
The
Go

Programming Language

Part 2

Rob Pike
r@google.com

(updated June, 2011)

1Friday, June 10, 2011

mailto:r@google.com
mailto:r@google.com


Today’s Outline

Exercise
  any questions?

Composite types
  structures, arrays, slices, maps

Methods
they're not just for structs any more

Interfaces

2Friday, June 10, 2011



Exercise

Any questions?

One nugget:

n0, n1 = n0+n1, n0

or for a general binary operator

n0, n1 = op(n0, n1), n0

3Friday, June 10, 2011



Arrays

4Friday, June 10, 2011



Arrays

Arrays are quite different from C arrays; more like 
Pascal arrays.  (Slices, the next topic, act a little 
more like C arrays.)

var ar [3]int

declares ar to be an array of 3 integers, initially all 

set to zero.

Size is part of the type.

Built-in function len reports size:

len(ar) == 3

5Friday, June 10, 2011



Arrays are values

Arrays are values, not implicit pointers as in C. You 
can take an array's address, yielding a pointer to 
the array (for instance, to pass it efficiently to a 
function):

func f(a [3]int) { fmt.Println(a) }

func fp(a *[3]int) { fmt.Println(a) }

func main() {

    var ar [3] int

    f(ar)    // passes a copy of ar

    fp(&ar)  // passes a pointer to ar

}

Output (Print and friends know about arrays):
[0 0 0]

&[0 0 0]

6Friday, June 10, 2011



Array literals

All the composite types have similar syntax for 
creating values. For arrays it look like this:

Array of 3 integers:
[3]int{1, 2, 3}

Array of 10 integers, first three not zero:
[10]int{ 1, 2, 3}

Don't want to count? Use ... for the length:
[...]int{1, 2, 3} 

Don't want to initialize them all? Use key:value pairs:
[10]int{2:1, 3:1, 5:1, 7:1}

7Friday, June 10, 2011



Pointers to array literals

You can take the address of an array literal to get a 
pointer to a newly created instance:

func fp(a *[3]int) { fmt.Println(a) }

func main() {

    for i := 0; i < 3; i++ {

        fp(&[3]int{i, i*i, i*i*i})

    }

}

Output:
&[0 0 0]

&[1 1 1]

&[2 4 8]

8Friday, June 10, 2011



Slices

9Friday, June 10, 2011



Slices

A slice is a reference to a section of an array.
Slices are used much more often than plain arrays.

A slice is very cheap.  (More about this soon.)

A slice type looks like an array type without a size:

var a []int

Built-in len(a) returns the number of elements.

Create a slice by "slicing" an array or slice:

a = ar[7:9]

Valid indexes of a will then be 0 and 1; len(a)==2.

10Friday, June 10, 2011



Slice shorthands

When slicing, first index defaults to 0:

    ar[:n] means the same as ar[0:n].

Second index defaults to len(array/slice):

    ar[n:] means the same as ar[n:len(ar)].

Thus to create a slice from an array:

   ar[:] means the same as ar[0:len(ar)].

11Friday, June 10, 2011



A slice references an array

ar:

Array:

Slice:

a=ar[7:9]:

7 1 5 4 3 8 7 2 11 5

base=&ar[7] len=2 cap=4

3

Conceptually:
type Slice struct {

    base *elemType  // pointer to 0th element

    len int         // num. of elems in slice

    cap int         // num. of elems available

}

12Friday, June 10, 2011



Making slices

Slice literals look like array literals without a size:

  var slice = []int{1,2,3,4,5}

What this does is create an array of length 5 and 
then create a slice to refer to it.

We can also allocate a slice (and underlying array) 
with the built-in function make:

  var s100 = make([]int, 100) // slice: 100 ints

Why make not new?  Because we need to make a slice, 

not just allocate the memory. Note make([]int, 10) 

returns []int while new([]int) returns *[]int.

Use make to create slices, maps, and channels.
13Friday, June 10, 2011



Slice capacity

A slice refers to an underlying array, so there may be 
elements off the end of the slice that are present in the 
array.

