted Go strings. // go/build/read.go also processes these strings and contains similar logic. func parseGoEmbed(args string) ([]string, error) { var list []string for args = strings.TrimSpace(args); args != ""; args = strings.TrimSpace(args) { var path string Switch: switch args[0] { default: i := len(args) for j, c := range args { if unicode.IsSpace(c) { i = j break } } path = args[:i] args = args[i:] case '`': i := strings.Index(args[1:], "`") if i < 0 { return nil, fmt.Errorf("invalid quoted string in //go:embed: %s", args) } path = args[1 : 1+i] args = args[1+i+1:] case '"': i := 1 for ; i < len(args); i++ { if args[i] == '\\' { i++ continue } if args[i] == '"' { q, err := strconv.Unquote(args[:i+1]) if err != nil { return nil, fmt.Errorf("invalid quoted string in //go:embed: %s", args[:i+1]) } path = q args = args[i+1:] break Switch } } if i >= len(args) { return nil, fmt.Errorf("invalid quoted string in //go:embed: %s", args) } } if args != "" { r, _ := utf8.DecodeRuneInString(args) if !unicode.IsSpace(r) { return nil, fmt.Errorf("invalid quoted string in //go:embed: %s", args) } } list = append(list, path) } return list, nil }