From 6796a7924c20d2c58b0cf78766b94543abfadc1b Mon Sep 17 00:00:00 2001 From: Filippo Valsorda Date: Sat, 30 Oct 2021 00:27:51 -0400 Subject: crypto/elliptic: refactor package structure Not quite golang.org/wiki/TargetSpecific compliant, but almost. The only substantial code change is in randFieldElement: it used to use Params().BitSize instead of Params().N.BitLen(), which is semantically incorrect, even if the two values are the same for all named curves. For #52182 Change-Id: Ibc47450552afe23ea74fcf55d1d799d5d7e5487c Reviewed-on: https://go-review.googlesource.com/c/go/+/315273 Run-TryBot: Filippo Valsorda Reviewed-by: Than McIntosh Reviewed-by: Roland Shoemaker TryBot-Result: Gopher Robot Reviewed-by: Russ Cox --- src/crypto/ecdsa/ecdsa.go | 16 +- src/crypto/elliptic/elliptic.go | 289 --------- src/crypto/elliptic/p256.go | 1178 +---------------------------------- src/crypto/elliptic/p256_asm.go | 25 +- src/crypto/elliptic/p256_generic.go | 1171 +++++++++++++++++++++++++++++++++- src/crypto/elliptic/p256_noasm.go | 15 + src/crypto/elliptic/p256_ppc64le.go | 7 - src/crypto/elliptic/p256_s390x.go | 1 - src/crypto/elliptic/params.go | 296 +++++++++ 9 files changed, 1496 insertions(+), 1502 deletions(-) create mode 100644 src/crypto/elliptic/p256_noasm.go create mode 100644 src/crypto/elliptic/params.go diff --git a/src/crypto/ecdsa/ecdsa.go b/src/crypto/ecdsa/ecdsa.go index 9f9a09a884..c3f9459991 100644 --- a/src/crypto/ecdsa/ecdsa.go +++ b/src/crypto/ecdsa/ecdsa.go @@ -128,7 +128,7 @@ func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) params := c.Params() // Note that for P-521 this will actually be 63 bits more than the order, as // division rounds down, but the extra bit is inconsequential. - b := make([]byte, params.BitSize/8+8) // TODO: use params.N.BitLen() + b := make([]byte, params.N.BitLen()/8+8) _, err = io.ReadFull(rand, b) if err != nil { return @@ -228,13 +228,13 @@ func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err err // Create a CSPRNG that xors a stream of zeros with // the output of the AES-CTR instance. - csprng := cipher.StreamReader{ + csprng := &cipher.StreamReader{ R: zeroReader, S: cipher.NewCTR(block, []byte(aesIV)), } c := priv.PublicKey.Curve - return sign(priv, &csprng, c, hash) + return sign(priv, csprng, c, hash) } func signGeneric(priv *PrivateKey, csprng *cipher.StreamReader, c elliptic.Curve, hash []byte) (r, s *big.Int, err error) { @@ -353,16 +353,14 @@ func VerifyASN1(pub *PublicKey, hash, sig []byte) bool { return Verify(pub, hash, r, s) } -type zr struct { - io.Reader -} +type zr struct{} -// Read replaces the contents of dst with zeros. -func (z *zr) Read(dst []byte) (n int, err error) { +// Read replaces the contents of dst with zeros. It is safe for concurrent use. +func (zr) Read(dst []byte) (n int, err error) { for i := range dst { dst[i] = 0 } return len(dst), nil } -var zeroReader = &zr{} +var zeroReader = zr{} diff --git a/src/crypto/elliptic/elliptic.go b/src/crypto/elliptic/elliptic.go index 7ead09f8d3..522d7afbaf 100644 --- a/src/crypto/elliptic/elliptic.go +++ b/src/crypto/elliptic/elliptic.go @@ -36,295 +36,6 @@ type Curve interface { ScalarBaseMult(k []byte) (x, y *big.Int) } -func matchesSpecificCurve(params *CurveParams, available ...Curve) (Curve, bool) { - for _, c := range available { - if params == c.Params() { - return c, true - } - } - return nil, false -} - -// CurveParams contains the parameters of an elliptic curve and also provides -// a generic, non-constant time implementation of Curve. -type CurveParams struct { - P *big.Int // the order of the underlying field - N *big.Int // the order of the base point - B *big.Int // the constant of the curve equation - Gx, Gy *big.Int // (x,y) of the base point - BitSize int // the size of the underlying field - Name string // the canonical name of the curve -} - -func (curve *CurveParams) Params() *CurveParams { - return curve -} - -// CurveParams operates, internally, on Jacobian coordinates. For a given -// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1) -// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole -// calculation can be performed within the transform (as in ScalarMult and -// ScalarBaseMult). But even for Add and Double, it's faster to apply and -// reverse the transform than to operate in affine coordinates. - -// polynomial returns x³ - 3x + b. -func (curve *CurveParams) polynomial(x *big.Int) *big.Int { - x3 := new(big.Int).Mul(x, x) - x3.Mul(x3, x) - - threeX := new(big.Int).Lsh(x, 1) - threeX.Add(threeX, x) - - x3.Sub(x3, threeX) - x3.Add(x3, curve.B) - x3.Mod(x3, curve.P) - - return x3 -} - -func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool { - // If there is a dedicated constant-time implementation for this curve operation, - // use that instead of the generic one. - if specific, ok := matchesSpecificCurve(curve, p224, p384, p521); ok { - return specific.IsOnCurve(x, y) - } - - if x.Sign() < 0 || x.Cmp(curve.P) >= 0 || - y.Sign() < 0 || y.Cmp(curve.P) >= 0 { - return false - } - - // y² = x³ - 3x + b - y2 := new(big.Int).Mul(y, y) - y2.Mod(y2, curve.P) - - return curve.polynomial(x).Cmp(y2) == 0 -} - -// zForAffine returns a Jacobian Z value for the affine point (x, y). If x and -// y are zero, it assumes that they represent the point at infinity because (0, -// 0) is not on the any of the curves handled here. -func zForAffine(x, y *big.Int) *big.Int { - z := new(big.Int) - if x.Sign() != 0 || y.Sign() != 0 { - z.SetInt64(1) - } - return z -} - -// affineFromJacobian reverses the Jacobian transform. See the comment at the -// top of the file. If the point is ∞ it returns 0, 0. -func (curve *CurveParams) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { - if z.Sign() == 0 { - return new(big.Int), new(big.Int) - } - - zinv := new(big.Int).ModInverse(z, curve.P) - zinvsq := new(big.Int).Mul(zinv, zinv) - - xOut = new(big.Int).Mul(x, zinvsq) - xOut.Mod(xOut, curve.P) - zinvsq.Mul(zinvsq, zinv) - yOut = new(big.Int).Mul(y, zinvsq) - yOut.Mod(yOut, curve.P) - return -} - -func (curve *CurveParams) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { - // If there is a dedicated constant-time implementation for this curve operation, - // use that instead of the generic one. - if specific, ok := matchesSpecificCurve(curve, p224, p384, p521); ok { - return specific.Add(x1, y1, x2, y2) - } - - z1 := zForAffine(x1, y1) - z2 := zForAffine(x2, y2) - return curve.affineFromJacobian(curve.addJacobian(x1, y1, z1, x2, y2, z2)) -} - -// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and -// (x2, y2, z2) and returns their sum, also in Jacobian form. -func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { - // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl - x3, y3, z3 := new(big.Int), new(big.Int), new(big.Int) - if z1.Sign() == 0 { - x3.Set(x2) - y3.Set(y2) - z3.Set(z2) - return x3, y3, z3 - } - if z2.Sign() == 0 { - x3.Set(x1) - y3.Set(y1) - z3.Set(z1) - return x3, y3, z3 - } - - z1z1 := new(big.Int).Mul(z1, z1) - z1z1.Mod(z1z1, curve.P) - z2z2 := new(big.Int).Mul(z2, z2) - z2z2.Mod(z2z2, curve.P) - - u1 := new(big.Int).Mul(x1, z2z2) - u1.Mod(u1, curve.P) - u2 := new(big.Int).Mul(x2, z1z1) - u2.Mod(u2, curve.P) - h := new(big.Int).Sub(u2, u1) - xEqual := h.Sign() == 0 - if h.Sign() == -1 { - h.Add(h, curve.P) - } - i := new(big.Int).Lsh(h, 1) - i.Mul(i, i) - j := new(big.Int).Mul(h, i) - - s1 := new(big.Int).Mul(y1, z2) - s1.Mul(s1, z2z2) - s1.Mod(s1, curve.P) - s2 := new(big.Int).Mul(y2, z1) - s2.Mul(s2, z1z1) - s2.Mod(s2, curve.P) - r := new(big.Int).Sub(s2, s1) - if r.Sign() == -1 { - r.Add(r, curve.P) - } - yEqual := r.Sign() == 0 - if xEqual && yEqual { - return curve.doubleJacobian(x1, y1, z1) - } - r.Lsh(r, 1) - v := new(big.Int).Mul(u1, i) - - x3.Set(r) - x3.Mul(x3, x3) - x3.Sub(x3, j) - x3.Sub(x3, v) - x3.Sub(x3, v) - x3.Mod(x3, curve.P) - - y3.Set(r) - v.Sub(v, x3) - y3.Mul(y3, v) - s1.Mul(s1, j) - s1.Lsh(s1, 1) - y3.Sub(y3, s1) - y3.Mod(y3, curve.P) - - z3.Add(z1, z2) - z3.Mul(z3, z3) - z3.Sub(z3, z1z1) - z3.Sub(z3, z2z2) - z3.Mul(z3, h) - z3.Mod(z3, curve.P) - - return x3, y3, z3 -} - -func (curve *CurveParams) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { - // If there is a dedicated constant-time implementation for this curve operation, - // use that instead of the generic one. - if specific, ok := matchesSpecificCurve(curve, p224, p384, p521); ok { - return specific.Double(x1, y1) - } - - z1 := zForAffine(x1, y1) - return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1)) -} - -// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and -// returns its double, also in Jacobian form. -func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { - // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b - delta := new(big.Int).Mul(z, z) - delta.Mod(delta, curve.P) - gamma := new(big.Int).Mul(y, y) - gamma.Mod(gamma, curve.P) - alpha := new(big.Int).Sub(x, delta) - if alpha.Sign() == -1 { - alpha.Add(alpha, curve.P) - } - alpha2 := new(big.Int).Add(x, delta) - alpha.Mul(alpha, alpha2) - alpha2.Set(alpha) - alpha.Lsh(alpha, 1) - alpha.Add(alpha, alpha2) - - beta := alpha2.Mul(x, gamma) - - x3 := new(big.Int).Mul(alpha, alpha) - beta8 := new(big.Int).Lsh(beta, 3) - beta8.Mod(beta8, curve.P) - x3.Sub(x3, beta8) - if x3.Sign() == -1 { - x3.Add(x3, curve.P) - } - x3.Mod(x3, curve.P) - - z3 := new(big.Int).Add(y, z) - z3.Mul(z3, z3) - z3.Sub(z3, gamma) - if z3.Sign() == -1 { - z3.Add(z3, curve.P) - } - z3.Sub(z3, delta) - if z3.Sign() == -1 { - z3.Add(z3, curve.P) - } - z3.Mod(z3, curve.P) - - beta.Lsh(beta, 2) - beta.Sub(beta, x3) - if beta.Sign() == -1 { - beta.Add(beta, curve.P) - } - y3 := alpha.Mul(alpha, beta) - - gamma.Mul(gamma, gamma) - gamma.Lsh(gamma, 3) - gamma.Mod(gamma, curve.P) - - y3.Sub(y3, gamma) - if y3.Sign() == -1 { - y3.Add(y3, curve.P) - } - y3.Mod(y3, curve.P) - - return x3, y3, z3 -} - -func (curve *CurveParams) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) { - // If there is a dedicated constant-time implementation for this curve operation, - // use that instead of the generic one. - if specific, ok := matchesSpecificCurve(curve, p224, p256, p384, p521); ok { - return specific.ScalarMult(Bx, By, k) - } - - Bz := new(big.Int).SetInt64(1) - x, y, z := new(big.Int), new(big.Int), new(big.Int) - - for _, byte := range k { - for bitNum := 0; bitNum < 8; bitNum++ { - x, y, z = curve.doubleJacobian(x, y, z) - if byte&0x80 == 0x80 { - x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z) - } - byte <<= 1 - } - } - - return curve.affineFromJacobian(x, y, z) -} - -func (curve *CurveParams) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { - // If there is a dedicated constant-time implementation for this curve operation, - // use that instead of the generic one. - if specific, ok := matchesSpecificCurve(curve, p224, p256, p384, p521); ok { - return specific.ScalarBaseMult(k) - } - - return curve.ScalarMult(curve.Gx, curve.Gy, k) -} - var mask = []byte{0xff, 0x1, 0x3, 0x7, 0xf, 0x1f, 0x3f, 0x7f} // GenerateKey returns a public/private key pair. The private key is diff --git a/src/crypto/elliptic/p256.go b/src/crypto/elliptic/p256.go index 763b84283e..97ecda5a8e 100644 --- a/src/crypto/elliptic/p256.go +++ b/src/crypto/elliptic/p256.go @@ -1,28 +1,19 @@ -// Copyright 2013 The Go Authors. All rights reserved. +// Copyright 2021 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. -//go:build !amd64 && !arm64 - package elliptic // P-256 is implemented by various different backends, including a generic -// 32-bit constant-time one in this file, which is used when assembly +// 32-bit constant-time one in p256_generic.go, which is used when assembly // implementations are not available, or not appropriate for the hardware. import "math/big" -type p256Curve struct { - *CurveParams -} - -var ( - p256Params *CurveParams +var p256Params *CurveParams - // RInverse contains 1/R mod p - the inverse of the Montgomery constant - // (2**257). - p256RInverse *big.Int -) +// RInverse contains 1/R mod p, the inverse of the Montgomery constant 2^257. +var p256RInverse *big.Int func initP256() { // See FIPS 186-3, section D.2.3 @@ -39,1162 +30,3 @@ func initP256() { // Arch-specific initialization, i.e. let a platform dynamically pick a P256 implementation initP256Arch() } - -func (curve p256Curve) Params() *CurveParams { - return curve.CurveParams -} - -// p256GetScalar endian-swaps the big-endian scalar value from in and writes it -// to out. If the scalar is equal or greater than the order of the group, it's -// reduced modulo that order. -func p256GetScalar(out *[32]byte, in []byte) { - n := new(big.Int).SetBytes(in) - var scalarBytes []byte - - if n.Cmp(p256Params.N) >= 0 || len(in) > len(out) { - n.Mod(n, p256Params.N) - scalarBytes = n.Bytes() - } else { - scalarBytes = in - } - - for i, v := range scalarBytes { - out[len(scalarBytes)-(1+i)] = v - } -} - -func (p256Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) { - var scalarReversed [32]byte - p256GetScalar(&scalarReversed, scalar) - - var x1, y1, z1 [p256Limbs]uint32 - p256ScalarBaseMult(&x1, &y1, &z1, &scalarReversed) - return p256ToAffine(&x1, &y1, &z1) -} - -func (p256Curve) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) { - var scalarReversed [32]byte - p256GetScalar(&scalarReversed, scalar) - - var px, py, x1, y1, z1 [p256Limbs]uint32 - p256FromBig(&px, bigX) - p256FromBig(&py, bigY) - p256ScalarMult(&x1, &y1, &z1, &px, &py, &scalarReversed) - return p256ToAffine(&x1, &y1, &z1) -} - -// Field elements are represented as nine, unsigned 32-bit words. -// -// The value of a field element is: -// x[0] + (x[1] * 2**29) + (x[2] * 2**57) + ... + (x[8] * 2**228) -// -// That is, each limb is alternately 29 or 28-bits wide in little-endian -// order. -// -// This means that a field element hits 2**257, rather than 2**256 as we would -// like. A 28, 29, ... pattern would cause us to hit 2**256, but that causes -// problems when multiplying as terms end up one bit short of a limb which -// would require much bit-shifting to correct. -// -// Finally, the values stored in a field element are in Montgomery form. So the -// value |y| is stored as (y*R) mod p, where p is the P-256 prime and R is -// 2**257. - -const ( - p256Limbs = 9 - bottom29Bits = 0x1fffffff -) - -var ( - // p256One is the number 1 as a field element. - p256One = [p256Limbs]uint32{2, 0, 0, 0xffff800, 0x1fffffff, 0xfffffff, 0x1fbfffff, 0x1ffffff, 0} - p256Zero = [p256Limbs]uint32{0, 0, 0, 0, 0, 0, 0, 0, 0} - // p256P is the prime modulus as a field element. - p256P = [p256Limbs]uint32{0x1fffffff, 0xfffffff, 0x1fffffff, 0x3ff, 0, 0, 0x200000, 0xf000000, 0xfffffff} - // p2562P is the twice prime modulus as a field element. - p2562P = [p256Limbs]uint32{0x1ffffffe, 0xfffffff, 0x1fffffff, 0x7ff, 0, 0, 0x400000, 0xe000000, 0x1fffffff} -) - -// p256Precomputed contains precomputed values to aid the calculation of scalar -// multiples of the base point, G. It's actually two, equal length, tables -// concatenated. -// -// The first table contains (x,y) field element pairs for 16 multiples of the -// base point, G. -// -// Index | Index (binary) | Value -// 0 | 0000 | 0G (all zeros, omitted) -// 1 | 0001 | G -// 2 | 0010 | 2**64G -// 3 | 0011 | 2**64G + G -// 4 | 0100 | 2**128G -// 5 | 0101 | 2**128G + G -// 6 | 0110 | 2**128G + 2**64G -// 7 | 0111 | 2**128G + 2**64G + G -// 8 | 1000 | 2**192G -// 9 | 1001 | 2**192G + G -// 10 | 1010 | 2**192G + 2**64G -// 11 | 1011 | 2**192G + 2**64G + G -// 12 | 1100 | 2**192G + 2**128G -// 13 | 1101 | 2**192G + 2**128G + G -// 14 | 1110 | 2**192G + 2**128G + 2**64G -// 15 | 1111 | 2**192G + 2**128G + 2**64G + G -// -// The second table follows the same style, but the terms are 2**32G, -// 2**96G, 2**160G, 2**224G. -// -// This is ~2KB of data. -var p256Precomputed = [p256Limbs * 2 * 15 * 2]uint32{ - 0x11522878, 0xe730d41, 0xdb60179, 0x4afe2ff, 0x12883add, 0xcaddd88, 0x119e7edc, 0xd4a6eab, 0x3120bee, - 0x1d2aac15, 0xf25357c, 0x19e45cdd, 0x5c721d0, 0x1992c5a5, 0xa237487, 0x154ba21, 0x14b10bb, 0xae3fe3, - 0xd41a576, 0x922fc51, 0x234994f, 0x60b60d3, 0x164586ae, 0xce95f18, 0x1fe49073, 0x3fa36cc, 0x5ebcd2c, - 0xb402f2f, 0x15c70bf, 0x1561925c, 0x5a26704, 0xda91e90, 0xcdc1c7f, 0x1ea12446, 0xe1ade1e, 0xec91f22, - 0x26f7778, 0x566847e, 0xa0bec9e, 0x234f453, 0x1a31f21a, 0xd85e75c, 0x56c7109, 0xa267a00, 0xb57c050, - 0x98fb57, 0xaa837cc, 0x60c0792, 0xcfa5e19, 0x61bab9e, 0x589e39b, 0xa324c5, 0x7d6dee7, 0x2976e4b, - 0x1fc4124a, 0xa8c244b, 0x1ce86762, 0xcd61c7e, 0x1831c8e0, 0x75774e1, 0x1d96a5a9, 0x843a649, 0xc3ab0fa, - 0x6e2e7d5, 0x7673a2a, 0x178b65e8, 0x4003e9b, 0x1a1f11c2, 0x7816ea, 0xf643e11, 0x58c43df, 0xf423fc2, - 0x19633ffa, 0x891f2b2, 0x123c231c, 0x46add8c, 0x54700dd, 0x59e2b17, 0x172db40f, 0x83e277d, 0xb0dd609, - 0xfd1da12, 0x35c6e52, 0x19ede20c, 0xd19e0c0, 0x97d0f40, 0xb015b19, 0x449e3f5, 0xe10c9e, 0x33ab581, - 0x56a67ab, 0x577734d, 0x1dddc062, 0xc57b10d, 0x149b39d, 0x26a9e7b, 0xc35df9f, 0x48764cd, 0x76dbcca, - 0xca4b366, 0xe9303ab, 0x1a7480e7, 0x57e9e81, 0x1e13eb50, 0xf466cf3, 0x6f16b20, 0x4ba3173, 0xc168c33, - 0x15cb5439, 0x6a38e11, 0x73658bd, 0xb29564f, 0x3f6dc5b, 0x53b97e, 0x1322c4c0, 0x65dd7ff, 0x3a1e4f6, - 0x14e614aa, 0x9246317, 0x1bc83aca, 0xad97eed, 0xd38ce4a, 0xf82b006, 0x341f077, 0xa6add89, 0x4894acd, - 0x9f162d5, 0xf8410ef, 0x1b266a56, 0xd7f223, 0x3e0cb92, 0xe39b672, 0x6a2901a, 0x69a8556, 0x7e7c0, - 0x9b7d8d3, 0x309a80, 0x1ad05f7f, 0xc2fb5dd, 0xcbfd41d, 0x9ceb638, 0x1051825c, 0xda0cf5b, 0x812e881, - 0x6f35669, 0x6a56f2c, 0x1df8d184, 0x345820, 0x1477d477, 0x1645db1, 0xbe80c51, 0xc22be3e, 0xe35e65a, - 0x1aeb7aa0, 0xc375315, 0xf67bc99, 0x7fdd7b9, 0x191fc1be, 0x61235d, 0x2c184e9, 0x1c5a839, 0x47a1e26, - 0xb7cb456, 0x93e225d, 0x14f3c6ed, 0xccc1ac9, 0x17fe37f3, 0x4988989, 0x1a90c502, 0x2f32042, 0xa17769b, - 0xafd8c7c, 0x8191c6e, 0x1dcdb237, 0x16200c0, 0x107b32a1, 0x66c08db, 0x10d06a02, 0x3fc93, 0x5620023, - 0x16722b27, 0x68b5c59, 0x270fcfc, 0xfad0ecc, 0xe5de1c2, 0xeab466b, 0x2fc513c, 0x407f75c, 0xbaab133, - 0x9705fe9, 0xb88b8e7, 0x734c993, 