The built-in function cap (capacity) reports how long 

the slice could possibly grow.  After

var ar = [10]int{0,1,2,3,4,5,6,7,8,9}

var a = ar[5:7]  // reference to subarray {5,6}

len(a) is 2 and cap(a) is 5.  We can "reslice":

a = a[0:4]  // reference to subarray {5,6,7,8}

len(a) is now 4 but cap(a) is still 5.

14Friday, June 10, 2011



Resizing a slice
Slices can be used like growable arrays.  Allocate one 
using make with two numbers - length and capacity -

and reslice as it grows:

var sl = make([]int, 0, 100)  // len 0, cap 100

func appendToSlice(i int, sl []int) []int {

    if len(sl) == cap(sl) { error(...) }

    n := len(sl)

    sl = sl[0:n+1]  // extend length by 1

    sl[n] = i

    return sl

}

Thus sl's length is always the number of elements, but 

it grows as needed.
This style is cheap and idiomatic in Go.

15Friday, June 10, 2011



Slices are cheap
Feel free to allocate and resize slices as required.  They 
are cheap to pass around; no need to allocate. 
Remember they are references, so underlying storage 
can be modified.

For instance, I/O uses slices, not counts:

func Read(fd int, b []byte) int

var buffer [100]byte

for i := 0; i < 100; i++ {

    // Fill buffer one byte at a time.

    Read(fd, buffer[i:i+1])  // no allocation here

}

Split a buffer:
  header, data := buf[:n], buf[n:]

Strings can be sliced too, with similar efficiency. 

16Friday, June 10, 2011



Maps

17Friday, June 10, 2011



Maps

Maps are another reference type.  They are declared 
like this:

var m map[string]float64

This declares a map indexed with key type string 

and value type float64.  It is analogous to the C++ 

type *map<string,float64> (note the *).

Given a map m, len(m) returns the number of keys.

18Friday, June 10, 2011



Map creation

As with a slice, a map variable refers to nothing; you 
must put something in it before it can be used.

Three ways:

1) Literal: list of colon-separated key:value pairs
    m = map[string]float64{"1":1, "pi":3.1415}

2) Creation
    m = make(map[string]float64)  // make not new

3) Assignment

    var m1 map[string]float64
   m1 = m // m1 and m now refer to same map

19Friday, June 10, 2011



Indexing a map

(Next few examples all use
m = map[string]float64{"1":1, "pi":3.1415}

)

Access an element as a value; if not present, get 
zero value for the map's value type:

one  := m["1"]

zero := m["not present"] // Sets zero to 0.0.

Set an element (setting twice updates value for key)

m["2"] = 2

m["2"] = 3  // mess with their heads

20Friday, June 10, 2011



Testing existence

To test if a key is present in the map, we can use a 
multi-value assignment, the "comma ok" form:

m = map[string]float64{"1":1, "pi":3.1415}

var value float64

var present bool

value, present = m[x]

or idiomatically

value, ok := m[x]  // hence, the "comma ok" form

If x is present in the map, sets the boolean to true 

and the value to the entry for the key.  If not, sets 
the boolean to false and the value to the zero for 

its type.
21Friday, June 10, 2011



Deleting

Deleting an entry in the map is a multi-variate 
assignment to the map entry:

m = map[string]float64{"1":1.0, "pi":3.1415}

var keep bool

var value float64

var x string = f()

m[x] = v, keep

If keep is true, assigns v to the map; if keep is false, 

deletes the entry for key x. So to delete an entry,

m[x] = 0, false   // deletes entry for x

22Friday, June 10, 2011



For and range

The for loop has a special syntax for iterating over 

arrays, slices, maps (and more, as we'll see tomorrow).

    m := map[string]float64{"1":1.0, "pi":3.1415}

    for key, value := range m {

        fmt.Printf("key %s, value %g\n", key, value)

    }

With only one variable in the range, get the key:

for key = range m {

    fmt.Printf("key %s\n", key)

}

Variables can be assigned or declared using := .

For arrays and slices, get index and value.

23Friday, June 10, 2011



Range over string

A for using range on a string loops over Unicode code 

points, not bytes. (Use []byte for bytes, or use a 

standard for). The string is assumed to contain UTF-8.

