// Derived from Inferno utils/6c/txt.c // https://bitbucket.org/inferno-os/inferno-os/src/master/utils/6c/txt.c // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package gc import ( "cmd/compile/internal/ssa" "cmd/internal/obj" "cmd/internal/objabi" "cmd/internal/src" ) var sharedProgArray = new([10000]obj.Prog) // *T instead of T to work around issue 19839 // Progs accumulates Progs for a function and converts them into machine code. type Progs struct { Text *obj.Prog // ATEXT Prog for this function next *obj.Prog // next Prog pc int64 // virtual PC; count of Progs pos src.XPos // position to use for new Progs curfn *Node // fn these Progs are for progcache []obj.Prog // local progcache cacheidx int // first free element of progcache nextLive LivenessIndex // liveness index for the next Prog prevLive LivenessIndex // last emitted liveness index } // newProgs returns a new Progs for fn. // worker indicates which of the backend workers will use the Progs. func newProgs(fn *Node, worker int) *Progs { pp := new(Progs) if Ctxt.CanReuseProgs() { sz := len(sharedProgArray) / nBackendWorkers pp.progcache = sharedProgArray[sz*worker : sz*(worker+1)] } pp.curfn = fn // prime the pump pp.next = pp.NewProg() pp.clearp(pp.next) pp.pos = fn.Pos pp.settext(fn) // PCDATA tables implicitly start with index -1. pp.prevLive = LivenessIndex{-1, -1, false} if go115ReduceLiveness { pp.nextLive = pp.prevLive } else { pp.nextLive = LivenessInvalid } return pp } func (pp *Progs) NewProg() *obj.Prog { var p *obj.Prog if pp.cacheidx < len(pp.progcache) { p = &pp.progcache[pp.cacheidx] pp.cacheidx++ } else { p = new(obj.Prog) } p.Ctxt = Ctxt return p } // Flush converts from pp to machine code. func (pp *Progs) Flush() { plist := &obj.Plist{Firstpc: pp.Text, Curfn: pp.curfn} obj.Flushplist(Ctxt, plist, pp.NewProg, myimportpath) } // Free clears pp and any associated resources. func (pp *Progs) Free() { if Ctxt.CanReuseProgs() { // Clear progs to enable GC and avoid abuse. s := pp.progcache[:pp.cacheidx] for i := range s { s[i] = obj.Prog{} } } // Clear pp to avoid abuse. *pp = Progs{} } // Prog adds a Prog with instruction As to pp. func (pp *Progs) Prog(as obj.As) *obj.Prog { if pp.nextLive.StackMapValid() && pp.nextLive.stackMapIndex != pp.prevLive.stackMapIndex { // Emit stack map index change. idx := pp.nextLive.stackMapIndex pp.prevLive.stackMapIndex = idx p := pp.Prog(obj.APCDATA) Addrconst(&p.From, objabi.PCDATA_StackMapIndex) Addrconst(&p.To, int64(idx)) } if !go115ReduceLiveness { if pp.nextLive.isUnsafePoint { // Unsafe points are encoded as a special value in the // register map. pp.nextLive.regMapIndex = objabi.PCDATA_RegMapUnsafe } if pp.nextLive.regMapIndex != pp.prevLive.regMapIndex { // Emit register map index change. idx := pp.nextLive.regMapIndex pp.prevLive.regMapIndex = idx p := pp.Prog(obj.APCDATA) Addrconst(&p.From, objabi.PCDATA_RegMapIndex) Addrconst(&p.To, int64(idx)) } } else { if pp.nextLive.isUnsafePoint != pp.prevLive.isUnsafePoint { // Emit unsafe-point marker. pp.prevLive.isUnsafePoint = pp.nextLive.isUnsafePoint p := pp.Prog(obj.APCDATA) Addrconst(&p.From, objabi.PCDATA_UnsafePoint) if pp.nextLive.isUnsafePoint { Addrconst(&p.To, objabi.PCDATA_UnsafePointUnsafe) } else { Addrconst(&p.To, objabi.PCDATA_UnsafePointSafe) } } } p := pp.next pp.next = pp.NewProg() pp.clearp(pp.next) p.Link = pp.next if !pp.pos.IsKnown() && Debug.K != 0 { Warn("prog: unknown position (line 0)") } p.As = as p.Pos = pp.pos if pp.pos.IsStmt() == src.PosIsStmt { // Clear IsStmt for later Progs at this pos provided that as can be marked as a stmt if ssa.LosesStmtMark(as) { return p } pp.pos = pp.pos.WithNotStmt() } return p } func (pp *Progs) clearp(p *obj.Prog) { obj.Nopout(p) p.As = obj.AEND p.Pc = pp.pc pp.pc++ } func (pp *Progs) Appendpp(p *obj.Prog, as obj.As, ftype obj.AddrType, freg int16, foffset int64, ttype obj.AddrType, treg int16, toffset int64) *obj.Prog { q := pp.NewProg() pp.clearp(q) q.As = as q.Pos = p.Pos q.From.Type = ftype q.From.Reg = freg q.From.Offset = foffset q.To.Type = ttype q.To.Reg = treg q.To.Offset = toffset q.Link = p.Link p.Link = q return q } func (pp *Progs) settext(fn *Node) { if pp.Text != nil { Fatalf("Progs.settext called twice") } ptxt := pp.Prog(obj.ATEXT) pp.Text = ptxt fn.Func.lsym.Func().Text = ptxt ptxt.From.Type = obj.TYPE_MEM ptxt.From.Name = obj.NAME_EXTERN ptxt.From.Sym = fn.Func.lsym } // initLSym defines f's obj.LSym and initializes it based on the // properties of f. This includes setting the symbol flags and ABI and // creating and initializing related DWARF symbols. // // initLSym must be called exactly once per function and must be // called for both functions with bodies and functions without bodies. func (f *Func) initLSym(hasBody bool) { if f.lsym != nil { Fatalf("Func.initLSym called twice") } if nam := f.Nname; !nam.isBlank() { f.lsym = nam.Sym.Linksym() if f.Pragma&Systemstack != 0 { f.lsym.Set(obj.AttrCFunc, true) } var aliasABI obj.ABI needABIAlias := false defABI, hasDefABI := symabiDefs[f.lsym.Name] if hasDefABI && defABI == obj.ABI0 { // Symbol is defined as ABI0. Create an // Internal -> ABI0 wrapper. f.lsym.SetABI(obj.ABI0) needABIAlias, aliasABI = true, obj.ABIInternal } else { // No ABI override. Check that the symbol is // using the expected ABI. want := obj.ABIInternal if f.lsym.ABI() != want { Fatalf("function symbol %s has the wrong ABI %v, expected %v", f.lsym.Name, f.lsym.ABI(), want) } } isLinknameExported := nam.Sym.Linkname != "" && (hasBody || hasDefABI) if abi, ok := symabiRefs[f.lsym.Name]; (ok && abi == obj.ABI0) || isLinknameExported { // Either 1) this symbol is definitely // referenced as ABI0 from this package; or 2) // this symbol is defined in this package but // given a linkname, indicating that it may be // referenced from another package. Create an // ABI0 -> Internal wrapper so it can be // called as ABI0. In case 2, it's important // that we know it's defined in this package // since other packages may "pull" symbols // using linkname and we don't want to create // duplicate ABI wrappers. if f.lsym.ABI() != obj.ABI0 { needABIAlias, aliasABI = true, obj.ABI0 } } if needABIAlias { // These LSyms have the same name as the // native function, so we create them directly // rather than looking them up. The uniqueness // of f.lsym ensures uniqueness of asym. asym := &obj.LSym{ Name: f.lsym.Name, Type: objabi.SABIALIAS, R: []obj.Reloc{{Sym: f.lsym}}, // 0 size, so "informational" } asym.SetABI(aliasABI) asym.Set(obj.AttrDuplicateOK, true) Ctxt.ABIAliases = append(Ctxt.ABIAliases, asym) } } if !hasBody { // For body-less functions, we only create the LSym. return } var flag int if f.Dupok() { flag |= obj.DUPOK } if f.Wrapper() { flag |= obj.WRAPPER } if f.Needctxt() { flag |= obj.NEEDCTXT } if f.Pragma&Nosplit != 0 { flag |= obj.NOSPLIT } if f.ReflectMethod() { flag |= obj.REFLECTMETHOD } // Clumsy but important. // See test/recover.go for test cases and src/reflect/value.go // for the actual functions being considered. if myimportpath == "reflect" { switch f.Nname.Sym.Name { case "callReflect", "callMethod": flag |= obj.WRAPPER } } Ctxt.InitTextSym(f.lsym, flag) } func ggloblnod(nam *Node) { s := nam.Sym.Linksym() s.Gotype = ngotype(nam).Linksym() flags := 0 if nam.Name.Readonly() { flags = obj.RODATA } if nam.Type != nil && !nam.Type.HasPointers() { flags |= obj.NOPTR } Ctxt.Globl(s, nam.Type.Width, flags) if nam.Name.LibfuzzerExtraCounter() { s.Type = objabi.SLIBFUZZER_EXTRA_COUNTER } } func ggloblsym(s *obj.LSym, width int32, flags int16) { if flags&obj.LOCAL != 0 { s.Set(obj.AttrLocal, true) flags &^= obj.LOCAL } Ctxt.Globl(s, int64(width), int(flags)) } func Addrconst(a *obj.Addr, v int64) { a.Sym = nil a.Type = obj.TYPE_CONST a.Offset = v } func Patch(p *obj.Prog, to *obj.Prog) { if p.To.Type != obj.TYPE_BRANCH { Fatalf("patch: not a branch") } p.To.SetTarget(to) p.To.Offset = to.Pc }