0x1e1ff8f, 0x19156970, 0xabd0f00, 0x10469ea7, 0x3293ac0, 0xcdc98aa, - 0x1d843fd, 0xe14bfe8, 0x15be825f, 0x8b5212, 0xeb3fb67, 0x81cbd29, 0xbc62f16, 0x2b6fcc7, 0xf5a4e29, - 0x13560b66, 0xc0b6ac2, 0x51ae690, 0xd41e271, 0xf3e9bd4, 0x1d70aab, 0x1029f72, 0x73e1c35, 0xee70fbc, - 0xad81baf, 0x9ecc49a, 0x86c741e, 0xfe6be30, 0x176752e7, 0x23d416, 0x1f83de85, 0x27de188, 0x66f70b8, - 0x181cd51f, 0x96b6e4c, 0x188f2335, 0xa5df759, 0x17a77eb6, 0xfeb0e73, 0x154ae914, 0x2f3ec51, 0x3826b59, - 0xb91f17d, 0x1c72949, 0x1362bf0a, 0xe23fddf, 0xa5614b0, 0xf7d8f, 0x79061, 0x823d9d2, 0x8213f39, - 0x1128ae0b, 0xd095d05, 0xb85c0c2, 0x1ecb2ef, 0x24ddc84, 0xe35e901, 0x18411a4a, 0xf5ddc3d, 0x3786689, - 0x52260e8, 0x5ae3564, 0x542b10d, 0x8d93a45, 0x19952aa4, 0x996cc41, 0x1051a729, 0x4be3499, 0x52b23aa, - 0x109f307e, 0x6f5b6bb, 0x1f84e1e7, 0x77a0cfa, 0x10c4df3f, 0x25a02ea, 0xb048035, 0xe31de66, 0xc6ecaa3, - 0x28ea335, 0x2886024, 0x1372f020, 0xf55d35, 0x15e4684c, 0xf2a9e17, 0x1a4a7529, 0xcb7beb1, 0xb2a78a1, - 0x1ab21f1f, 0x6361ccf, 0x6c9179d, 0xb135627, 0x1267b974, 0x4408bad, 0x1cbff658, 0xe3d6511, 0xc7d76f, - 0x1cc7a69, 0xe7ee31b, 0x54fab4f, 0x2b914f, 0x1ad27a30, 0xcd3579e, 0xc50124c, 0x50daa90, 0xb13f72, - 0xb06aa75, 0x70f5cc6, 0x1649e5aa, 0x84a5312, 0x329043c, 0x41c4011, 0x13d32411, 0xb04a838, 0xd760d2d, - 0x1713b532, 0xbaa0c03, 0x84022ab, 0x6bcf5c1, 0x2f45379, 0x18ae070, 0x18c9e11e, 0x20bca9a, 0x66f496b, - 0x3eef294, 0x67500d2, 0xd7f613c, 0x2dbbeb, 0xb741038, 0xe04133f, 0x1582968d, 0xbe985f7, 0x1acbc1a, - 0x1a6a939f, 0x33e50f6, 0xd665ed4, 0xb4b7bd6, 0x1e5a3799, 0x6b33847, 0x17fa56ff, 0x65ef930, 0x21dc4a, - 0x2b37659, 0x450fe17, 0xb357b65, 0xdf5efac, 0x15397bef, 0x9d35a7f, 0x112ac15f, 0x624e62e, 0xa90ae2f, - 0x107eecd2, 0x1f69bbe, 0x77d6bce, 0x5741394, 0x13c684fc, 0x950c910, 0x725522b, 0xdc78583, 0x40eeabb, - 0x1fde328a, 0xbd61d96, 0xd28c387, 0x9e77d89, 0x12550c40, 0x759cb7d, 0x367ef34, 0xae2a960, 0x91b8bdc, - 0x93462a9, 0xf469ef, 0xb2e9aef, 0xd2ca771, 0x54e1f42, 0x7aaa49, 0x6316abb, 0x2413c8e, 0x5425bf9, - 0x1bed3e3a, 0xf272274, 0x1f5e7326, 0x6416517, 0xea27072, 0x9cedea7, 0x6e7633, 0x7c91952, 0xd806dce, - 0x8e2a7e1, 0xe421e1a, 0x418c9e1, 0x1dbc890, 0x1b395c36, 0xa1dc175, 0x1dc4ef73, 0x8956f34, 0xe4b5cf2, - 0x1b0d3a18, 0x3194a36, 0x6c2641f, 0xe44124c, 0xa2f4eaa, 0xa8c25ba, 0xf927ed7, 0x627b614, 0x7371cca, - 0xba16694, 0x417bc03, 0x7c0a7e3, 0x9c35c19, 0x1168a205, 0x8b6b00d, 0x10e3edc9, 0x9c19bf2, 0x5882229, - 0x1b2b4162, 0xa5cef1a, 0x1543622b, 0x9bd433e, 0x364e04d, 0x7480792, 0x5c9b5b3, 0xe85ff25, 0x408ef57, - 0x1814cfa4, 0x121b41b, 0xd248a0f, 0x3b05222, 0x39bb16a, 0xc75966d, 0xa038113, 0xa4a1769, 0x11fbc6c, - 0x917e50e, 0xeec3da8, 0x169d6eac, 0x10c1699, 0xa416153, 0xf724912, 0x15cd60b7, 0x4acbad9, 0x5efc5fa, - 0xf150ed7, 0x122b51, 0x1104b40a, 0xcb7f442, 0xfbb28ff, 0x6ac53ca, 0x196142cc, 0x7bf0fa9, 0x957651, - 0x4e0f215, 0xed439f8, 0x3f46bd5, 0x5ace82f, 0x110916b6, 0x6db078, 0xffd7d57, 0xf2ecaac, 0xca86dec, - 0x15d6b2da, 0x965ecc9, 0x1c92b4c2, 0x1f3811, 0x1cb080f5, 0x2d8b804, 0x19d1c12d, 0xf20bd46, 0x1951fa7, - 0xa3656c3, 0x523a425, 0xfcd0692, 0xd44ddc8, 0x131f0f5b, 0xaf80e4a, 0xcd9fc74, 0x99bb618, 0x2db944c, - 0xa673090, 0x1c210e1, 0x178c8d23, 0x1474383, 0x10b8743d, 0x985a55b, 0x2e74779, 0x576138, 0x9587927, - 0x133130fa, 0xbe05516, 0x9f4d619, 0xbb62570, 0x99ec591, 0xd9468fe, 0x1d07782d, 0xfc72e0b, 0x701b298, - 0x1863863b, 0x85954b8, 0x121a0c36, 0x9e7fedf, 0xf64b429, 0x9b9d71e, 0x14e2f5d8, 0xf858d3a, 0x942eea8, - 0xda5b765, 0x6edafff, 0xa9d18cc, 0xc65e4ba, 0x1c747e86, 0xe4ea915, 0x1981d7a1, 0x8395659, 0x52ed4e2, - 0x87d43b7, 0x37ab11b, 0x19d292ce, 0xf8d4692, 0x18c3053f, 0x8863e13, 0x4c146c0, 0x6bdf55a, 0x4e4457d, - 0x16152289, 0xac78ec2, 0x1a59c5a2, 0x2028b97, 0x71c2d01, 0x295851f, 0x404747b, 0x878558d, 0x7d29aa4, - 0x13d8341f, 0x8daefd7, 0x139c972d, 0x6b7ea75, 0xd4a9dde, 0xff163d8, 0x81d55d7, 0xa5bef68, 0xb7b30d8, - 0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f51951, 0x9d0c177, 0x1c49a78, -} - -// Field element operations: - -const bottom28Bits = 0xfffffff - -// nonZeroToAllOnes returns: -// -// 0xffffffff for 0 < x <= 2**31 -// 0 for x == 0 or x > 2**31. -func nonZeroToAllOnes(x uint32) uint32 { - return ((x - 1) >> 31) - 1 -} - -// p256ReduceCarry adds a multiple of p in order to cancel |carry|, -// which is a term at 2**257. -// -// On entry: carry < 2**3, inout[0,2,...] < 2**29, inout[1,3,...] < 2**28. -// On exit: inout[0,2,..] < 2**30, inout[1,3,...] < 2**29. -func p256ReduceCarry(inout *[p256Limbs]uint32, carry uint32) { - carry_mask := nonZeroToAllOnes(carry) - - inout[0] += carry << 1 - inout[3] += 0x10000000 & carry_mask - // carry < 2**3 thus (carry << 11) < 2**14 and we added 2**28 in the - // previous line therefore this doesn't underflow. - inout[3] -= carry << 11 - inout[4] += (0x20000000 - 1) & carry_mask - inout[5] += (0x10000000 - 1) & carry_mask - inout[6] += (0x20000000 - 1) & carry_mask - inout[6] -= carry << 22 - // This may underflow if carry is non-zero but, if so, we'll fix it in the - // next line. - inout[7] -= 1 & carry_mask - inout[7] += carry << 25 -} - -// p256Sum sets out = in+in2. -// -// On entry, in[i]+in2[i] must not overflow a 32-bit word. -// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 -func p256Sum(out, in, in2 *[p256Limbs]uint32) { - carry := uint32(0) - for i := 0; ; i++ { - out[i] = in[i] + in2[i] - out[i] += carry - carry = out[i] >> 29 - out[i] &= bottom29Bits - - i++ - if i == p256Limbs { - break - } - - out[i] = in[i] + in2[i] - out[i] += carry - carry = out[i] >> 28 - out[i] &= bottom28Bits - } - - p256ReduceCarry(out, carry) -} - -const ( - two30m2 = 1<<30 - 1<<2 - two30p13m2 = 1<<30 + 1<<13 - 1<<2 - two31m2 = 1<<31 - 1<<2 - two31m3 = 1<<31 - 1<<3 - two31p24m2 = 1<<31 + 1<<24 - 1<<2 - two30m27m2 = 1<<30 - 1<<27 - 1<<2 -) - -// p256Zero31 is 0 mod p. -var p256Zero31 = [p256Limbs]uint32{two31m3, two30m2, two31m2, two30p13m2, two31m2, two30m2, two31p24m2, two30m27m2, two31m2} - -// p256Diff sets out = in-in2. -// -// On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and -// in2[0,2,...] < 2**30, in2[1,3,...] < 2**29. -// -// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. -func p256Diff(out, in, in2 *[p256Limbs]uint32) { - var carry uint32 - - for i := 0; ; i++ { - out[i] = in[i] - in2[i] - out[i] += p256Zero31[i] - out[i] += carry - carry = out[i] >> 29 - out[i] &= bottom29Bits - - i++ - if i == p256Limbs { - break - } - - out[i] = in[i] - in2[i] - out[i] += p256Zero31[i] - out[i] += carry - carry = out[i] >> 28 - out[i] &= bottom28Bits - } - - p256ReduceCarry(out, carry) -} - -// p256ReduceDegree sets out = tmp/R mod p where tmp contains 64-bit words with -// the same 29,28,... bit positions as a field element. -// -// The values in field elements are in Montgomery form: x*R mod p where R = -// 2**257. Since we just multiplied two Montgomery values together, the result -// is x*y*R*R mod p. We wish to divide by R in order for the result also to be -// in Montgomery form. -// -// On entry: tmp[i] < 2**64 -// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 -func p256ReduceDegree(out *[p256Limbs]uint32, tmp [17]uint64) { - // The following table may be helpful when reading this code: - // - // Limb number: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10... - // Width (bits): 29| 28| 29| 28| 29| 28| 29| 28| 29| 28| 29 - // Start bit: 0 | 29| 57| 86|114|143|171|200|228|257|285 - // (odd phase): 0 | 28| 57| 85|114|142|171|199|228|256|285 - var tmp2 [18]uint32 - var carry, x, xMask uint32 - - // tmp contains 64-bit words with the same 29,28,29-bit positions as a - // field element. So the top of an element of tmp might overlap with - // another element two positions down. The following loop eliminates - // this overlap. - tmp2[0] = uint32(tmp[0]) & bottom29Bits - - tmp2[1] = uint32(tmp[0]) >> 29 - tmp2[1] |= (uint32(tmp[0]>>32) << 3) & bottom28Bits - tmp2[1] += uint32(tmp[1]) & bottom28Bits - carry = tmp2[1] >> 28 - tmp2[1] &= bottom28Bits - - for i := 2; i < 17; i++ { - tmp2[i] = (uint32(tmp[i-2] >> 32)) >> 25 - tmp2[i] += (uint32(tmp[i-1])) >> 28 - tmp2[i] += (uint32(tmp[i-1]>>32) << 4) & bottom29Bits - tmp2[i] += uint32(tmp[i]) & bottom29Bits - tmp2[i] += carry - carry = tmp2[i] >> 29 - tmp2[i] &= bottom29Bits - - i++ - if i == 17 { - break - } - tmp2[i] = uint32(tmp[i-2]>>32) >> 25 - tmp2[i] += uint32(tmp[i-1]) >> 29 - tmp2[i] += ((uint32(tmp[i-1] >> 32)) << 3) & bottom28Bits - tmp2[i] += uint32(tmp[i]) & bottom28Bits - tmp2[i] += carry - carry = tmp2[i] >> 28 - tmp2[i] &= bottom28Bits - } - - tmp2[17] = uint32(tmp[15]>>32) >> 25 - tmp2[17] += uint32(tmp[16]) >> 29 - tmp2[17] += uint32(tmp[16]>>32) << 3 - tmp2[17] += carry - - // Montgomery elimination of terms: - // - // Since R is 2**257, we can divide by R with a bitwise shift if we can - // ensure that the right-most 257 bits are all zero. We can make that true - // by adding multiplies of p without affecting the value. - // - // So we eliminate limbs from right to left. Since the bottom 29 bits of p - // are all ones, then by adding