The loop

s := "[\u00ff\u754c]"

for i, c := range s {

  fmt.Printf("%d:%q ", i, c) // %q for 'quoted'

}

Prints 0:'[' 1:'ÿ' 3:'界' 6:']'

If erroneous UTF-8 is encountered, the character is set 
to U+FFFD and the index advances by one byte.

24Friday, June 10, 2011



Structs

25Friday, June 10, 2011



Structs

Structs should feel very familiar: simple 
declarations of data fields.

var p struct {

    x, y float64

}

More usual:

type Point struct {

    x, y float64

}

var p Point

Structs allow the programmer to define the layout 
of memory.

26Friday, June 10, 2011



Structs are values

Structs are values and new(StructType) returns a 

pointer to a zero value (memory all zeros).

type Point struct {

    x, y float64

}

var p Point

p.x = 7

p.y = 23.4

var pp *Point = new(Point)

*pp = p

pp.x = Pi  // sugar for (*pp).x

There is no -> notation for structure pointers. Go 

provides the indirection for you.   

27Friday, June 10, 2011



Making structs

Structs are values so you can make a zeroed one 
just by declaring it.

You can also allocate one with new.

var p Point        // zeroed value

pp := new(Point)   // idiomatic allocation

Struct literals have the expected syntax.

p = Point{7.2, 8.4}

p = Point{y:8.4, x:7.2}

pp = &Point{7.2, 8.4}   // idiomatic

pp = &Point{}    // also idiomatic; == new(Point)

As with arrays, taking the address of a struct literal 
gives the address of a newly created value.
These examples are constructors.

28Friday, June 10, 2011



Exporting types and fields

The fields (and methods, coming up soon) of a 
struct must start with an Uppercase letter to be 

visible outside the package.

Private type and fields:
type point struct { x, y float64 }

Exported type and fields:
type Point struct { X, Y float64 }

Exported type with mix of fields:
type Point struct {

    X, Y float64  // exported

    name string   // not exported

}

You may even have a private type with exported 
fields.  Exercise: when is that useful?

29Friday, June 10, 2011



Anonymous fields

Inside a struct, you can declare fields, such as 
another struct, without giving a name for the field.  
These are called anonymous fields and they act as if 
the inner struct is simply inserted or "embedded" 
into the outer.

This simple mechanism provides a way to derive 
some or all of your implementation from another 
type or types.

An example follows.

30Friday, June 10, 2011



An anonymous struct field
type A struct {

    ax, ay int

}

type B struct {

    A

    bx, by float64

}

B acts as if it has four fields, ax, ay, bx, and by. It's 

almost as if B is {ax, ay int; bx, by float64}. 

However, literals for B must be filled out in detail:

b := B{A{1, 2}, 3.0, 4.0}

fmt.Println(b.ax, b.ay, b.bx, b.by)

Prints 1 2 3 4

31Friday, June 10, 2011



Anonymous fields have type as name

But it's richer than simple interpolation of the fields: 
B also has a field A.  The anonymous field looks like 

a field whose name is its type.

b := B{A{ 1, 2}, 3.0, 4.0}

fmt.Println(b.A)

Prints {1 2}.  If A came from another package, the 

field would still be called A:

import "pkg"

type C struct { pkg.A }

...

c := C {pkg.A{1, 2}}

fmt.Println(c.A)    // not c.pkg.A

32Friday, June 10, 2011



Anonymous fields of any type

Any named type, or pointer to one, may be 
used in an anonymous field and it may 
appear at any location in the struct.

type C struct {

    x float64

    int

    string

}

c := C{3.5, 7, "hello"}

fmt.Println(c.x, c.int, c.string)

Prints 3.5 7 hello

33Friday, June 10, 2011



Conflicts and hiding

If there are two fields with the same name (possibly 
a type-derived name), these rules apply:

1) An outer name hides an inner name.

This provides a way to override a field/method.

2) If the same name appears twice at the same level,
    it is an error if the name is used by the program.
    (If it's not used, it doesn't matter.)

No rules to resolve the ambiguity; it must be fixed.

