// Copyright 2018 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package gc import ( "cmd/compile/internal/logopt" "cmd/compile/internal/types" "cmd/internal/src" "fmt" "math" "strings" ) // Escape analysis. // // Here we analyze functions to determine which Go variables // (including implicit allocations such as calls to "new" or "make", // composite literals, etc.) can be allocated on the stack. The two // key invariants we have to ensure are: (1) pointers to stack objects // cannot be stored in the heap, and (2) pointers to a stack object // cannot outlive that object (e.g., because the declaring function // returned and destroyed the object's stack frame, or its space is // reused across loop iterations for logically distinct variables). // // We implement this with a static data-flow analysis of the AST. // First, we construct a directed weighted graph where vertices // (termed "locations") represent variables allocated by statements // and expressions, and edges represent assignments between variables // (with weights representing addressing/dereference counts). // // Next we walk the graph looking for assignment paths that might // violate the invariants stated above. If a variable v's address is // stored in the heap or elsewhere that may outlive it, then v is // marked as requiring heap allocation. // // To support interprocedural analysis, we also record data-flow from // each function's parameters to the heap and to its result // parameters. This information is summarized as "parameter tags", // which are used at static call sites to improve escape analysis of // function arguments. // Constructing the location graph. // // Every allocating statement (e.g., variable declaration) or // expression (e.g., "new" or "make") is first mapped to a unique // "location." // // We also model every Go assignment as a directed edges between // locations. The number of dereference operations minus the number of // addressing operations is recorded as the edge's weight (termed // "derefs"). For example: // // p = &q // -1 // p = q // 0 // p = *q // 1 // p = **q // 2 // // p = **&**&q // 2 // // Note that the & operator can only be applied to addressable // expressions, and the expression &x itself is not addressable, so // derefs cannot go below -1. // // Every Go language construct is lowered into this representation, // generally without sensitivity to flow, path, or context; and // without distinguishing elements within a compound variable. For // example: // // var x struct { f, g *int } // var u []*int // // x.f = u[0] // // is modeled simply as // // x = *u // // That is, we don't distinguish x.f from x.g, or u[0] from u[1], // u[2], etc. However, we do record the implicit dereference involved // in indexing a slice. type Escape struct { allLocs []*EscLocation curfn *Node // loopDepth counts the current loop nesting depth within // curfn. It increments within each "for" loop and at each // label with a corresponding backwards "goto" (i.e., // unstructured loop). loopDepth int heapLoc EscLocation blankLoc EscLocation } // An EscLocation represents an abstract location that stores a Go // variable. type EscLocation struct { n *Node // represented variable or expression, if any curfn *Node // enclosing function edges []EscEdge // incoming edges loopDepth int // loopDepth at declaration // derefs and walkgen are used during walkOne to track the // minimal dereferences from the walk root. derefs int // >= -1 walkgen uint32 // dst and dstEdgeindex track the next immediate assignment // destination location during walkone, along with the index // of the edge pointing back to this location. dst *EscLocation dstEdgeIdx int // queued is used by walkAll to track whether this location is // in the walk queue. queued bool // escapes reports whether the represented variable's address // escapes; that is, whether the variable must be heap // allocated. escapes bool // transient reports whether the represented expression's // address does not outlive the statement; that is, whether // its storage can be immediately reused. transient bool // paramEsc records the represented parameter's leak set. paramEsc EscLeaks } // An EscEdge represents an assignment edge between two Go variables. type EscEdge struct { src *EscLocation derefs int // >= -1 notes *EscNote } // escapeFuncs performs escape analysis on a minimal batch of // functions. func escapeFuncs(fns []*Node, recursive bool) { for _, fn := range fns { if fn.Op != ODCLFUNC { Fatalf("unexpected node: %v", fn) } } var e Escape e.heapLoc.escapes = true // Construct data-flow