tmp2[0]*p to tmp2 we'll make tmp2[0] == 0. - // We can do that for 8 further limbs and then right shift to eliminate the - // extra factor of R. - for i := 0; ; i += 2 { - tmp2[i+1] += tmp2[i] >> 29 - x = tmp2[i] & bottom29Bits - xMask = nonZeroToAllOnes(x) - tmp2[i] = 0 - - // The bounds calculations for this loop are tricky. Each iteration of - // the loop eliminates two words by adding values to words to their - // right. - // - // The following table contains the amounts added to each word (as an - // offset from the value of i at the top of the loop). The amounts are - // accounted for from the first and second half of the loop separately - // and are written as, for example, 28 to mean a value <2**28. - // - // Word: 3 4 5 6 7 8 9 10 - // Added in top half: 28 11 29 21 29 28 - // 28 29 - // 29 - // Added in bottom half: 29 10 28 21 28 28 - // 29 - // - // The value that is currently offset 7 will be offset 5 for the next - // iteration and then offset 3 for the iteration after that. Therefore - // the total value added will be the values added at 7, 5 and 3. - // - // The following table accumulates these values. The sums at the bottom - // are written as, for example, 29+28, to mean a value < 2**29+2**28. - // - // Word: 3 4 5 6 7 8 9 10 11 12 13 - // 28 11 10 29 21 29 28 28 28 28 28 - // 29 28 11 28 29 28 29 28 29 28 - // 29 28 21 21 29 21 29 21 - // 10 29 28 21 28 21 28 - // 28 29 28 29 28 29 28 - // 11 10 29 10 29 10 - // 29 28 11 28 11 - // 29 29 - // -------------------------------------------- - // 30+ 31+ 30+ 31+ 30+ - // 28+ 29+ 28+ 29+ 21+ - // 21+ 28+ 21+ 28+ 10 - // 10 21+ 10 21+ - // 11 11 - // - // So the greatest amount is added to tmp2[10] and tmp2[12]. If - // tmp2[10/12] has an initial value of <2**29, then the maximum value - // will be < 2**31 + 2**30 + 2**28 + 2**21 + 2**11, which is < 2**32, - // as required. - tmp2[i+3] += (x << 10) & bottom28Bits - tmp2[i+4] += (x >> 18) - - tmp2[i+6] += (x << 21) & bottom29Bits - tmp2[i+7] += x >> 8 - - // At position 200, which is the starting bit position for word 7, we - // have a factor of 0xf000000 = 2**28 - 2**24. - tmp2[i+7] += 0x10000000 & xMask - tmp2[i+8] += (x - 1) & xMask - tmp2[i+7] -= (x << 24) & bottom28Bits - tmp2[i+8] -= x >> 4 - - tmp2[i+8] += 0x20000000 & xMask - tmp2[i+8] -= x - tmp2[i+8] += (x << 28) & bottom29Bits - tmp2[i+9] += ((x >> 1) - 1) & xMask - - if i+1 == p256Limbs { - break - } - tmp2[i+2] += tmp2[i+1] >> 28 - x = tmp2[i+1] & bottom28Bits - xMask = nonZeroToAllOnes(x) - tmp2[i+1] = 0 - - tmp2[i+4] += (x << 11) & bottom29Bits - tmp2[i+5] += (x >> 18) - - tmp2[i+7] += (x << 21) & bottom28Bits - tmp2[i+8] += x >> 7 - - // At position 199, which is the starting bit of the 8th word when - // dealing with a context starting on an odd word, we have a factor of - // 0x1e000000 = 2**29 - 2**25. Since we have not updated i, the 8th - // word from i+1 is i+8. - tmp2[i+8] += 0x20000000 & xMask - tmp2[i+9] += (x - 1) & xMask - tmp2[i+8] -= (x << 25) & bottom29Bits - tmp2[i+9] -= x >> 4 - - tmp2[i+9] += 0x10000000 & xMask - tmp2[i+9] -= x - tmp2[i+10] += (x - 1) & xMask - } - - // We merge the right shift with a carry chain. The words above 2**257 have - // widths of 28,29,... which we need to correct when copying them down. - carry = 0 - for i := 0; i < 8; i++ { - // The maximum value of tmp2[i + 9] occurs on the first iteration and - // is < 2**30+2**29+2**28. Adding 2**29 (from tmp2[i + 10]) is - // therefore safe. - out[i] = tmp2[i+9] - out[i] += carry - out[i] += (tmp2[i+10] << 28) & bottom29Bits - carry = out[i] >> 29 - out[i] &= bottom29Bits - - i++ - out[i] = tmp2[i+9] >> 1 - out[i] += carry - carry = out[i] >> 28 - out[i] &= bottom28Bits - } - - out[8] = tmp2[17] - out[8] += carry - carry = out[8] >> 29 - out[8] &= bottom29Bits - - p256ReduceCarry(out, carry) -} - -// p256Square sets out=in*in. -// -// On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29. -// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. -func p256Square(out, in *[p256Limbs]uint32) { - var tmp [17]uint64 - - tmp[0] = uint64(in[0]) * uint64(in[0]) - tmp[1] = uint64(in[0]) * (uint64(in[1]) << 1) - tmp[2] = uint64(in[0])*(uint64(in[2])<<1) + - uint64(in[1])*(uint64(in[1])<<1) - tmp[3] = uint64(in[0])*(uint64(in[3])<<1) + - uint64(in[1])*(uint64(in[2])<<1) - tmp[4] = uint64(in[0])*(uint64(in[4])<<1) + - uint64(in[1])*(uint64(in[3])<<2) + - uint64(in[2])*uint64(in[2]) - tmp[5] = uint64(in[0])*(uint64(in[5])<<1) + - uint64(in[1])*(uint64(in[4])<<1) + - uint64(in[2])*(uint64(in[3])<<1) - tmp[6] = uint64(in[0])*(uint64(in[6])<<1) + - uint64(in[1])*(uint64(in[5])<<2) + - uint64(in[2])*(uint64(in[4])<<1) + - uint64(in[3])*(uint64(in[3])<<1) - tmp[7] = uint64(in[0])*(uint64(in[7])<<1) + - uint64(in[1])*(uint64(in[6])<<1) + - uint64(in[2])*(uint64(in[5])<<1) + - uint64(in[3])*(uint64(in[4])<<1) - // tmp[8] has the greatest value of 2**61 + 2**60 + 2**61 + 2**60 + 2**60, - // which is < 2**64 as required. - tmp[8] = uint64(in[0])*(uint64(in[8])<<1) + - uint64(in[1])*(uint64(in[7])<<2) + - uint64(in[2])*(uint64(in[6])<<1) + - uint64(in[3])*(uint64(in[5])<<2) + - uint64(in[4])*uint64(in[4]) - tmp[9] = uint64(in[1])*(uint64(in[8])<<1) + - uint64(in[2])*(uint64(in[7])<<1) + - uint64(in[3])*(uint64(in[6])<<1) + - uint64(in[4])*(uint64(in[5])<<1) - tmp[10] = uint64(in[2])*(uint64(in[8])<<1) + - uint64(in[3])*(uint64(in[7])<<2) + - uint64(in[4])*(uint64(in[6])<<1) + - uint64(in[5])*(uint64(in[5])<<1) - tmp[11] = uint64(in[3])*(uint64(in[8])<<1) + - uint64(in[4])*(uint64(in[7])<<1) + - uint64(in[5])*(uint64(in[6])<<1) - tmp[12] = uint64(in[4])*(uint64(in[8])<<1) + - uint64(in[5])*(uint64(in[7])<<2) + - uint64(in[6])*uint64(in[6]) - tmp[13] = uint64(in[5])*(uint64(in[8])<<1) + - uint64(in[6])*(uint64(in[7])<<1) - tmp[14] = uint64(in[6])*(uint64(in[8])<<1) + - uint64(in[7])*(uint64(in[7])<<1) - tmp[15] = uint64(in[7]) * (uint64(in[8]) << 1) - tmp[16] = uint64(in[8]) * uint64(in[8]) - - p256ReduceDegree(out, tmp) -} - -// p256Mul sets out=in*in2. -// -// On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and -// -// in2[0,2,...] < 2**30, in2[1,3,...] < 2**29. -// -// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. -func p256Mul(out, in, in2 *[p256Limbs]uint32) { - var tmp [17]uint64 - - tmp[0] = uint64(in[0]) * uint64(in2[0]) - tmp[1] = uint64(in[0])*(uint64(in2[1])<<0) + - uint64(in[1])*(uint64(in2[0])<<0) - tmp[2] = uint64(in[0])*(uint64(in2[2])<<0) + - uint64(in[1])*(uint64(in2[1])<<1) + - uint64(in[2])*(uint64(in2[0])<<0) - tmp[3] = uint64(in[0])*(uint64(in2[3])<<0) + - uint64(in[1])*(uint64(in2[2])<<0) + - uint64(in[2])*(uint64(in2[1])<<0) + - uint64(in[3])*(uint64(in2[0])<<0) - tmp[4] = uint64(in[0])*(uint64(in2[4])<<0) + - uint64(in[1])*(uint64(in2[3])<<1) + - uint64(in[2])*(uint64(in2[2])<<0) + - uint64(in[3])*(uint64(in2[1])<<1) + - uint64(in[4])*(uint64(in2[0])<<0) - tmp[5] = uint64(in[0])*(uint64(in2[5])<<0) + - uint64(in[1])*(uint64(in2[4])<<0) + - uint64(in[2])*(uint64(in2[3])<<0) + - uint64(in[3])*(uint64(in2[2])<<0) + - uint64(in[4])*(uint64(in2[1])<<0) + - uint64(in[5])*(uint64(in2[0])<<0) - tmp[6] = uint64(in[0])*(uint64(in2[6])<<0) + - uint64(in[1])*(uint64(in2[5])<<1) + - uint64(in[2])*(uint64(in2[4])<<0) + - uint64(in[3])*(uint64(in2[3])<<1) + - uint64(in[4])*(uint64(in2[2])<<0) + - uint64(in[5])*(uint64(in2[1])<<1) + - uint64(in[6])*(uint64(in2[0])<<0) - tmp[7] = uint64(in[0])*(uint64(in2[7])<<0) + - uint64(in[1])*(uint64(in2[6])<<0) + - uint64(in[2])*(uint64(in2[5])<<0) + - uint64(in[3])*(uint64(in2[4])<<0) + - uint64(in[4])*(uint64(in2[3])<<0) + - uint64(in[5])*(uint64(in2[2])<<0) + - uint64(in[6])*(uint64(in2[1])<<0) + - uint64(in[7])*(uint64(in2[0])<<0) - // tmp[8] has the greatest value but doesn't overflow. See logic in - // p256Square. - tmp[8] = uint64(in[0])*(uint64(in2[8])<<0) + - uint64(in[1])*(uint64(in2[7])<<1) + - uint64(in[2])*(uint64(in2[6])<<0) + - uint64(in[3])*(uint64(in2[5])<<1) + - uint64(in[4])*(uint64(in2[4])<<0) + - uint64(in[5])*(uint64(in2[3])<<1) + - uint64(in[6])*(uint64(in2[2])<<0) + - uint64(in[7])*(uint64(in2[1])<<1) + - uint64(in[8])*(uint64(in2[0])<<0) - tmp[9] = uint64(in[1])*(uint64(in2[8])<<0) + - uint64(in[2])*(uint64(in2[7])<<0) + - uint64(in[3])*(uint64(in2[6])<<0) + - uint64(in[4])*(uint64(in2[5])<<0) + - uint64(in[5])*(uint64(in2[4])<<0) + - uint64(in[6])*(uint64(in2[3])<<0) + - uint64(in[7])*(uint64(in2[2])<<0) + - uint64(in[8])*(uint64(in2[1])<<0) - tmp[10] = uint64(in[2])*(uint64(in2[8])<<0) + - uint64(in[3])*(uint64(in2[7])<<1) + - uint64(in[4])*(uint64(in2[6])<<0) + - uint64(in[5])*(uint64(in2[5])<<1) + - uint64(in[6])*(uint64(in2[4])<<0) + - uint64(in[7])*(uint64(in2[3])<<1) + - uint64(in[8])*(uint64(in2[2])<<0) - tmp[11] = uint64(in[3])*(uint64(in2[8])<<0) + - uint64(in[4])*(uint64(in2[7])<<0) + - uint64(in[5])*(uint64(in2[6])<<0) + - uint64(in[6])*(uint64(in2[5])<<0) + - uint64(in[7])*(uint64(in2[4])<<0) + - uint64(in[8])*(uint64(in2[3])<<0) - tmp[12] = uint64(in[4])*(uint64(in2[8])<<0) + - uint64(in[5])*(uint64(in2[7])<<1) + - uint64(in[6])*(uint64(in2[6])<<0) + - uint64(in[7])*(uint64(in2[5])<<1) + - uint64(in[8])*(uint64(in2[4])<<0) - tmp[13] = uint64(in[5])*(uint64(in2[8])<<0) + - uint64(in[6])*(uint64(in2[7])<<0) + - uint64(in[7])*(uint64(in2[6])<<0) + - uint64(in[8])*(uint64(in2[5])<<0) - tmp[14] = uint64(in[6])*(uint64(in2[8])<<0) + - uint64(in[7])*(uint64(in2[7])<<1) + - uint64(in[8])*(uint64(in2[6])<<0) - tmp[15] = uint64(in[7])*(uint64(in2[8])<<0) + - uint64(in[8])*(uint64(in2[7])<<0) - tmp[16] = uint64(in[8]) * (uint64(in2[8]) << 