34Friday, June 10, 2011



Conflict examples

type A struct { a int }

type B struct { a, b int }

type C struct { A; B }

var c C

Using c.a is an error: is it c.A.a or c.B.a?

type D struct { B; b float64 }

var d D

Using d.b is OK: it's the float64, not d.B.b

Can get at the inner b by D.B.b.

35Friday, June 10, 2011



Methods

36Friday, June 10, 2011



Methods on structs

Go has no classes, but you can attach methods to 
any type.  Yes, (almost) any type.  The methods are 
declared, separate from the type declaration, as 
functions with an explicit receiver.  The obvious 
struct case:

type Point struct { x, y float64 }

// A method on *Point

func (p *Point) Abs() float64 {

    return math.Sqrt(p.x*p.x + p.y*p.y)

}

Note: explicit receiver (no automatic this), in this 

case of type *Point, used within the method. 

37Friday, June 10, 2011



Methods on struct values

A method does not require a pointer as a receiver.

type Point3 struct { x, y, z float64 }

// A method on Point3

func (p Point3) Abs() float64 {

    return math.Sqrt(p.x*p.x + p.y*p.y + p.z*p.z)

}

This is a bit expensive, because the Point3 will always 

be passed to the method by value, but it is valid Go. 

38Friday, June 10, 2011



Invoking a method

Just as you expect.

p := &Point{ 3, 4 }

fmt.Print(p.Abs())  // will print 5

A non-struct example:

type IntVector []int

func (v IntVector) Sum() (s int) {

  for _, x := range v { // blank identifier!

    s += x

  }

  return

}

fmt.Println(IntVector{1, 2, 3}.Sum())

39Friday, June 10, 2011



Ground rules for methods

Methods are attached to a named type, say Foo, and 

are statically bound.

The type of a receiver in a method can be either *Foo 
or Foo.  You can have some Foo methods and some 

*Foo methods.

Foo itself cannot be a pointer type, although the 

methods can have receiver type *Foo.

The type Foo must be defined in the same package as 

all its methods.

40Friday, June 10, 2011



Pointers and values

Go automatically indirects/dereferences values for 
you when invoking methods.

For instance, even though a method has receiver type 
*Point you can invoke it on an addressable value of 

type Point.

p1 := Point{ 3, 4 }

fmt.Print(p1.Abs())  // sugar for (&p1).Abs()

Similarly, if methods are on Point3 you can use a 

value of type *Point3:

p3 := &Point3{ 3, 4, 5 }

fmt.Print(p3.Abs())  // sugar for (*p3).Abs()

41Friday, June 10, 2011



Methods on anonymous fields

Naturally, when an anonymous field is embedded in 
a struct, the methods of that type are embedded as 
well - in effect, it inherits the methods.

This mechanism offers a simple way to emulate 
some of the effects of subclassing and inheritance.

42Friday, June 10, 2011



Anonymous field example

type Point struct { x, y float64 }

func (p *Point) Abs() float64 { ... }

type NamedPoint struct {

    Point

    name string

}

n := &NamedPoint{Point{3, 4}, "Pythagoras"}

fmt.Println(n.Abs())  // prints 5

43Friday, June 10, 2011



Overriding a method
Overriding works just as with fields.

type NamedPoint struct {

    Point

    name string

}

func (n *NamedPoint) Abs() float64 {

    return n.Point.Abs() * 100.

}

n := &NamedPoint{Point{3, 4}, "Pythagoras"}

fmt.Println(n.Abs())  // prints 500

Of course you can have multiple anonymous fields 
with various types - a simple version of multiple 
inheritance. The conflict resolution rules keep 
things simple, though.

44Friday, June 10, 2011



Another example

A more compelling use of an anonymous field.

type Mutex struct { ... }

func (m *Mutex) Lock() { ... }

type Buffer struct {

    data [100]byte

    Mutex  // need not be first in Buffer

}

var buf = new(Buffer)

buf.Lock()  // == buf.Mutex.Lock()

Note that Lock's receiver is (the address of) the 

Mutex field, not the surrounding structure.

(Contrast to subclassing or Lisp mix-ins.)