graph from syntax trees. for _, fn := range fns { e.initFunc(fn) } for _, fn := range fns { e.walkFunc(fn) } e.curfn = nil e.walkAll() e.finish(fns) } func (e *Escape) initFunc(fn *Node) { if fn.Op != ODCLFUNC || fn.Esc != EscFuncUnknown { Fatalf("unexpected node: %v", fn) } fn.Esc = EscFuncPlanned if Debug['m'] > 3 { Dump("escAnalyze", fn) } e.curfn = fn e.loopDepth = 1 // Allocate locations for local variables. for _, dcl := range fn.Func.Dcl { if dcl.Op == ONAME { e.newLoc(dcl, false) } } } func (e *Escape) walkFunc(fn *Node) { fn.Esc = EscFuncStarted // Identify labels that mark the head of an unstructured loop. inspectList(fn.Nbody, func(n *Node) bool { switch n.Op { case OLABEL: n.Sym.Label = asTypesNode(&nonlooping) case OGOTO: // If we visited the label before the goto, // then this is a looping label. if n.Sym.Label == asTypesNode(&nonlooping) { n.Sym.Label = asTypesNode(&looping) } } return true }) e.curfn = fn e.loopDepth = 1 e.block(fn.Nbody) } // Below we implement the methods for walking the AST and recording // data flow edges. Note that because a sub-expression might have // side-effects, it's important to always visit the entire AST. // // For example, write either: // // if x { // e.discard(n.Left) // } else { // e.value(k, n.Left) // } // // or // // if x { // k = e.discardHole() // } // e.value(k, n.Left) // // Do NOT write: // // // BAD: possibly loses side-effects within n.Left // if !x { // e.value(k, n.Left) // } // stmt evaluates a single Go statement. func (e *Escape) stmt(n *Node) { if n == nil { return } lno := setlineno(n) defer func() { lineno = lno }() if Debug['m'] > 2 { fmt.Printf("%v:[%d] %v stmt: %v\n", linestr(lineno), e.loopDepth, funcSym(e.curfn), n) } e.stmts(n.Ninit) switch n.Op { default: Fatalf("unexpected stmt: %v", n) case ODCLCONST, ODCLTYPE, OEMPTY, OFALL, OINLMARK: // nop case OBREAK, OCONTINUE, OGOTO: // TODO(mdempsky): Handle dead code? case OBLOCK: e.stmts(n.List) case ODCL: // Record loop depth at declaration. if !n.Left.isBlank() { e.dcl(n.Left) } case OLABEL: switch asNode(n.Sym.Label) { case &nonlooping: if Debug['m'] > 2 { fmt.Printf("%v:%v non-looping label\n", linestr(lineno), n) } case &looping: if Debug['m'] > 2 { fmt.Printf("%v: %v looping label\n", linestr(lineno), n) } e.loopDepth++ default: Fatalf("label missing tag") } n.Sym.Label = nil case OIF: e.discard(n.Left) e.block(n.Nbody) e.block(n.Rlist) case OFOR, OFORUNTIL: e.loopDepth++ e.discard(n.Left) e.stmt(n.Right) e.block(n.Nbody) e.loopDepth-- case ORANGE: // for List = range Right { Nbody } e.loopDepth++ ks := e.addrs(n.List) e.block(n.Nbody) e.loopDepth-- // Right is evaluated outside the loop. k := e.discardHole() if len(ks) >= 2 { if n.Right.Type.IsArray() { k = ks[1].note(n, "range") } else { k = ks[1].deref(n, "range-deref") } } e.expr(e.later(k), n.Right) case OSWITCH: typesw := n.Left != nil && n.Left.Op == OTYPESW var ks []EscHole for _, cas := range n.List.Slice() { // cases if typesw && n.Left.Left != nil { cv := cas.Rlist.First() k := e.dcl(cv) // type switch variables have no ODCL. if cv.Type.HasPointers() { ks = append(ks, k.dotType(cv.Type, cas, "switch case")) } } e.discards(cas.List) e.block(cas.Nbody) } if typesw { e.expr(e.teeHole(ks...), n.Left.Right) } else { e.discard(n.Left) } case OSELECT: for _, cas := range n.List.Slice() { e.stmt(cas.Left) e.block(cas.Nbody) } case OSELRECV: e.assign(n.Left, n.Right, "selrecv", n) case OSELRECV2: e.assign(n.Left, n.Right, "selrecv", n) e.assign(n.List.First(), nil, "selrecv", n) case ORECV: // TODO(mdempsky): Consider e.discard(n.Left). e.exprSkipInit(e.discardHole(), n) // already visited n.Ninit case OSEND: e.discard(n.Left) e.assignHeap(n.Right, "send", n) case OAS, OASOP: e.assign(n.Left, n.Right, "assign", n) case OAS2: for i, nl := range n.List.Slice() { e.assign(nl, n.Rlist.Index(i), "assign-pair", n) } case OAS2DOTTYPE: // v, ok = x.(type) e.assign(n.List.First(), n.Right, "assign-pair-dot-type", n) e.assign(n.List.Second(), nil, "assign-pair-dot-type", n) case OAS2MAPR: // v, ok = m[k] e.assign(n.List.First(), n.Right, "assign-pair-mapr", n) e.assign(n.List.Second(), nil, "assign-pair-mapr", n) case OAS2RECV: // v, ok = <-ch e.assign(n.List.First(), n.Right, "assign-pair-receive", n) e.assign(n.List.Second(), nil, "assign-pair-receive", n) case OAS2FUNC: e.stmts(n.Right.Ninit) e.call(e.addrs(n.List), n.Right, nil) case ORETURN: results := e.curfn.Type.Results().FieldSlice() for i, v := range n.List.Slice() { e.assign(asNode(results[i].Nname), v, "return", n) } case OCALLFUNC, OCALLMETH, OCALLINTER, OCLOSE, OCOPY, ODELETE, OPANIC, OPRINT, OPRINTN, ORECOVER: e.call(nil, n, nil) case OGO, ODEFER: e.stmts(n.Left.Ninit) e.call(nil, n.Left, n) case ORETJMP: // TODO(mdempsky): What do? esc.go just ignores it. } } func (e *Escape) stmts(l Nodes) { for _, n := range l.Slice() { e.stmt(n) } } // block is like stmts, but preserves loopDepth. func (e *Escape) block(l Nodes) { old := e.loopDepth e.stmts(l) e.loopDepth = old } // expr models evaluating an expression n and flowing the result into // hole k. func (e *Escape) expr(k EscHole, n *Node) { if n == nil { return } e.stmts(n.Ninit) e.exprSkipInit(k, n) } func (e *Escape) exprSkipInit(k EscHole, n *Node) { if n == nil { return } lno := setlineno(n) defer func() { lineno = lno }() uintptrEscapesHack := k.uintptrEscapesHack k.uintptrEscapesHack = false if uintptrEscapesHack && n.Op == OCONVNOP && n.Left.Type.IsUnsafePtr() { // nop } else if k.derefs >= 0 && !n.Type.HasPointers() { k = e.discardHole() } switch n.Op { default: Fatalf("unexpected expr: %v", n) case OLITERAL, OGETG, OCLOSUREVAR, OTYPE: // nop case ONAME: if n.Class() == PFUNC || n.Class() == PEXTERN { return } e.flow(k, e.oldLoc(n)) case OPLUS, ONEG, OBITNOT, ONOT: e.discard(n.Left) case OADD, OSUB, OOR, OXOR, OMUL, ODIV, OMOD, OLSH, ORSH, OAND, OANDNOT, OEQ, ONE, OLT, OLE, OGT, OGE, OANDAND, OOROR: e.discard(n.Left) e.discard(n.Right) case OADDR: e.expr(k.addr(n, "address-of"), n.Left) // "address-of" case ODEREF: e.expr(k.deref(n, "indirection"), n.Left) // "indirection" case ODOT, ODOTMETH, ODOTINTER: e.expr(k.note(n, "dot"), n.Left) case ODOTPTR: e.expr(k.deref(n, "dot of pointer"), n.Left) // "dot of pointer" case ODOTTYPE, ODOTTYPE2: e.expr(k.dotType(n.Type, n, "dot"), n.Left) case OINDEX: if n.Left.Type.IsArray() { e.expr(k.note(n, "fixed-array-index-of"), n.Left) } else { // TODO(mdempsky): Fix why reason text. e.expr(k.deref(n, "dot of pointer"), n.Left) } e.discard(n.Right) case OINDEXMAP: e.discard(n.Left) e.discard(n.Right) case OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR, OSLICESTR: e.expr(k.note(n, "slice"), n.Left) low, high, max := n.SliceBounds() e.discard(low) e.discard(high) e.discard(max) case OCONV, OCONVNOP: if checkPtr(e.curfn, 2) && n.Type.IsUnsafePtr() && n.Left.Type.IsPtr() { // When -d=checkptr=2 is enabled, treat // conversions to unsafe.Pointer as an // escaping operation. This allows better // runtime instrumentation, since we can more // easily detect object boundaries on the heap // than the stack. e.assignHeap(n.Left, "conversion to unsafe.Pointer", n) } else if n.Type.IsUnsafePtr() && n.Left.Type.IsUintptr() { e.unsafeValue(k, n.Left) } else { e.expr(k, n.Left) } case OCONVIFACE: if !n.Left.Type.IsInterface() && !isdirectiface(n.Left.Type) { k = e.spill(k, n) } e.expr(k.note(n, "interface-converted"), n.Left) case ORECV: e.discard(n.Left) case OCALLMETH, OCALLFUNC, OCALLINTER, OLEN, OCAP, OCOMPLEX, OREAL, OIMAG, OAPPEND, OCOPY: e.call([]EscHole{k}, n, nil) case ONEW: e.spill(k, n) case OMAKESLICE: e.spill(k, n) e.discard(n.Left) e.discard(n.Right) case OMAKECHAN: e.discard(n.Left) case OMAKEMAP: e.spill(k, n) e.discard(n.Left) case ORECOVER: // nop case OCALLPART: // Flow the receiver argument to both the closure and // to the receiver parameter. closureK := e.spill(k, n) m := callpartMethod(n) // We don't know how the method value will be called // later, so conservatively assume the result // parameters all flow to the heap. // // TODO(mdempsky): Change ks into a callback, so that // we don't have to create this dummy slice? var ks []EscHole for i := m.Type.NumResults(); i > 0; i-- { ks = append(ks, e.heapHole()) } paramK := e.tagHole(ks, asNode(m.Type.Nname()), m.Type.Recv()) e.expr(e.teeHole(paramK, closureK), n.Left) case OPTRLIT: e.expr(e.spill(k, n), n.Left) case OARRAYLIT: for _, elt := range n.List.Slice() { if elt.Op == OKEY { elt = elt.Right } e.expr(k.note(n, "array literal element"), elt) } case OSLICELIT: k = e.spill(k, n) k.uintptrEscapesHack = uintptrEscapesHack // for ...uintptr parameters for _, elt := range n.List.Slice() { if elt.Op == OKEY { elt = elt.Right } e.expr(k.note(n, "slice-literal-element"), elt) } case OSTRUCTLIT: for _, elt := range n.List.Slice() { e.expr(k.note(n, "struct literal element"), elt.Left) } case OMAPLIT: e.spill(k, n) // Map keys and values are always stored in the heap. for _, elt := range n.List.Slice() { e.assignHeap(elt.Left, "map literal key", n) e.assignHeap(elt.Right, "map literal value", n) } case OCLOSURE: k = e.spill(k, n) // Link addresses of captured variables to closure. for _, v := range n.Func.Closure.Func.Cvars.Slice() { if v.Op == OXXX { // unnamed out argument; see dcl.go:/^funcargs continue } k := k if !v.Name.Byval() { k = k.addr(v, "reference") } e.expr(k.note(n, "captured by a closure"), v.Name.Defn) } case ORUNES2STR, OBYTES2STR, OSTR2RUNES, OSTR2BYTES, ORUNESTR: e.spill(k, n) e.discard(n.Left) case OADDSTR: e.spill(k, n) // Arguments of OADDSTR never escape; // runtime.concatstrings makes sure of that. e.discards(n.List) } } // unsafeValue evaluates a uintptr-typed arithmetic expression looking // for conversions from an unsafe.Pointer. func (e *Escape) unsafeValue(k EscHole, n *Node) { if n.Type.Etype != TUINTPTR { Fatalf("unexpected type %v for %v", n.Type, n) } e.stmts(n.Ninit) switch n.Op { case OCONV, OCONVNOP: if n.Left.Type.IsUnsafePtr() { e.expr(k, n.Left) } else { e.discard(n.Left) } case ODOTPTR: if isReflectHeaderDataField(n) { e.expr(k.deref(n, "reflect.Header.Data"), n.Left) } else { e.discard(n.Left) } case OPLUS, ONEG, OBITNOT: e.unsafeValue(k, n.Left) case OADD, OSUB, OOR, OXOR, OMUL, ODIV, OMOD, OAND, OANDNOT: e.unsafeValue(k, n.Left) e.unsafeValue(k, n.Right) case OLSH, ORSH: e.unsafeValue(k, n.Left) // RHS need not be uintptr-typed (#32959) and can't meaningfully // flow pointers anyway. e.discard(n.Right) default: e.exprSkipInit(e.discardHole(), n) } } // discard evaluates an expression n for side-effects, but discards // its value. func (e *Escape) discard(n *Node) { e.expr(e.discardHole(), n) } func (e *Escape) discards(l Nodes) { for _, n := range l.Slice() { e.discard(n) } } // addr evaluates an addressable expression n and returns an EscHole // that represents storing into the represented location. func (e *Escape) addr(n *Node) EscHole { if n == nil || n.isBlank() { // Can happen at least in OSELRECV. // TODO(mdempsky): Anywhere else? return e.discardHole() } k := e.heapHole() switch n.Op { default: Fatalf("unexpected addr: %v", n) case ONAME: if n.Class() == PEXTERN { break } k = e.oldLoc(n).asHole() case ODOT: k = e.addr(n.Left) case OINDEX: e.discard(n.Right) if n.Left.Type.IsArray() { k = e.addr(n.Left) } else { e.discard(n.Left) } case ODEREF, ODOTPTR: e.discard(n) case OINDEXMAP: e.discard(n.Left) e.assignHeap(n.Right, "key of map put", n) } if !n.Type.HasPointers() { k = e.discardHole() } return k } func (e *Escape) addrs(l Nodes) []EscHole { var ks []EscHole for _, n := range l.Slice() { ks = append(ks, e.addr(n)) } return ks } // assign evaluates the assignment dst = src. func (e *Escape) assign(dst, src *Node, why string, where *Node) { // Filter out some no-op assignments for escape analysis. ignore := dst != nil && src != nil && isSelfAssign(dst, src) if ignore && Debug['m'] != 0 { Warnl(where.Pos, "%v ignoring self-assignment in %S", funcSym(e.curfn), where) } k := e.addr(dst) if dst != nil && dst.Op == ODOTPTR && isReflectHeaderDataField(dst) { e.unsafeValue(e.heapHole().note(where, why), src) } else { if ignore { k = e.discardHole() } e.expr(k.note(where, why), src) } } func (e *Escape) assignHeap(src *Node, why string, where *Node) { e.expr(e.heapHole().note(where, why), src) } // call evaluates a call expressions, including builtin calls. ks // should contain the holes representing where the function callee's // results flows; where is the OGO/ODEFER context of the call, if any. func (e *Escape) call(ks []EscHole, call, where *Node) { topLevelDefer := where != nil && where.Op == ODEFER && e.loopDepth == 1 if topLevelDefer { // force stack allocation of defer record, unless // open-coded defers are used (see ssa.go) where.Esc = EscNever } argument := func(k EscHole, arg *Node) { if topLevelDefer { // Top level defers arguments don't escape to // heap, but they do need to last until end of // function. k = e.later(k) } else if where != nil { k = e.heapHole() } e.expr(k.note(call, "call parameter"), arg) } switch call.Op { default: Fatalf("unexpected call op: %v", call.Op) case OCALLFUNC, OCALLMETH, OCALLINTER: fixVariadicCall(call) // Pick out the function callee, if statically known. var fn *Node switch call.Op { case OCALLFUNC: if call.Left.Op == ONAME && call.Left.Class() == PFUNC { fn = call.Left } else if call.Left.Op == OCLOSURE { fn = call.Left.Func.Closure.Func.Nname } case OCALLMETH: fn = asNode(call.Left.Type.FuncType().Nname) } fntype := call.Left.Type if fn != nil { fntype = fn.Type } if ks != nil && fn != nil && e.inMutualBatch(fn) { for i, result := range fn.Type.Results().FieldSlice() { e.expr(ks[i], asNode(result.Nname)) } } if r := fntype.Recv(); r != nil { argument(e.tagHole(ks, fn, r), call.Left.Left) } else { // Evaluate callee function expression. argument(e.discardHole(), call.Left) } args := call.List.Slice() for i, param := range fntype.Params().FieldSlice() { argument(e.tagHole(ks, fn, param), args[i]) } case OAPPEND: args := call.List.Slice() // Appendee slice may flow directly to the result, if // it has enough capacity. Alternatively, a new heap // slice might be allocated, and all slice elements // might flow to heap. appendeeK := ks[0] if args[0].Type.Elem().HasPointers() { appendeeK = e.teeHole(appendeeK, e.heapHole().deref(call, "appendee slice")) } argument(appendeeK, args[0]) if call.IsDDD() { appendedK := e.discardHole() if args[1].Type.IsSlice() && args[1].Type.Elem().HasPointers() { appendedK = e.heapHole().deref(call, "appended slice...") } argument(appendedK, args[1]) } else { for _, arg := range args[1:] { argument(e.heapHole(), arg) } } case OCOPY: argument(e.discardHole(), call.Left) copiedK := e.discardHole() if call.Right.Type.IsSlice() && call.Right.Type.Elem().HasPointers() { copiedK = e.heapHole().deref(call, "copied slice") } argument(copiedK, call.Right) case OPANIC: argument(e.heapHole(), call.Left) case OCOMPLEX: argument(e.discardHole(), call.Left) argument(e.discardHole(), call.Right) case ODELETE, OPRINT, OPRINTN, ORECOVER: for _, arg := range call.List.Slice() { argument(e.discardHole(), arg) } case OLEN, OCAP, OREAL, OIMAG, OCLOSE: argument(e.discardHole(), call.Left) } } // tagHole returns a hole for evaluating an argument passed to param. // ks should contain the holes representing where the function // callee's results flows. fn is the statically-known callee function, // if any. func (e *Escape) tagHole(ks []EscHole, fn *Node, param *types.Field) EscHole { // If this is a dynamic call, we can't rely on param.Note. if fn == nil { return e.heapHole() } if e.inMutualBatch(fn) { return e.addr(asNode(param.Nname)) } // Call to previously tagged function. if param.Note == uintptrEscapesTag { k := e.heapHole() k.uintptrEscapesHack = true return k } var tagKs []EscHole esc := ParseLeaks(param.Note) if x := esc.Heap(); x >= 0 { tagKs = append(tagKs, e.heapHole().shift(x)) } if ks != nil { for i := 0; i < numEscResults; i++ { if x := esc.Result(i); x >= 0 { tagKs = append(tagKs, ks[i].shift(x)) } } } return e.teeHole(tagKs...) } // inMutualBatch reports whether function fn is in the batch of // mutually recursive functions being analyzed. When this is true, // fn has not yet been analyzed, so its parameters and results // should be incorporated directly into the flow graph instead of // relying on its escape analysis tagging. func (e *Escape) inMutualBatch(fn *Node) bool { if fn.Name.Defn != nil && fn.Name.Defn.Esc < EscFuncTagged { if fn.Name.Defn.Esc == EscFuncUnknown { Fatalf("graph inconsistency") } return true } return false } // An EscHole represents a context for evaluation a Go // expression. E.g., when evaluating p in "x = **p", we'd have a hole // with dst==x and derefs==2. type EscHole struct { dst *EscLocation derefs int // >= -1 notes *EscNote // uintptrEscapesHack indicates this context is evaluating an // argument for a //go:uintptrescapes function. uintptrEscapesHack bool } type EscNote struct { next *EscNote where *Node why string } func (k EscHole) note(where *Node, why string) EscHole { if where == nil || why == "" { Fatalf("note: missing where/why") } if Debug['m'] >= 2 || logopt.Enabled() { k.notes = &EscNote{ next: k.notes, where: where, why: why, } } return k } func (k EscHole) shift(delta int) EscHole { k.derefs += delta if k.derefs < -1 { Fatalf("derefs underflow: %v", k.derefs) } return k } func (k EscHole) deref(where *Node, why string) EscHole { return k.shift(1).note(where, why) } func (k EscHole) addr(where *Node, why string) EscHole { return k.shift(-1).note(where, why) } func (k EscHole) dotType(t *types.Type, where *Node, why string) EscHole { if !t.IsInterface() && !isdirectiface(t) { k = k.shift(1) } return k.note(where, why) } // teeHole returns a new hole that flows into each hole of ks, // similar to the Unix tee(1) command. func (e *Escape) teeHole(ks ...EscHole) EscHole { if len(ks) == 0 { return e.discardHole() } if len(ks) == 1 { return ks[0] } // TODO(mdempsky): Optimize if there's only one non-discard hole? // Given holes "l1 = _", "l2 = **_", "l3 = *_", ..., create a // new temporary location ltmp, wire it into place, and return // a hole for "ltmp = _". loc := e.newLoc(nil, true) for _, k := range ks { // N.B., "p = &q" and "p = &tmp; tmp = q" are not // semantically equivalent. To combine holes like "l1 // = _" and "l2 = &_", we'd need to wire them as "l1 = // *ltmp" and "l2 = ltmp" and return "ltmp = &_" // instead. if k.derefs < 0 { Fatalf("teeHole: negative derefs") } e.flow(k, loc) } return loc.asHole() } func (e *Escape) dcl(n *Node) EscHole { loc := e.oldLoc(n) loc.loopDepth = e.loopDepth return loc.asHole() } // spill allocates a new location associated with expression n, flows // its address to k, and returns a hole that flows values to it. It's // intended for use with most expressions that allocate storage. func (e *Escape) spill(k EscHole, n *Node) EscHole { loc := e.newLoc(n, true) e.flow(k.addr(n, "spill"), loc) return loc.asHole() } // later returns a new hole that flows into k, but some time later. // Its main effect is to prevent immediate reuse of temporary // variables introduced during Order. func (e *Escape) later(k EscHole) EscHole { loc := e.newLoc(nil, false) e.flow(k, loc) return loc.asHole() } // canonicalNode returns the canonical *Node that n logically // represents. func canonicalNode(n *Node) *Node { if n != nil && n.Op == ONAME && n.Name.IsClosureVar() { n = n.Name.Defn if n.Name.IsClosureVar() { Fatalf("still closure var") } } return n } func (e *Escape) newLoc(n *Node, transient bool) *EscLocation { if e.curfn == nil { Fatalf("e.curfn isn't set") } if n != nil && n.Type != nil && n.Type.NotInHeap() { yyerrorl(n.Pos, "%v is incomplete (or unallocatable); stack allocation disallowed", n.Type) } n = canonicalNode(n) loc := &EscLocation{ n: n, curfn: e.curfn, loopDepth: e.loopDepth, transient: transient, } e.allLocs = append(e.allLocs, loc) if n != nil { if n.Op == ONAME && n.Name.Curfn != e.curfn { Fatalf("curfn mismatch: %v != %v", n.Name.Curfn, e.curfn) } if n.HasOpt() { Fatalf("%v already has a location", n) } n.SetOpt(loc) if mustHeapAlloc(n) { why := "too large for stack" if n.Op == OMAKESLICE && (!Isconst(n.Left, CTINT) || (n.Right != nil && !Isconst(n.Right, CTINT))) { why = "non-constant size" } e.flow(e.heapHole().addr(n, why), loc) } } return loc } func (e *Escape) oldLoc(n *Node) *EscLocation { n = canonicalNode(n) return n.Opt().(*EscLocation) } func (l *EscLocation) asHole() EscHole { return EscHole{dst: l} } func (e *Escape) flow(k EscHole, src *EscLocation) { dst := k.dst if dst == &e.blankLoc { return } if dst == src && k.derefs >= 0 { // dst = dst, dst = *dst, ... return } if dst.escapes && k.derefs < 0 { // dst = &src if Debug['m'] >= 2 || logopt.Enabled() { pos := linestr(src.n.Pos) if Debug['m'] >= 2 { fmt.Printf("%s: %v escapes to heap:\n", pos, src.n) } explanation := e.explainFlow(pos, dst, src, k.derefs, k.notes, []*logopt.LoggedOpt{}) if logopt.Enabled() { logopt.LogOpt(src.n.Pos, "escapes", "escape", e.curfn.funcname(), fmt.Sprintf("%v escapes to heap", src.n), explanation) } } src.escapes = true return } // TODO(mdempsky): Deduplicate edges? dst.edges = append(dst.edges, EscEdge{src: src, derefs: k.derefs, notes: k.notes}) } func (e *Escape) heapHole() EscHole { return e.heapLoc.asHole() } func (e *Escape) discardHole() EscHole { return e.blankLoc.asHole() } // walkAll computes the minimal dereferences between all pairs of // locations. func (e *Escape) walkAll() { // We use a work queue to keep track of locations that we need // to visit, and repeatedly walk until we reach a fixed point. // // We walk once from each location (including the heap), and // then re-enqueue each location on its transition from // transient->!transient and !escapes->escapes, which can each // happen at most once. So we take Θ(len(e.allLocs)) walks. // LIFO queue, has enough room for e.allLocs and e.heapLoc. todo := make([]*EscLocation, 0, len(e.allLocs)+1) enqueue := func(loc *EscLocation) { if !loc.queued { todo = append(todo, loc) loc.queued = true } } for _, loc := range e.allLocs { enqueue(loc) } enqueue(&e.heapLoc) var walkgen uint32 for len(todo) > 0 { root := todo[len(todo)-1] todo = todo[:len(todo)-1] root.queued = false walkgen++ e.walkOne(root, walkgen, enqueue) } } // walkOne computes the minimal number of dereferences from root to // all other locations. func (e *Escape) walkOne(root *EscLocation, walkgen uint32, enqueue func(*EscLocation)) { // The data flow graph has negative edges (from addressing // operations), so we use the Bellman-Ford algorithm. However, // we don't have to worry about infinite negative cycles since // we bound intermediate dereference counts to 0. root.walkgen = walkgen root.derefs = 0 root.dst = nil todo := []*EscLocation{root} // LIFO queue for len(todo) > 0 { l := todo[len(todo)-1] todo = todo[:len(todo)-1] base := l.derefs // If l.derefs < 0, then l's address flows to root. addressOf := base < 0 if addressOf { // For a flow path like "root = &l; l = x", // l's address flows to root, but x's does // not. We recognize this by lower bounding // base at 0. base = 0 // If l's address flows to a non-transient // location, then l can't be transiently // allocated. if !root.transient && l.transient { l.transient = false enqueue(l) } } if e.outlives(root, l) { // l's value flows to root. If l is a function // parameter and root is the heap or a // corresponding result parameter, then record // that value flow for tagging the function // later. if l.isName(PPARAM) { if (logopt.Enabled() || Debug['m'] >= 2) && !l.escapes { if Debug['m'] >= 2 { fmt.Printf("%s: parameter %v leaks to %s with derefs=%d:\n", linestr(l.n.Pos), l.n, e.explainLoc(root), base) } explanation := e.explainPath(root, l) if logopt.Enabled() { logopt.LogOpt(l.n.Pos, "leak", "escape", e.curfn.funcname(), fmt.Sprintf("parameter %v leaks to %s with derefs=%d", l.n, e.explainLoc(root), base), explanation) } } l.leakTo(root, base) } // If l's address flows somewhere that // outlives it, then l needs to be heap // allocated. if addressOf && !l.escapes { if logopt.Enabled() || Debug['m'] >= 2 { if Debug['m'] >= 2 { fmt.Printf("%s: %v escapes to heap:\n", linestr(l.n.Pos), l.n) } explanation := e.explainPath(root, l) if logopt.Enabled() { logopt.LogOpt(l.n.Pos, "escape", "escape", e.curfn.funcname(), fmt.Sprintf("%v escapes to heap", l.n), explanation) } } l.escapes = true enqueue(l) continue } } for i, edge := range l.edges { if edge.src.escapes { continue } derefs := base + edge.derefs if edge.src.walkgen != walkgen || edge.src.derefs > derefs { edge.src.walkgen = walkgen edge.src.derefs = derefs edge.src.dst = l edge.src.dstEdgeIdx = i todo = append(todo, edge.src) } } } } // explainPath prints an explanation of how src flows to the walk root. func (e *Escape) explainPath(root, src *EscLocation) []*logopt.LoggedOpt { visited := make(map[*EscLocation]bool) pos := linestr(src.n.Pos) var explanation []*logopt.LoggedOpt for { // Prevent infinite loop. if visited[src] { if Debug['m'] >= 2 { fmt.Printf("%s: warning: truncated explanation due to assignment cycle; see golang.org/issue/35518\n", pos) } break } visited[src] = true dst := src.dst edge := &dst.edges[src.dstEdgeIdx] if edge.src != src { Fatalf("path inconsistency: %v != %v", edge.src, src) } explanation = e.explainFlow(pos, dst, src, edge.derefs, edge.notes, explanation) if dst == root { break } src = dst } return explanation } func (e *Escape) explainFlow(pos string, dst, srcloc *EscLocation, derefs int, notes *EscNote, explanation []*logopt.LoggedOpt) []*logopt.LoggedOpt { ops := "&" if derefs >= 0 { ops = strings.Repeat("*", derefs) } print := Debug['m'] >= 2 flow := fmt.Sprintf(" flow: %s = %s%v:", e.explainLoc(dst), ops, e.explainLoc(srcloc)) if print { fmt.Printf("%s:%s\n", pos, flow) } if logopt.Enabled() { var epos src.XPos if notes != nil { epos = notes.where.Pos } else if srcloc != nil && srcloc.n != nil { epos = srcloc.n.Pos } explanation = append(explanation, logopt.NewLoggedOpt(epos, "escflow", "escape", e.curfn.funcname(), flow)) } for note := notes; note != nil; note = note.next { if print { fmt.Printf("%s: from %v (%v) at %s\n", pos, note.where, note.why, linestr(note.where.Pos)) } if logopt.Enabled() { explanation = append(explanation, logopt.NewLoggedOpt(note.where.Pos, "escflow", "escape", e.curfn.funcname(), fmt.Sprintf(" from %v (%v)", note.where, note.why))) } } return explanation } func (e *Escape) explainLoc(l *EscLocation) string { if l == &e.heapLoc { return "{heap}" } if l.n == nil { // TODO(mdempsky): Omit entirely. return "{temp}" } if l.n.Op == ONAME { return fmt.Sprintf("%v", l.n) } return fmt.Sprintf("{storage for %v}", l.n) } // outlives reports whether values stored in l may survive beyond // other's lifetime if stack allocated. func (e *Escape) outlives(l, other *EscLocation) bool { // The heap outlives everything. if l.escapes { return true } // We don't know what callers do with returned values, so // pessimistically we need to assume they flow to the heap and // outlive everything too. if l.isName(PPARAMOUT) { // Exception: Directly called closures can return // locations allocated outside of them without forcing // them to the heap. For example: // // var u int // okay to stack allocate // *(func() *int { return &u }()) = 42 if containsClosure(other.curfn, l.curfn) && l.curfn.Func.Closure.Func.Top&ctxCallee != 0 { return false } return true } // If l and other are within the same function, then l // outlives other if it was declared outside other's loop // scope. For example: // // var l *int // for { // l = new(int) // } if l.curfn == other.curfn && l.loopDepth < other.loopDepth { return true } // If other is declared within a child closure of where l is // declared, then l outlives it. For example: // // var l *int // func() { // l = new(int) // } if containsClosure(l.curfn, other.curfn) { return true } return false } // containsClosure reports whether c is a closure contained within f. func containsClosure(f, c *Node) bool { if f.Op != ODCLFUNC || c.Op != ODCLFUNC { Fatalf("bad containsClosure: %v, %v", f, c) } // Common case. if f == c { return false } // Closures within function Foo are named like "Foo.funcN..." // TODO(mdempsky): Better way to recognize this. fn := f.Func.Nname.Sym.Name cn := c.Func.Nname.Sym.Name return len(cn) > len(fn) && cn[:len(fn)] == fn && cn[len(fn)] == '.' } // leak records that parameter l leaks to sink. func (l *EscLocation) leakTo(sink *EscLocation, derefs int) { // If sink is a result parameter and we can fit return bits // into the escape analysis tag, then record a return leak. if sink.isName(PPARAMOUT) && sink.curfn == l.curfn { // TODO(mdempsky): Eliminate dependency on Vargen here. ri := int(sink.n.Name.Vargen) - 1 if ri < numEscResults { // Leak to result parameter. l.paramEsc.AddResult(ri, derefs) return } } // Otherwise, record as heap leak. l.paramEsc.AddHeap(derefs) } func (e *Escape) finish(fns []*Node) { // Record parameter tags for package export data. for _, fn := range fns { fn.Esc = EscFuncTagged narg := 0 for _, fs := range &types.RecvsParams { for _, f := range fs(fn.Type).Fields().Slice() { narg++ f.Note = e.paramTag(fn, narg, f) } } } for _, loc := range e.allLocs { n := loc.n if n == nil { continue } n.SetOpt(nil) // Update n.Esc based on escape analysis results. if loc.escapes { if n.Op != ONAME { if Debug['m'] != 0 { Warnl(n.Pos, "%S escapes to heap", n) } if logopt.Enabled() { logopt.LogOpt(n.Pos, "escape", "escape", e.curfn.funcname()) } } n.Esc = EscHeap addrescapes(n) } else { if Debug['m'] != 0 && n.Op != ONAME { Warnl(n.Pos, "%S does not escape", n) } n.Esc = EscNone if loc.transient { n.SetTransient(true) } } } } func (l *EscLocation) isName(c Class) bool { return l.n != nil && l.n.Op == ONAME && l.n.Class() == c } const numEscResults = 7 // An EscLeaks represents a set of assignment flows from a parameter // to the heap or to any of its function's (first numEscResults) // result parameters. type EscLeaks [1 + numEscResults]uint8 // Empty reports whether l is an empty set (i.e., no assignment flows). func (l EscLeaks) Empty() bool { return l == EscLeaks{} } // Heap returns the minimum deref count of any assignment flow from l // to the heap. If no such flows exist, Heap returns -1. func (l EscLeaks) Heap() int { return l.get(0) } // Result returns the minimum deref count of any assignment flow from // l to its function's i'th result parameter. If no such flows exist, // Result returns -1. func (l EscLeaks) Result(i int) int { return l.get(1 + i) } // AddHeap adds an assignment flow from l to the heap. func (l *EscLeaks) AddHeap(derefs int) { l.add(0, derefs) } // AddResult adds an assignment flow from l to its function's i'th // result parameter. func (l *EscLeaks) AddResult(i, derefs int) { l.add(1+i, derefs) } func (l *EscLeaks) setResult(i, derefs int) { l.set(1+i, derefs) } func (l EscLeaks) get(i int) int { return int(l[i]) - 1 } func (l *EscLeaks) add(i, derefs int) { if old := l.get(i); old < 0 || derefs < old { l.set(i, derefs) } } func (l *EscLeaks) set(i, derefs int) { v := derefs + 1 if v < 0 { Fatalf("invalid derefs count: %v", derefs) } if v > math.MaxUint8 { v = math.MaxUint8 } l[i] = uint8(v) } // Optimize removes result flow paths that are equal in length or // longer than the shortest heap flow path. func (l *EscLeaks) Optimize() { // If we have a path to the heap, then there's no use in // keeping equal or longer paths elsewhere. if x := l.Heap(); x >= 0 { for i := 0; i < numEscResults; i++ { if l.Result(i) >= x { l.setResult(i, -1) } } } } var leakTagCache = map[EscLeaks]string{} // Encode converts l into a binary string for export data. func (l EscLeaks) Encode() string { if l.Heap() == 0 { // Space optimization: empty string encodes more // efficiently in export data. return "" } if s, ok := leakTagCache[l]; ok { return s } n := len(l) for n > 0 && l[n-1] == 0 { n-- } s := "esc:" + string(l[:n]) leakTagCache[l] = s return s } // ParseLeaks parses a binary string representing an EscLeaks. func ParseLeaks(s string) EscLeaks { var l EscLeaks if !strings.HasPrefix(s, "esc:") { l.AddHeap(0) return l } copy(l[:], s[4:]) return l }