0) - - p256ReduceDegree(out, tmp) -} - -func p256Assign(out, in *[p256Limbs]uint32) { - *out = *in -} - -// p256Invert calculates |out| = |in|^{-1} -// -// Based on Fermat's Little Theorem: -// -// a^p = a (mod p) -// a^{p-1} = 1 (mod p) -// a^{p-2} = a^{-1} (mod p) -func p256Invert(out, in *[p256Limbs]uint32) { - var ftmp, ftmp2 [p256Limbs]uint32 - - // each e_I will hold |in|^{2^I - 1} - var e2, e4, e8, e16, e32, e64 [p256Limbs]uint32 - - p256Square(&ftmp, in) // 2^1 - p256Mul(&ftmp, in, &ftmp) // 2^2 - 2^0 - p256Assign(&e2, &ftmp) - p256Square(&ftmp, &ftmp) // 2^3 - 2^1 - p256Square(&ftmp, &ftmp) // 2^4 - 2^2 - p256Mul(&ftmp, &ftmp, &e2) // 2^4 - 2^0 - p256Assign(&e4, &ftmp) - p256Square(&ftmp, &ftmp) // 2^5 - 2^1 - p256Square(&ftmp, &ftmp) // 2^6 - 2^2 - p256Square(&ftmp, &ftmp) // 2^7 - 2^3 - p256Square(&ftmp, &ftmp) // 2^8 - 2^4 - p256Mul(&ftmp, &ftmp, &e4) // 2^8 - 2^0 - p256Assign(&e8, &ftmp) - for i := 0; i < 8; i++ { - p256Square(&ftmp, &ftmp) - } // 2^16 - 2^8 - p256Mul(&ftmp, &ftmp, &e8) // 2^16 - 2^0 - p256Assign(&e16, &ftmp) - for i := 0; i < 16; i++ { - p256Square(&ftmp, &ftmp) - } // 2^32 - 2^16 - p256Mul(&ftmp, &ftmp, &e16) // 2^32 - 2^0 - p256Assign(&e32, &ftmp) - for i := 0; i < 32; i++ { - p256Square(&ftmp, &ftmp) - } // 2^64 - 2^32 - p256Assign(&e64, &ftmp) - p256Mul(&ftmp, &ftmp, in) // 2^64 - 2^32 + 2^0 - for i := 0; i < 192; i++ { - p256Square(&ftmp, &ftmp) - } // 2^256 - 2^224 + 2^192 - - p256Mul(&ftmp2, &e64, &e32) // 2^64 - 2^0 - for i := 0; i < 16; i++ { - p256Square(&ftmp2, &ftmp2) - } // 2^80 - 2^16 - p256Mul(&ftmp2, &ftmp2, &e16) // 2^80 - 2^0 - for i := 0; i < 8; i++ { - p256Square(&ftmp2, &ftmp2) - } // 2^88 - 2^8 - p256Mul(&ftmp2, &ftmp2, &e8) // 2^88 - 2^0 - for i := 0; i < 4; i++ { - p256Square(&ftmp2, &ftmp2) - } // 2^92 - 2^4 - p256Mul(&ftmp2, &ftmp2, &e4) // 2^92 - 2^0 - p256Square(&ftmp2, &ftmp2) // 2^93 - 2^1 - p256Square(&ftmp2, &ftmp2) // 2^94 - 2^2 - p256Mul(&ftmp2, &ftmp2, &e2) // 2^94 - 2^0 - p256Square(&ftmp2, &ftmp2) // 2^95 - 2^1 - p256Square(&ftmp2, &ftmp2) // 2^96 - 2^2 - p256Mul(&ftmp2, &ftmp2, in) // 2^96 - 3 - - p256Mul(out, &ftmp2, &ftmp) // 2^256 - 2^224 + 2^192 + 2^96 - 3 -} - -// p256Scalar3 sets out=3*out. -// -// On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. -// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. -func p256Scalar3(out *[p256Limbs]uint32) { - var carry uint32 - - for i := 0; ; i++ { - out[i] *= 3 - out[i] += carry - carry = out[i] >> 29 - out[i] &= bottom29Bits - - i++ - if i == p256Limbs { - break - } - - out[i] *= 3 - out[i] += carry - carry = out[i] >> 28 - out[i] &= bottom28Bits - } - - p256ReduceCarry(out, carry) -} - -// p256Scalar4 sets out=4*out. -// -// On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. -// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. -func p256Scalar4(out *[p256Limbs]uint32) { - var carry, nextCarry uint32 - - for i := 0; ; i++ { - nextCarry = out[i] >> 27 - out[i] <<= 2 - out[i] &= bottom29Bits - out[i] += carry - carry = nextCarry + (out[i] >> 29) - out[i] &= bottom29Bits - - i++ - if i == p256Limbs { - break - } - nextCarry = out[i] >> 26 - out[i] <<= 2 - out[i] &= bottom28Bits - out[i] += carry - carry = nextCarry + (out[i] >> 28) - out[i] &= bottom28Bits - } - - p256ReduceCarry(out, carry) -} - -// p256Scalar8 sets out=8*out. -// -// On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. -// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. -func p256Scalar8(out *[p256Limbs]uint32) { - var carry, nextCarry uint32 - - for i := 0; ; i++ { - nextCarry = out[i] >> 26 - out[i] <<= 3 - out[i] &= bottom29Bits - out[i] += carry - carry = nextCarry + (out[i] >> 29) - out[i] &= bottom29Bits - - i++ - if i == p256Limbs { - break - } - nextCarry = out[i] >> 25 - out[i] <<= 3 - out[i] &= bottom28Bits - out[i] += carry - carry = nextCarry + (out[i] >> 28) - out[i] &= bottom28Bits - } - - p256ReduceCarry(out, carry) -} - -// Group operations: -// -// Elements of the elliptic curve group are represented in Jacobian -// coordinates: (x, y, z). An affine point (x', y') is x'=x/z**2, y'=y/z**3 in -// Jacobian form. - -// p256PointDouble sets {xOut,yOut,zOut} = 2*{x,y,z}. -// -// See https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l -func p256PointDouble(xOut, yOut, zOut, x, y, z *[p256Limbs]uint32) { - var delta, gamma, alpha, beta, tmp, tmp2 [p256Limbs]uint32 - - p256Square(&delta, z) - p256Square(&gamma, y) - p256Mul(&beta, x, &gamma) - - p256Sum(&tmp, x, &delta) - p256Diff(&tmp2, x, &delta) - p256Mul(&alpha, &tmp, &tmp2) - p256Scalar3(&alpha) - - p256Sum(&tmp, y, z) - p256Square(&tmp, &tmp) - p256Diff(&tmp, &tmp, &gamma) - p256Diff(zOut, &tmp, &delta) - - p256Scalar4(&beta) - p256Square(xOut, &alpha) - p256Diff(xOut, xOut, &beta) - p256Diff(xOut, xOut, &beta) - - p256Diff(&tmp, &beta, xOut) - p256Mul(&tmp, &alpha, &tmp) - p256Square(&tmp2, &gamma) - p256Scalar8(&tmp2) - p256Diff(yOut, &tmp, &tmp2) -} - -// p256PointAddMixed sets {xOut,yOut,zOut} = {x1,y1,z1} + {x2,y2,1}. -// (i.e. the second point is affine.) -// -// See https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl -// -// Note that this function does not handle P+P, infinity+P nor P+infinity -// correctly. -func p256PointAddMixed(xOut, yOut, zOut, x1, y1, z1, x2, y2 *[p256Limbs]uint32) { - var z1z1, z1z1z1, s2, u2, h, i, j, r, rr, v, tmp [p256Limbs]uint32 - - p256Square(&z1z1, z1) - p256Sum(&tmp, z1, z1) - - p256Mul(&u2, x2, &z1z1) - p256Mul(&z1z1z1, z1, &z1z1) - p256Mul(&s2, y2, &z1z1z1) - p256Diff(&h, &u2, x1) - p256Sum(&i, &h, &h) - p256Square(&i, &i) - p256Mul(&j, &h, &i) - p256Diff(&r, &s2, y1) - p256Sum(&r, &r, &r) - p256Mul(&v, x1, &i) - - p256Mul(zOut, &tmp, &h) - p256Square(&rr, &r) - p256Diff(xOut, &rr, &j) - p256Diff(xOut, xOut, &v) - p256Diff(xOut, xOut, &v) - - p256Diff(&tmp, &v, xOut) - p256Mul(yOut, &tmp, &r) - p256Mul(&tmp, y1, &j) - p256Diff(yOut, yOut, &tmp) - p256Diff(yOut, yOut, &tmp) -} - -// p256PointAdd sets {xOut,yOut,zOut} = {x1,y1,z1} + {x2,y2,z2}. -// -// See https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl -// -// Note that this function does not handle P+P, infinity+P nor P+infinity -// correctly. -func p256PointAdd(xOut, yOut, zOut, x1, y1, z1, x2, y2, z2 *[p256Limbs]uint32) { - var z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp [p256Limbs]uint32 - - p256Square(&z1z1, z1) - p256Square(&z2z2, z2) - p256Mul(&u1, x1, &z2z2) - - p256Sum(&tmp, z1, z2) - p256Square(&tmp, &tmp) - p256Diff(&tmp, &tmp, &z1z1) - p256Diff(&tmp, &tmp, &z2z2) - - p256Mul(&z2z2z2, z2, &z2z2) - p256Mul(&s1, y1, &z2z2z2) - - p256Mul(&u2, x2, &z1z1) - p256Mul(&z1z1z1, z1, &z1z1) - p256Mul(&s2, y2, &z1z1z1) - p256Diff(&h, &u2, &u1) - p256Sum(&i, &h, &h) - p256Square(&i, &i) - p256Mul(&j, &h, &i) - p256Diff(&r, &s2, &s1) - p256Sum(&r, &r, &r) - p256Mul(&v, &u1, &i) - - p256Mul(zOut, &tmp, &h) - p256Square(&rr, &r) - p256Diff(xOut, &rr, &j) - p256Diff(xOut, xOut, &v) - p256Diff(xOut, xOut, &v) - - p256Diff(&tmp, &v, xOut) - p256Mul(yOut, &tmp, &r) - p256Mul(&tmp, &s1, &j) - p256Diff(yOut, yOut, &tmp) - p256Diff(yOut, yOut, &tmp) -} - -// p256CopyConditional sets out=in if mask = 0xffffffff in constant time. -// -// On entry: mask is either 0 or 0xffffffff. -func p256CopyConditional(out, in *[p256Limbs]uint32, mask uint32) { - for i := 0; i < p256Limbs; i++ { - tmp := mask & (in[i] ^ out[i]) - out[i] ^= tmp - } -} - -// p256SelectAffinePoint sets {out_x,out_y} to the index'th entry of table. -// On entry: index < 16, table[0] must be zero. -func p256SelectAffinePoint(xOut, yOut *[p256Limbs]uint32, table []uint32, index uint32) { - for i := range xOut { - xOut[i] = 0 - } - for i := range yOut { - yOut[i] = 0 - } - - for i := uint32(1); i < 16; i++ { - mask := i ^ index - mask |= mask >> 2 - mask |= mask >> 1 - mask &= 1 - mask-- - for j := range xOut { - xOut[j] |= table[0] & mask - table = table[1:] - } - for j := range yOut { - yOut[j] |= table[0] & mask - table = table[1:] - } - } -} - -// p256SelectJacobianPoint sets {out_x,out_y,out_z} to the index'th entry of -// table. -// On entry: index < 16, table[0] must be zero. -func p256SelectJacobianPoint(xOut, yOut, zOut *[p256Limbs]uint32, table *[16][3][p256Limbs]uint32, index uint32) { - for i := range xOut { - xOut[i] = 0 - } - for i := range yOut { - yOut[i] = 0 - } - for i := range zOut { - zOut[i] = 0 - } - - // The implicit value at index 0 is all zero. We don't need to perform that - // iteration of the loop because we already set out_* to zero. - for i := uint32(1); i < 16; i++ { - mask := i ^ index - mask |= mask >> 2 - mask |= mask >> 1 - mask &= 1 - mask-- - for j := range xOut { - xOut[j] |= table[i][0][j] & mask - } - for j := range yOut { - yOut[j] |= table[i][1][j] & mask - } - for j := range zOut { - zOut[j] |= table[i][2][j] & mask - } - } -} - -// p256GetBit returns the bit'th bit of scalar. -func p256GetBit(scalar *[32]uint8, bit uint) uint32 { - return uint32(((scalar[bit>>3]) >> (bit & 7)) & 1) -} - -// p256ScalarBaseMult sets {xOut,yOut,zOut} = scalar*G where scalar is a -// little-endian number. Note that the value of scalar must be less than the -// order of the group. -func p256ScalarBaseMult(xOut, yOut, zOut *[p256Limbs]uint32, scalar *[32]uint8) { - nIsInfinityMask := ^uint32(0) - var pIsNoninfiniteMask, mask, tableOffset uint32 - var px, py, tx, ty, tz [p256Limbs]uint32 - - for i := range xOut { - xOut[i] = 0 - } - for i := range yOut { - yOut[i] = 0 - } - for i := range zOut { - zOut[i] = 0 - } - - // The loop adds bits at positions 0, 64, 128 and 192, followed by - // positions 32,96,160 and 224 and does this 32 times. - for i := uint(0); i < 32; i++ { - if i != 0 { - p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut) - } - tableOffset = 0 - for j := uint(0); j <= 32; j += 32 { - bit0 := p256GetBit(scalar, 31-i+j) - bit1 := p256GetBit(scalar, 95-i+j) - bit2 := p256GetBit(scalar, 159-i+j) - bit3 := p256GetBit(scalar, 223-i+j) - index := bit0 | (bit1 << 1) | (bit2 << 2) | (bit3 << 3) - - p256SelectAffinePoint(&px, &py, p256Precomputed[tableOffset:], index) - tableOffset += 30 * p256Limbs - - // Since scalar is less than the order of the group, we know that - // {xOut,yOut,zOut} != {px,py,1}, unless both are zero, which we handle - // below. - p256PointAddMixed(&tx, &ty, &tz, xOut, yOut, zOut, &px, &py) - // The result of pointAddMixed is incorrect if {xOut,yOut,zOut} is zero - // (a.k.a. the point at infinity). We handle that situation by - // copying the point from the table. - p256CopyConditional(xOut, &px, nIsInfinityMask) - p256CopyConditional(yOut, &py, nIsInfinityMask) - p256CopyConditional(zOut, &p256One, nIsInfinityMask) - - // Equally, the result is also wrong if the point from the table is - // zero, which happens when the index is zero. We handle that by - // only copying from {tx,ty,tz} to {xOut,yOut,zOut} if index != 0. - pIsNoninfiniteMask = nonZeroToAllOnes(index) - mask = pIsNoninfiniteMask & ^nIsInfinityMask - p256CopyConditional(xOut, &tx, mask) - p256CopyConditional(yOut, &ty, mask) - p256CopyConditional(zOut, &tz, mask) - // If p was not zero, then n is now non-zero. - nIsInfinityMask &^= pIsNoninfiniteMask - } - } -} - -// p256PointToAffine converts a Jacobian point to an affine point. If the input -// is the point at infinity then it returns (0, 0) in constant time. -func p256PointToAffine(xOut, yOut, x, y, z *[p256Limbs]uint32) { - var zInv, zInvSq [p256Limbs]uint32 - - p256Invert(&zInv, z) - p256Square(&zInvSq, &zInv) - p256Mul(xOut, x, &zInvSq) - p256Mul(&zInv, &zInv, &zInvSq) - p256Mul(yOut, y, &zInv) -} - -// p256ToAffine returns a pair of *big.Int containing the affine representation -// of {x,y,z}. -func p256ToAffine(x, y, z *[p256Limbs]uint32) (xOut, yOut *big.Int) { - var xx, yy [p256Limbs]uint32 - p256PointToAffine(&xx, &yy, x, y, z) - return p256ToBig(&xx), p256ToBig(&yy) -} - -// p256ScalarMult sets {xOut,yOut,zOut} = scalar*{x,y}. -func p256ScalarMult(xOut, yOut, zOut, x, y *[p256Limbs]uint32, scalar *[32]uint8) { - var px, py, pz, tx, ty, tz [p256Limbs]uint32 - var precomp [16][3][p256Limbs]uint32 - var nIsInfinityMask, index, pIsNoninfiniteMask, mask uint32 - - // We precompute 0,1,2,... times {x,y}. - precomp[1][0] = *x - precomp[1][1] = *y - precomp[1][2] = p256One - - for i := 2; i < 16; i += 2 { - p256PointDouble(&precomp[i][0], &precomp[i][1], &precomp[i][2], &precomp[i/2][0], &precomp[i/2][1], &precomp[i/2][2]) - p256PointAddMixed(&precomp[i+1][0], &precomp[i+1][1], &precomp[i+1][2], &precomp[i][0], &precomp[i][1], &precomp[i][2], x, y) - } - - for i := range xOut { - xOut[i] = 0 - } - for i := range yOut { - yOut[i] = 0 - } - for i := range zOut { - zOut[i] = 0 - } - nIsInfinityMask = ^uint32(0) - - // We add in a window of four bits each iteration and do this 64 times. - for i := 0; i < 64; i++ { - if i != 0 { - p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut) - p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut) - p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut) - p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut) - } - - index = uint32(scalar[31-i/2]) - if (i & 1) == 1 { - index &= 15 - } else { - index >>= 4 - } - - // See the comments in scalarBaseMult about handling infinities. - p256SelectJacobianPoint(&px, &py, &pz, &precomp, index) - p256PointAdd(&tx, &ty, &tz, xOut, yOut, zOut, &px, &py, &pz) - p256CopyConditional(xOut, &px, nIsInfinityMask) - p256CopyConditional(yOut, &py, nIsInfinityMask) - p256CopyConditional(zOut, &pz, nIsInfinityMask) - - pIsNoninfiniteMask = nonZeroToAllOnes(index) - mask = pIsNoninfiniteMask & ^nIsInfinityMask - p256CopyConditional(xOut, &tx, mask) - p256CopyConditional(yOut, &ty, mask) - p256CopyConditional(zOut, &tz, mask) - nIsInfinityMask &^= pIsNoninfiniteMask - } -} - -// p256FromBig sets out = R*in. -func p256FromBig(out *[p256Limbs]uint32, in *big.Int) { - tmp := new(big.Int).Lsh(in, 257) - tmp.Mod(tmp, p256Params.P) - - for i := 0; i < p256Limbs; i++ { - if bits := tmp.Bits(); len(bits) > 0 { - out[i] = uint32(bits[0]) & bottom29Bits - } else { - out[i] = 0 - } - tmp.Rsh(tmp, 29) - - i++ - if i == p256Limbs { - break - } - - if bits := tmp.Bits(); len(bits) > 0 { - out[i] = uint32(bits[0]) & bottom28Bits - } else { - out[i] = 0 - } - tmp.Rsh(tmp, 28) - } -} - -// p256ToBig returns a *big.Int containing the value of in. -func p256ToBig(in *[p256Limbs]uint32) *big.Int { - result, tmp := new(big.Int), new(big.Int) - - result.SetInt64(int64(in[p256Limbs-1])) - for i := p256Limbs - 2; i >= 0; i-- { - if (i & 1) == 0 { - result.Lsh(result, 29) - } else { - result.Lsh(result, 28) - } - tmp.SetInt64(int64(in[i])) - result.Add(result, tmp) - } - - result.Mul(result, p256RInverse) - result.Mod(result, p256Params.P) - return result -} diff --git a/src/crypto/elliptic/p256_asm.go b/src/crypto/elliptic/p256_asm.go index 93adaf9056..ce80282ed6 100644 --- a/src/crypto/elliptic/p256_asm.go +++ b/src/crypto/elliptic/p256_asm.go @@ -24,27 +24,18 @@ import ( //go:embed p256_asm_table.bin var p256Precomputed string -type ( - p256Curve struct { - *CurveParams - } +type p256Curve struct { + *CurveParams +} - p256Point struct { - xyz [12]uint64 - } -) +type p256Point struct { + xyz [12]uint64 +} var p256 p256Curve -func initP256() { - // See FIPS 186-3, section D.2.3 - p256.CurveParams = &CurveParams{Name: "P-256"} - p256.P, _ = new(big.Int).SetString("115792089210356248762697446949407573530086143415290314195533631308867097853951", 10) - p256.N, _ = new(big.Int).SetString("115792089210356248762697446949407573529996955224135760342422259061068512044369", 10) - p256.B, _ = new(big.Int).SetString("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b", 16) - p256.Gx, _ = new(big.Int).SetString("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", 16) - p256.Gy, _ = new(big.Int).SetString("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5", 16) - p256.BitSize = 256 +func initP256Arch() { + p256 = p256Curve{p256Params} } func (curve p256Curve) Params() *CurveParams { diff --git a/src/crypto/elliptic/p256_generic.go b/src/crypto/elliptic/p256_generic.go index 7f8fab5398..fc105c547c 100644 --- a/src/crypto/elliptic/p256_generic.go +++ b/src/crypto/elliptic/p256_generic.go @@ -1,14 +1,1173 @@ -// Copyright 2016 The Go Authors. All rights reserved. +// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. -//go:build !amd64 && !s390x && !arm64 && !ppc64le +//go:build !amd64 && !arm64 package elliptic -var p256 p256Curve +// This file contains a constant-time, 32-bit implementation of P256. -func initP256Arch() { - // Use pure Go implementation. - p256 = p256Curve{p256Params} +import "math/big" + +type p256Curve struct { + *CurveParams +} + +func (curve p256Curve) Params() *CurveParams { + return curve.CurveParams +} + +// p256GetScalar endian-swaps the big-endian scalar value from in and writes it +// to out. If the scalar is equal or greater than the order of the group, it's +// reduced modulo that order. +func p256GetScalar(out *[32]byte, in []byte) { + n := new(big.Int).SetBytes(in) + var scalarBytes []byte + + if n.Cmp(p256Params.N) >= 0 || len(in) > len(out) { + n.Mod(n, p256Params.N) + scalarBytes = n.Bytes() + } else { + scalarBytes = in + } + + for i, v := range scalarBytes { + out[len(scalarBytes)-(1+i)] = v + } +} + +func (p256Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) { + var scalarReversed [32]byte + p256GetScalar(&scalarReversed, scalar) + + var x1, y1, z1 [p256Limbs]uint32 + p256ScalarBaseMult(&x1, &y1, &z1, &scalarReversed) + return p256ToAffine(&x1, &y1, &z1) +} + +func (p256Curve) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) { + var scalarReversed [32]byte + p256GetScalar(&scalarReversed, scalar) + + var px, py, x1, y1, z1 [p256Limbs]uint32 + p256FromBig(&px, bigX) + p256FromBig(&py, bigY) + p256ScalarMult(&x1, &y1, &z1, &px, &py, &scalarReversed) + return p256ToAffine(&x1, &y1, &z1) +} + +// Field elements are represented as nine, unsigned 32-bit words. +// +// The value of a field element is: +// x[0] + (x[1] * 2**29) + (x[2] * 2**57) + ... + (x[8] * 2**228) +// +// That is, each limb is alternately 29 or 28-bits wide in little-endian +// order. +// +// This means that a field element hits 2**257, rather than 2**256 as we would +// like. A 28, 29, ... pattern would cause us to hit 2**256, but that causes +// problems when multiplying as terms end up one bit short of a limb which +// would require much bit-shifting to correct. +// +// Finally, the values stored in a field element are in Montgomery form. So the +// value |y| is stored as (y*R) mod p, where p is the P-256 prime and R is +// 2**257. + +const ( + p256Limbs = 9 + bottom29Bits = 0x1fffffff +) + +var ( + // p256One is the number 1 as a field element. + p256One = [p256Limbs]uint32{2, 0, 0, 0xffff800, 0x1fffffff, 0xfffffff, 0x1fbfffff, 0x1ffffff, 0} + p256Zero = [p256Limbs]uint32{0, 0, 0, 0, 0, 0, 0, 0, 0} + // p256P is the prime modulus as a field element. + p256P = [p256Limbs]uint32{0x1fffffff, 0xfffffff, 0x1fffffff, 0x3ff, 0, 0, 0x200000, 0xf000000, 0xfffffff} + // p2562P is the twice prime modulus as a field element. + p2562P = [p256Limbs]uint32{0x1ffffffe, 0xfffffff, 0x1fffffff, 0x7ff, 0, 0, 0x400000, 0xe000000, 0x1fffffff} +) + +// p256Precomputed contains precomputed values to aid the calculation of scalar +// multiples of the base point, G. It's actually two, equal length, tables +// concatenated. +// +// The first table contains (x,y) field element pairs for 16 multiples of the +// base point, G. +// +// Index | Index (binary) | Value +// 0 | 0000 | 0G (all zeros, omitted) +// 1 | 0001 | G +// 2 | 0010 | 2**64G +// 3 | 0011 | 2**64G + G +// 4 | 0100 | 2**128G +// 5 | 0101 | 2**128G + G +// 6 | 0110 | 2**128G + 2**64G +// 7 | 0111 | 2**128G + 2**64G + G +// 8 | 1000 | 2**192G +// 9 | 1001 | 2**192G + G +// 10 | 1010 | 2**192G + 2**64G +// 11 | 1011 | 2**192G + 2**64G + G +// 12 | 1100 | 2**192G + 2**128G +// 13 | 1101 | 2**192G + 2**128G + G +// 14 | 1110 | 2**192G + 2**128G + 2**64G +// 15 | 1111 | 2**192G + 2**128G + 2**64G + G +// +// The second table follows the same style, but the terms are 2**32G, +// 2**96G, 2**160G, 2**224G. +// +// This is ~2KB of data. +var p256Precomputed = [p256Limbs * 2 * 15 * 2]uint32{ + 0x11522878, 0xe730d41, 0xdb60179, 0x4afe2ff, 0x12883add, 0xcaddd88, 0x119e7edc, 0xd4a6eab, 0x3120bee, + 0x1d2aac15, 0xf25357c, 0x19e45cdd, 0x5c721d0, 0x1992c5a5, 0xa237487, 0x154ba21, 0x14b10bb, 0xae3fe3, + 0xd41a576, 0x922fc51, 0x234994f, 0x60b60d3, 0x164586ae, 0xce95f18, 0x1fe49073, 0x3fa36cc, 0x5ebcd2c, + 0xb402f2f, 0x15c70bf, 0x1561925c, 0x5a26704, 0xda91e90, 0xcdc1c7f, 0x1ea12446, 0xe1ade1e, 0xec91f22, + 0x26f7778, 0x566847e, 0xa0bec9e, 0x234f453, 0x1a31f21a, 0xd85e75c, 0x56c7109, 0xa267a00, 0xb57c050, + 0x98fb57, 0xaa837cc, 0x60c0792, 0xcfa5e19, 0x61bab9e, 0x589e39b, 0xa324c5, 0x7d6dee7, 0x2976e4b, + 0x1fc4124a, 0xa8c244b, 0x1ce86762, 0xcd61c7e, 0x1831c8e0, 0x75774e1, 0x1d96a5a9, 0x843a649, 0xc3ab0fa, + 0x6e2e7d5, 0x7673a2a, 0x178b65e8, 0x4003e9b, 0x1a1f11c2, 0x7816ea, 0xf643e11, 0x58c43df, 0xf423fc2, + 0x19633ffa, 0x891f2b2, 0x123c231c, 0x46add8c, 0x54700dd, 0x59e2b17, 0x172db40f, 0x83e277d, 0xb0dd609, + 0xfd1da12, 0x35c6e52, 0x19ede20c, 0xd19e0c0, 0x97d0f40, 0xb015b19, 0x449e3f5, 0xe10c9e, 0x33ab581, + 0x56a67ab, 0x577734d, 0x1dddc062, 0xc57b10d, 0x149b39d, 0x26a9e7b, 0xc35df9f, 0x48764cd, 0x76dbcca, + 0xca4b366, 0xe9303ab, 0x1a7480e7, 0x57e9e81, 0x1e13eb50, 0xf466cf3, 0x6f16b20, 0x4ba3173, 0xc168c33, + 0x15cb5439, 0x6a38e11, 0x73658bd, 0xb29564f, 0x3f6dc5b, 0x53b97e, 0x1322c4c0, 0x65dd7ff, 0x3a1e4f6, + 0x14e614aa, 0x9246317, 0x1bc83aca, 0xad97eed, 0xd38ce4a, 0xf82b006, 0x341f077, 0xa6add89, 0x4894acd, + 0x9f162d5, 0xf8410ef, 0x1b266a56, 0xd7f223, 0x3e0cb92, 0xe39b672, 0x6a2901a, 0x69a8556, 0x7e7c0, + 0x9b7d8d3, 0x309a80, 0x1ad05f7f, 0xc2fb5dd, 0xcbfd41d, 0x9ceb638, 0x1051825c, 0xda0cf5b, 0x812e881, + 0x6f35669, 0x6a56f2c, 0x1df8d184, 0x345820, 0x1477d477, 0x1645db1, 0xbe80c51, 0xc22be3e, 0xe35e65a, + 0x1aeb7aa0, 0xc375315, 0xf67bc99, 0x7fdd7b9, 0x191fc1be, 0x61235d, 0x2c184e9, 0x1c5a839, 0x47a1e26, + 0xb7cb456, 0x93e225d, 0x14f3c6ed, 0xccc1ac9, 0x17fe37f3, 0x4988989, 0x1a90c502, 0x2f32042, 0xa17769b, + 0xafd8c7c, 0x8191c6e, 0x1dcdb237, 0x16200c0, 0x107b32a1, 0x66c08db, 0x10d06a02, 0x3fc93, 0x5620023, + 0x16722b27, 0x68b5c59, 0x270fcfc, 0xfad0ecc, 0xe5de1c2, 0xeab466b, 0x2fc513c, 0x407f75c, 0xbaab133, + 0x9705fe9, 0xb88b8e7, 0x734c993, 0x1e1ff8f, 0x19156970, 0xabd0f00, 0x10469ea7, 0x3293ac0, 0xcdc98aa, + 0x1d843fd, 0xe14bfe8, 0x15be825f, 0x8b5212, 0xeb3fb67, 0x81cbd29, 0xbc62f16, 0x2b6fcc7, 0xf5a4e29, + 0x13560b66, 0xc0b6ac2, 0x51ae690, 0xd41e271, 0xf3e9bd4, 0x1d70aab, 0x1029f72, 0x73e1c35, 0xee70fbc, + 0xad81baf, 0x9ecc49a, 0x86c741e, 0xfe6be30, 0x176752e7, 0x23d416, 0x1f83de85, 0x27de188, 0x66f70b8, + 0x181cd51f, 0x96b6e4c, 0x188f2335, 0xa5df759, 0x17a77eb6, 0xfeb0e73, 0x154ae914, 0x2f3ec51, 0x3826b59, + 0xb91f17d, 0x1c72949, 0x1362bf0a, 0xe23fddf, 0xa5614b0, 0xf7d8f, 0x79061, 0x823d9d2, 0x8213f39, + 0x1128ae0b, 0xd095d05, 0xb85c0c2, 0x1ecb2ef, 0x24ddc84, 0xe35e901, 0x18411a4a, 0xf5ddc3d, 0x3786689, + 0x52260e8, 0x5ae3564, 0x542b10d, 0x8d93a45, 0x19952aa4, 0x996cc41, 0x1051a729, 0x4be3499, 0x52b23aa, + 0x109f307e, 0x6f5b6bb, 0x1f84e1e7, 0x77a0cfa, 0x10c4df3f, 0x25a02ea, 0xb048035, 0xe31de66, 0xc6ecaa3, + 0x28ea335, 0x2886024, 0x1372f020, 0xf55d35, 0x15e4684c, 0xf2a9e17, 0x1a4a7529, 0xcb7beb1, 0xb2a78a1, + 0x1ab21f1f, 0x6361ccf, 0x6c9179d, 0xb135627, 0x1267b974, 0x4408bad, 0x1cbff658, 0xe3d6511, 0xc7d76f, + 0x1cc7a69, 0xe7ee31b, 0x54fab4f, 0x2b914f, 0x1ad27a30, 0xcd3579e, 0xc50124c, 0x50daa90, 0xb13f72, + 0xb06aa75, 0x70f5cc6, 0x1649e5aa, 0x84a5312, 0x329043c, 0x41c4011, 0x13d32411, 0xb04a838, 0xd760d2d, + 0x1713b532, 0xbaa0c03, 0x84022ab, 0x6bcf5c1, 0x2f45379, 0x18ae070, 0x18c9e11e, 0x20bca9a, 0x66f496b, + 0x3eef294, 0x67500d2, 0xd7f613c, 0x2dbbeb, 0xb741038, 0xe04133f, 0x1582968d, 0xbe985f7, 0x1acbc1a, + 0x1a6a939f, 0x33e50f6, 0xd665ed4, 0xb4b7bd6, 0x1e5a3799, 0x6b33847, 0x17fa56ff, 0x65ef930, 0x21dc4a, + 0x2b37659, 0x450fe17, 0xb357b65, 0xdf5efac, 0x15397bef, 0x9d35a7f, 0x112ac15f, 0x624e62e, 0xa90ae2f, + 0x107eecd2, 0x1f69bbe, 0x77d6bce, 0x5741394, 0x13c684fc, 0x950c910, 0x725522b, 0xdc78583, 0x40eeabb, + 0x1fde328a, 0xbd61d96, 0xd28c387, 0x9e77d89, 0x12550c40, 0x759cb7d, 0x367ef34, 0xae2a960, 0x91b8bdc, + 0x93462a9, 0xf469ef, 0xb2e9aef, 0xd2ca771, 0x54e1f42, 0x7aaa49, 0x6316abb, 0x2413c8e, 0x5425bf9, + 0x1bed3e3a, 0xf272274, 0x1f5e7326, 0x6416517, 0xea27072, 0x9cedea7, 0x6e7633, 0x7c91952, 0xd806dce, + 0x8e2a7e1, 0xe421e1a, 0x418c9e1, 0x1dbc890, 0x1b395c36, 0xa1dc175, 0x1dc4ef73, 0x8956f34, 0xe4b5cf2, + 0x1b0d3a18, 0x3194a36, 0x6c2641f, 0xe44124c, 0xa2f4eaa, 0xa8c25ba, 0xf927ed7, 0x627b614, 0x7371cca, + 0xba16694, 0x417bc03, 0x7c0a7e3, 0x9c35c19, 0x1168a205, 0x8b6b00d, 0x10e3edc9, 0x9c19bf2, 0x5882229, + 0x1b2b4162, 0xa5cef1a, 0x1543622b, 0x9bd433e, 0x364e04d, 0x7480792, 0x5c9b5b3, 0xe85ff25, 0x408ef57, + 0x1814cfa4, 0x121b41b, 0xd248a0f, 0x3b05222, 0x39bb16a, 0xc75966d, 0xa038113, 0xa4a1769, 0x11fbc6c, + 0x917e50e, 0xeec3da8, 0x169d6eac, 0x10c1699, 0xa416153, 0xf724912, 0x15cd60b7, 0x4acbad9, 0x5efc5fa, + 0xf150ed7, 0x122b51, 0x1104b40a, 0xcb7f442, 0xfbb28ff, 0x6ac53ca, 0x196142cc, 0x7bf0fa9, 0x957651, + 0x4e0f215, 0xed439f8, 0x3f46bd5, 0x5ace82f, 0x110916b6, 0x6db078, 0xffd7d57, 0xf2ecaac, 0xca86dec, + 0x15d6b2da, 0x965ecc9, 0x1c92b4c2, 0x1f3811, 0x1cb080f5, 0x2d8b804, 0x19d1c12d, 0xf20bd46, 0x1951fa7, + 0xa3656c3, 0x523a425, 0xfcd0692, 0xd44ddc8, 0x131f0f5b, 0xaf80e4a, 0xcd9fc74, 0x99bb618, 0x2db944c, + 0xa673090, 0x1c210e1, 0x178c8d23, 0x1474383, 0x10b8743d, 0x985a55b, 0x2e74779, 0x576138, 0x9587927, + 0x133130fa, 0xbe05516, 0x9f4d619, 0xbb62570, 0x99ec591, 0xd9468fe, 0x1d07782d, 0xfc72e0b, 0x701b298, + 0x1863863b, 0x85954b8, 0x121a0c36, 0x9e7fedf, 0xf64b429, 0x9b9d71e, 0x14e2f5d8, 0xf858d3a, 0x942eea8, + 0xda5b765, 0x6edafff, 0xa9d18cc, 0xc65e4ba, 0x1c747e86, 0xe4ea915, 0x1981d7a1, 0x8395659, 0x52ed4e2, + 0x87d43b7, 0x37ab11b, 0x19d292ce, 0xf8d4692, 0x18c3053f, 0x8863e13, 0x4c146c0, 0x6bdf55a, 0x4e4457d, + 0x16152289, 0xac78ec2, 0x1a59c5a2, 0x2028b97, 0x71c2d01, 0x295851f, 0x404747b, 0x878558d, 0x7d29aa4, + 0x13d8341f, 0x8daefd7, 0x139c972d, 0x6b7ea75, 0xd4a9dde, 0xff163d8, 0x81d55d7, 0xa5bef68, 0xb7b30d8, + 0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f51951, 0x9d0c177, 0x1c49a78, +} + +// Field element operations: + +const bottom28Bits = 0xfffffff + +// nonZeroToAllOnes returns: +// +// 0xffffffff for 0 < x <= 2**31 +// 0 for x == 0 or x > 2**31. +func nonZeroToAllOnes(x