45Friday, June 10, 2011



Other types

Methods are not just for structs. They can be 
defined for any (non-pointer) type.

The type must be defined in your package though.  
You can't write a method for int but you can 

declare a new int type and give it methods.

type Day int

var dayName = []string {

    "Monday", "Tuesday", "Wednesday", ...

}

func (day Day) String() string {

    return dayName[day]

}

46Friday, June 10, 2011



Other types

Now we have an enumeration-like type that knows 
how to print itself.

const (

    Monday Day = iota

    Tuesday

    Wednesday

    // ...

)

var day = Tuesday

fmt.Printf("%q", day.String())  // prints "Tuesday"

47Friday, June 10, 2011



Print understands String methods

By techniques to be divulged soon, fmt.Print and 

friends can identify values that implement the method 
String as we defined for type Day.  Such values are 

automatically formatted by invoking the method. 
Thus:

fmt.Println(0, Monday, 1, Tuesday)

prints 0 Monday 1 Tuesday.

Println can tell a plain 0 from a 0 of type Day.

So define a String method for your types and they will 

print nicely with no more work.

48Friday, June 10, 2011



Visibility of fields and methods

Review: 
Go is very different from C++ in the area of visibility.
Go's rules:

1) Go has package scope (C++ has file scope).

2)!Spelling determines exported/local (pub/priv).

3)!Structs in the same package have full access to one 
another's fields and methods.

4) Local type can export its fields and methods.

5) No true subclassing, so no notion of "protected".

These simple rules seem to work well in practice.

49Friday, June 10, 2011



Interfaces

50Friday, June 10, 2011



Watch closely

We are about to look at Go's most unusual aspect: 
the interface.

Please leave your preconceptions at the door.

51Friday, June 10, 2011



Introduction

So far, all the types we have examined have been 
concrete: they implement something.

There is one more type to consider: the interface 
type. It is completely abstract; it implements 
nothing.  Instead, it specifies a set of properties an 
implementation must provide.

Interface as a concept is very close to that of Java,
and Java has an interface type,  but the "interface 
value" concept of Go is novel.

52Friday, June 10, 2011



Definition of an interface

The word "interface" is a bit overloaded in Go: 
there is the concept of an interface, and there is 
an interface type, and then there are values of that 
type.  First, the concept.

Definition:
An interface is a set of methods.

To turn it around, the methods implemented by a 
concrete type such as a struct form the interface 

of that type.

53Friday, June 10, 2011



Example

We saw this simple type before:

type Point struct { x, y float64 }

func (p *Point) Abs() float64 { ... }

The interface of type Point has the method:
Abs() float64

It's not
func (p *Point) Abs() float64

because the interface abstracts away the receiver.

We embedded Point in a new type, NamedPoint;
NamedPoint has the same interface.

54Friday, June 10, 2011



The interface type
An interface type is a specification of an interface, a 
set of methods implemented by some other types.  
Here's a simple one, with only one method:

type AbsInterface interface {

    Abs() float64  // receiver is implied

}

This is a definition of the interface implemented by 
Point, or in our terminology,

Point implements AbsInterface

Also,

NamedPoint and Point3 implement AbsInterface

Methods are written inside the interface declaration.

55Friday, June 10, 2011



An example

type MyFloat float64

func (f MyFloat) Abs() float64 {

if f < 0 { return float64(-f) }

return f

}

MyFloat implements AbsInterface even though 

float64 does not.

(Aside: MyFloat is not a "boxing" of float64; its 

representation is identical to float64.)

56Friday, June 10, 2011



Many to many

An interface may be implemented by an arbitrary 
number of types. AbsInterface is implemented by 

any type that has a method with signature
Abs() float64, regardless of what other methods 

that type may have.

A type may implement an arbitrary number of 
interfaces.  Point implements at least these two:

type AbsInterface interface { Abs() float64 }

type EmptyInterface interface { }

And perhaps more, depending on its methods.

Every type implements EmptyInterface.  That will 

come in handy.
57Friday, June 10, 2011



Interface value

Once a variable is declared with interface type, it may 
store any value that implements that interface.

var ai AbsInterface

pp := new(Point)

ai = pp               // OK: *Point has Abs()

ai = 7.               // compile-time err:

                      // float64 has no Abs()

ai = MyFloat(-7.)     // OK: MyFloat has Abs()

ai = &Point{ 3, 4 }

fmt.Printf(ai.Abs())  // method call

Prints 5.

Note: ai is not a pointer! It is an interface value.

58Friday, June 10, 2011



In memory
ai is not a pointer!  It's a multiword data structure.

receiver
value

method
table ptr

ai:

At different times it has different value and type:

-7.
(MyFloat) Abs() float64

...

0xff1234
(*Point) Abs() float64

...

ai = &Point{3,4} (a *Point at address 0xff1234):

ai = MyFloat(-7.):

59Friday, June 10, 2011



Three important facts

1) Interfaces define sets of methods.  They are pure 
and abstract: no implementation, no data fields. Go 
has a clear separation between interface and 
implementation.

2) Interface values are just that: values.  They 
contain any concrete value that implements all the 
methods defined in the interface.  That concrete 
value may or may not be a pointer.

3) Types implement interfaces just by having 
methods. They do not have to declare that they do 
so.  For instance, every type implements the empty 
interface, interface{}.

60Friday, June 10, 2011



Example: io.Writer

Here is the actual signature of fmt.Fprintf:

func Fprintf(w io.Writer, f string, a ... interface{}) 

            (n int, error os.Error)

It doesn't write to a file, it writes to something of type 
io.Writer, that is, Writer defined in the io package:

type Writer interface {

    Write(p []byte) (n int, err os.Error)

}

Fprintf can therefore be used to write to any type 

that has a canonical Write method, including files, 

pipes, network connections, and...

61Friday, June 10, 2011



Buffered I/O

... a write buffer.  This is from the bufio package:

type Writer struct { ... }

bufio.Writer implements the canonical Write method.

func (b *Writer) Write(p []byte) (n int, err os.Error)

It also has a factory: give it an io.Writer, it will return 

a buffered io.Writer in the form of a bufio.Writer:

func NewWriter(wr io.Writer) (b *Writer, err os.Error)

And of course, os.File implements Writer too.

62Friday, June 10, 2011



Putting it together

import (

"bufio"; "fmt"; "os"

)

func main() {

// unbuffered

fmt.Fprintf(os.Stdout, "%s, ", "hello")

// buffered: os.Stdout implements io.Writer

buf := bufio.NewWriter(os.Stdout)

// and now so does buf.

fmt.Fprintf(buf, "%s\n", "world!")

buf.Flush()

}

Buffering works for anything that Writes.

Feels almost like Unix pipes, doesn't it?  The 
composability is powerful; see crypto packages.

63Friday, June 10, 2011



Other public interfaces in io

The io package has:

Reader

Writer

ReadWriter

ReadWriteCloser

These are stylized interfaces but obvious: they capture 
the functionality of anything implementing the 
functions listed in their names.

This is why we can have a buffered I/O package with 
an implementation separate from the I/O itself: it both 
accepts and provides interface values.

64Friday, June 10, 2011



Comparison

In C++ terms, an interface type is like a pure abstract 
class, specifying the methods but implementing none 
of them.

In Java terms, an interface type is much like a Java 
interface.

However, in Go there is a major difference:
A type does not need to declare the interfaces it 
implements, nor does it need to inherit from an 
interface type. If it has the methods, it implements 
the interface.

Some other differences will become apparent.

65Friday, June 10, 2011



Anonymous fields work too
type LockedBufferedWriter struct {

    Mutex  // has Lock and Unlock methods

    bufio.Writer  // has Write method

}

func (l *LockedBufferedWriter) Write(p []byte)

                               (nn int, err os.Error) {

    l.Lock()

    defer l.Unlock()

    return l.Writer.Write(p)  // inner Write()

}

LockedBufferedWriter implements io.Writer, but also, 

through the anonymous Mutex,

type Locker interface { Lock(); Unlock() }

66Friday, June 10, 2011



Example: HTTP service
type Handler interface {

    ServeHTTP(ResponseWriter, *Request)

}

This is the interface defined by the HTTP server 
package.  To serve HTTP, define a type that 
implements this interface and connect it to the server 
(details omitted).

type Counter struct {

    n int  // or could just say type Counter int

}

func (ctr *Counter) ServeHTTP(w http.ResponseWriter, 

                                req *http.Request) {

    fmt.Fprintf(w, "counter = %d\n", ctr.n)

!   ctr.n++

}
67Friday, June 10, 2011



A function (type) that serves HTTP
func notFound(w http.ResponseWriter, req *http.Request){

    w.SetHeader("Content-Type", "text/plain;" +

                                "charset=utf-8")

    w.WriteHeader(StatusNotFound)

    w.WriteString("404 page not found\n")

}

Now we define a type to implement ServeHTTP:
type HandlerFunc func(http.ResponseWriter, *http.Request)

func (f HandlerFunc) ServeHTTP(w http.ResponseWriter,

                               req *http.Request) {

!   f(w, req)  // the receiver's a func; call it

}

Convert function to attach method, implement the 
interface:

var Handle404 = HandlerFunc(notFound)

68Friday, June 10, 2011



Containers & the empty interface

Sketch of the implementation of vectors. (In practice, 
tend to use raw slices instead, but this is informative):

type Element interface {}

// Vector is the container itself.

type Vector []Element

// At() returns the i'th element.

func (p *Vector) At(i int) Element {

    return p[i]

}

Vectors can contain anything because any type 
implements the empty interface. (In fact every element 
could be of different type.)

69Friday, June 10, 2011



Type assertions

Once you put something into a Vector, it's stored as 

an interface value.  Need to "unbox" it to get the 
original back: use a "type assertion".  Syntax:

interfaceValue.(typeToExtract)

Will fail if type is wrong - but see next slide.

var v vector.Vector

v.Set(0, 1234.)     // stored as interface val

i := v.At(0)        // retrieved as interface{}

if i != 1234. {}    // compile-time err

if i.(float64) != 1234. {}   // OK

if i.(int) != 1234 {}        // run-time err

if i.(MyFloat) != 1234. {}   // err: not MyFloat

Type assertions always execute at run time. Compiler 
rejects assertions guaranteed to fail.

70Friday, June 10, 2011



Interface to interface conversion

So far we've only moved regular values into and out of 
interface values, but interface values that contain the 
appropriate methods can also be converted.

In effect, it's the same as unboxing the interface value 
to extract the underlying concrete value, then boxing 
it again for the new interface type.

The conversion's success depends on the underlying 
value, not the original interface type.

71Friday, June 10, 2011



Interface to interface example
Given:

var ai AbsInterface

type SqrInterface interface { Sqr() float64 }

var si SqrInterface

pp := new(Point)  // say *Point has Abs, Sqr

var empty interface{}

These are all OK:
empty = pp      // everything satisfies empty

ai = empty.(AbsInterface) // underlying value

                // implements Abs()

                // (runtime failure otherwise)

si = ai.(SqrInterface)  // *Point has Sqr()

                // even though AbsInterface doesn't

empty = si      // *Point implements empty set

                // Note: statically checkable

                // so type assertion not necessary.

72Friday, June 10, 2011



Testing with type assertions

Can use "comma ok" type assertions to test a value for 
type.

elem := vector.At(0)

if i, ok := elem.(int); ok {

    fmt.Printf("int: %d\n", i)

} else if f, ok := elem.(float64); ok {

    fmt.Printf("float64: %g\n", f)

} else {

    fmt.Print("unknown type\n")

}

73Friday, June 10, 2011



Testing with a type switch

Special syntax:

switch v := elem.(type) { // literal keyword "type"

case int:

    fmt.Printf("is int: %d\n", v)

case float64:

    fmt.Printf("is float64: %g\n", v)

default:

    fmt.Print("unknown type\n")

}

74Friday, June 10, 2011



Does v implement m()?

Going one step further, can test whether a value 
implements a method.

type Stringer interface { String() string }

if sv, ok := v.(Stringer); ok {

    fmt.Printf("implements String(): %s\n",

               sv.String()) // note: sv not v

}

This is how Print etc. check if type can print itself.

75Friday, June 10, 2011



Reflection and . . .

There is a reflection package (reflect) that builds on 

these ideas to let you examine values to discover their 
type.  Too intricate to describe here but Printf etc. 

use it to analyze the its arguments.

func Printf(format string, args ...interface{})

           (n int, err os.Error)

Inside Printf, the args variable becomes a slice of the 

specified type, i.e. []interface{}, and Printf uses the 

reflection package to unpack each element to analyze 
its type.
More about variadic functions in the next section.

76Friday, June 10, 2011



Reflection and Print
As a result, Printf and its friends know the actual 

types of their arguments.   Because they know if the 
argument is unsigned or long, there is no %u or %ld, 

only %d.

This is also how Print and Println can print the 

arguments nicely without a format string.

There is also a %v ("value") format that gives default 

nice output from Printf for values of any type.

fmt.Printf("%v %v %v %v", -1, "hello",

           []int{1,2,3}, uint64(456))

Prints -1 hello [1 2 3] 456.
In fact, %v is identical to the formatting done by Print 

and Println.

77Friday, June 10, 2011



Variadic functions

78Friday, June 10, 2011



Variadic functions: . . .
Variable-length parameter lists are declared with the 
syntax ...T, where T is the type of the individual 

arguments. Such arguments must be the last in the 
argument list. Within the function the variadic 
argument implicitly has type []T.

func Min(args ...int) int {

    min := int(^uint(0)>>1)   // largest possible int

    for _, x := range args {  // args has type []int

        if min > x { min = x }

    }

    return min

}

! fmt.Println(Min(1,2,3), Min(-27), Min(), Min(7,8,2))

Prints 1 -27 2147483647 2

79Friday, June 10, 2011



Slices into variadics
The argument becomes a slice. What if you want to 
pass the slice as arguments directly?  Use ... at the 

call site. (Only works for variadics.)

Recall: func Min(args ...int) int

Both these invocations return -2:

Min(1, -2, 3)

slice := []int{1, -2, 3}

Min(slice...) // ... turns slice into arguments

This, however, is a type error:

  Min(slice)

because slice is of type []int while Min's arguments 

must be individually int. The ... is mandatory.

80Friday, June 10, 2011



Printf into Error

We can use the ... trick to wrap Printf or one of its 

variants to create our own custom error handler.

func Errorf(fmt string, args ...interface{}) {

    fmt.Fprintf(os.Stderr, "MyPkg: "+fmt+"\n", args...)

    os.Exit(1)

}

We can use it like this:

if err := os.Chmod(file, 0644); err != nil {

    Errorf("couldn't chmod %q: %s", file, err)

}

Output (which includes newline):

MyPkg: couldn't chmod "foo.bar": permission denied

81Friday, June 10, 2011



Append

The built-in function append, which is used to grow 

slices, is variadic.  It has (in effect) this signature:

append(s []T, x ...T) []T

where s is a slice and T is its element type.  It returns a 

slice with the elements x appended to s.

slice := []int{1, 2, 3}

slice = append(slice, 4, 5, 6)

fmt.Println(slice)

prints [1 2 3 4 5 6]

When possible, append will grow the slice in place.

82Friday, June 10, 2011



Appending a slice

If we want to append a whole slice, rather than 
individual elements, we again use ... at the call site.

slice := []int{1, 2, 3}

slice2 := []int{4, 5, 6}

slice = append(slice, slice2...) // ... is necessary

fmt.Println(slice)

This example also prints [1 2 3 4 5 6]

83Friday, June 10, 2011



Exercise

84Friday, June 10, 2011



Exercise: Day 2

Look at the http package.

Write an HTTP server to present pages in the 
file system, but transformed somehow, 
perhaps rot13, perhaps something more 
imaginative.  Can you make the 
transformation substitutable? Can you work 
in your Fibonacci program somehow?

85Friday, June 10, 2011



Next lesson

Concurrency and communication

86Friday, June 10, 2011



The
Go

Programming Language

Part 2

Rob Pike
r@google.com

(updated June 2011)

87Friday, June 10, 2011

mailto:r@google.com
mailto:r@google.com