uint32) uint32 { + return ((x - 1) >> 31) - 1 +} + +// p256ReduceCarry adds a multiple of p in order to cancel |carry|, +// which is a term at 2**257. +// +// On entry: carry < 2**3, inout[0,2,...] < 2**29, inout[1,3,...] < 2**28. +// On exit: inout[0,2,..] < 2**30, inout[1,3,...] < 2**29. +func p256ReduceCarry(inout *[p256Limbs]uint32, carry uint32) { + carry_mask := nonZeroToAllOnes(carry) + + inout[0] += carry << 1 + inout[3] += 0x10000000 & carry_mask + // carry < 2**3 thus (carry << 11) < 2**14 and we added 2**28 in the + // previous line therefore this doesn't underflow. + inout[3] -= carry << 11 + inout[4] += (0x20000000 - 1) & carry_mask + inout[5] += (0x10000000 - 1) & carry_mask + inout[6] += (0x20000000 - 1) & carry_mask + inout[6] -= carry << 22 + // This may underflow if carry is non-zero but, if so, we'll fix it in the + // next line. + inout[7] -= 1 & carry_mask + inout[7] += carry << 25 +} + +// p256Sum sets out = in+in2. +// +// On entry: in[i]+in2[i] must not overflow a 32-bit word. +// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. +func p256Sum(out, in, in2 *[p256Limbs]uint32) { + carry := uint32(0) + for i := 0; ; i++ { + out[i] = in[i] + in2[i] + out[i] += carry + carry = out[i] >> 29 + out[i] &= bottom29Bits + + i++ + if i == p256Limbs { + break + } + + out[i] = in[i] + in2[i] + out[i] += carry + carry = out[i] >> 28 + out[i] &= bottom28Bits + } + + p256ReduceCarry(out, carry) +} + +const ( + two30m2 = 1<<30 - 1<<2 + two30p13m2 = 1<<30 + 1<<13 - 1<<2 + two31m2 = 1<<31 - 1<<2 + two31m3 = 1<<31 - 1<<3 + two31p24m2 = 1<<31 + 1<<24 - 1<<2 + two30m27m2 = 1<<30 - 1<<27 - 1<<2 +) + +// p256Zero31 is 0 mod p. +var p256Zero31 = [p256Limbs]uint32{two31m3, two30m2, two31m2, two30p13m2, two31m2, two30m2, two31p24m2, two30m27m2, two31m2} + +// p256Diff sets out = in-in2. +// +// On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and +// in2[0,2,...] < 2**30, in2[1,3,...] < 2**29. +// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. +func p256Diff(out, in, in2 *[p256Limbs]uint32) { + var carry uint32 + + for i := 0; ; i++ { + out[i] = in[i] - in2[i] + out[i] += p256Zero31[i] + out[i] += carry + carry = out[i] >> 29 + out[i] &= bottom29Bits + + i++ + if i == p256Limbs { + break + } + + out[i] = in[i] - in2[i] + out[i] += p256Zero31[i] + out[i] += carry + carry = out[i] >> 28 + out[i] &= bottom28Bits + } + + p256ReduceCarry(out, carry) +} + +// p256ReduceDegree sets out = tmp/R mod p where tmp contains 64-bit words with +// the same 29,28,... bit positions as a field element. +// +// The values in field elements are in Montgomery form: x*R mod p where R = +// 2**257. Since we just multiplied two Montgomery values together, the result +// is x*y*R*R mod p. We wish to divide by R in order for the result also to be +// in Montgomery form. +// +// On entry: tmp[i] < 2**64. +// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. +func p256ReduceDegree(out *[p256Limbs]uint32, tmp [17]uint64) { + // The following table may be helpful when reading this code: + // + // Limb number: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10... + // Width (bits): 29| 28| 29| 28| 29| 28| 29| 28| 29| 28| 29 + // Start bit: 0 | 29| 57| 86|114|143|171|200|228|257|285 + // (odd phase): 0 | 28| 57| 85|114|142|171|199|228|256|285 + var tmp2 [18]uint32 + var carry, x, xMask uint32 + + // tmp contains 64-bit words with the same 29,28,29-bit positions as a + // field element. So the top of an element of tmp might overlap with + // another element two positions down. The following loop eliminates + // this overlap. + tmp2[0] = uint32(tmp[0]) & bottom29Bits + + tmp2[1] = uint32(tmp[0]) >> 29 + tmp2[1] |= (uint32(tmp[0]>>32) << 3) & bottom28Bits + tmp2[1] += uint32(tmp[1]) & bottom28Bits + carry = tmp2[1] >> 28 + tmp2[1] &= bottom28Bits + + for i := 2; i < 17; i++ { + tmp2[i] = (uint32(tmp[i-2] >> 32)) >> 25 + tmp2[i] += (uint32(tmp[i-1])) >> 28 + tmp2[i] += (uint32(tmp[i-1]>>32) << 4) & bottom29Bits + tmp2[i] += uint32(tmp[i]) & bottom29Bits + tmp2[i] += carry + carry = tmp2[i] >> 29 + tmp2[i] &= bottom29Bits + + i++ + if i == 17 { + break + } + tmp2[i] = uint32(tmp[i-2]>>32) >> 25 + tmp2[i] += uint32(tmp[i-1]) >> 29 + tmp2[i] += ((uint32(tmp[i-1] >> 32)) << 3) & bottom28Bits + tmp2[i] += uint32(tmp[i]) & bottom28Bits + tmp2[i] += carry + carry = tmp2[i] >> 28 + tmp2[i] &= bottom28Bits + } + + tmp2[17] = uint32(tmp[15]>>32) >> 25 + tmp2[17] += uint32(tmp[16]) >> 29 + tmp2[17] += uint32(tmp[16]>>32) << 3 + tmp2[17] += carry + + // Montgomery elimination of terms: + // + // Since R is 2**257, we can divide by R with a bitwise shift if we can + // ensure that the right-most 257 bits are all zero. We can make that true + // by adding multiplies of p without affecting the value. + // + // So we eliminate limbs from right to left. Since the bottom 29 bits of p + // are all ones, then by adding tmp2[0]*p to tmp2 we'll make tmp2[0] == 0. + // We can do that for 8 further limbs and then right shift to eliminate the + // extra factor of R. + for i := 0; ; i += 2 { + tmp2[i+1] += tmp2[i] >> 29 + x = tmp2[i] & bottom29Bits + xMask = nonZeroToAllOnes(x) + tmp2[i] = 0 + + // The bounds calculations for this loop are tricky. Each iteration of + // the loop eliminates two words by adding values to words to their + // right. + // + // The following table contains the amounts added to each word (as an + // offset from the value of i at the top of the loop). The amounts are + // accounted for from the first and second half of the loop separately + // and are written as, for example, 28 to mean a value <2**28. + // + // Word: 3 4 5 6 7 8 9 10 + // Added in top half: 28 11 29 21 29 28 + // 28 29 + // 29 + // Added in bottom half: 29 10 28 21 28 28 + // 29 + // + // The value that is currently offset 7 will be offset 5 for the next + // iteration and then offset 3 for the iteration after that. Therefore + // the total value added will be the values added at 7, 5 and 3. + // + // The following table accumulates these values. The sums at the bottom + // are written as, for example, 29+28, to mean a value < 2**29+2**28. + // + // Word: 3 4 5 6 7 8 9 10 11 12 13 + // 28 11 10 29 21 29 28 28 28 28 28 + // 29 28 11 28 29 28 29 28 29 28 + // 29 28 21 21 29 21 29 21 + // 10 29 28 21 28 21 28 + // 28 29 28 29 28 29 28 + // 11 10 29 10 29 10 + // 29 28 11 28 11 + // 29 29 + // -------------------------------------------- + // 30+ 31+ 30+ 31+ 30+ + // 28+ 29+ 28+ 29+ 21+ + // 21+ 28+ 21+ 28+ 10 + // 10 21+ 10 21+ + // 11 11 + // + // So the greatest amount is added to tmp2[10] and tmp2[12]. If + // tmp2[10/12] has an initial value of <2**29, then the maximum value + // will be < 2**31 + 2**30 + 2**28 + 2**21 + 2**11, which is < 2**32, + // as required. + tmp2[i+3] += (x << 10) & bottom28Bits + tmp2[i+4] += (x >> 18) + + tmp2[i+6] += (x << 21) & bottom29Bits + tmp2[i+7] += x >> 8 + + // At position 200, which is the starting bit position for word 7, we + // have a factor of 0xf000000 = 2**28 - 2**24. + tmp2[i+7] += 0x10000000 & xMask + tmp2[i+8] += (x - 1) & xMask + tmp2[i+7] -= (x << 24) & bottom28Bits + tmp2[i+8] -= x >> 4 + + tmp2[i+8] += 0x20000000 & xMask + tmp2[i+8] -= x + tmp2[i+8] += (x << 28) & bottom29Bits + tmp2[i+9] += ((x >> 1) - 1) & xMask + + if i+1 == p256Limbs { + break + } + tmp2[i+2] += tmp2[i+1] >> 28 + x = tmp2[i+1] & bottom28Bits + xMask = nonZeroToAllOnes(x) + tmp2[i+1] = 0 + + tmp2[i+4] += (x << 11) & bottom29Bits + tmp2[i+5] += (x >> 18) + + tmp2[i+7] += (x << 21) & bottom28Bits + tmp2[i+8] += x >> 7 + + // At position 199, which is the starting bit of the 8th word when + // dealing with a context starting on an odd word, we have a factor of + // 0x1e000000 = 2**29 - 2**25. Since we have not updated i, the 8th + // word from i+1 is i+8. + tmp2[i+8] += 0x20000000 & xMask + tmp2[i+9] += (x - 1) & xMask + tmp2[i+8] -= (x << 25) & bottom29Bits + tmp2[i+9] -= x >> 4 + + tmp2[i+9] += 0x10000000 & xMask + tmp2[i+9] -= x + tmp2[i+10] += (x - 1) & xMask + } + + // We merge the right shift with a carry chain. The words above 2**257 have + // widths of 28,29,... which we need to correct when copying them down. + carry = 0 + for i := 0; i < 8; i++ { + // The maximum value of tmp2[i + 9] occurs on the first iteration and + // is < 2**30+2**29+2**28. Adding 2**29 (from tmp2[i + 10]) is + // therefore safe. + out[i] = tmp2[i+9] + out[i] += carry + out[i] += (tmp2[i+10] << 28) & bottom29Bits + carry = out[i] >> 29 + out[i] &= bottom29Bits + + i++ + out[i] = tmp2[i+9] >> 1 + out[i] += carry + carry = out[i] >> 28 + out[i] &= bottom28Bits + } + + out[8] = tmp2[17] + out[8] += carry + carry = out[8] >> 29 + out[8] &= bottom29Bits + + p256ReduceCarry(out, carry) +} + +// p256Square sets out=in*in. +// +// On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29. +// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. +func p256Square(out, in *[p256Limbs]uint32) { + var tmp [17]uint64 + + tmp[0] = uint64(in[0]) * uint64(in[0]) + tmp[1] = uint64(in[0]) * (uint64(in[1]) << 1) + tmp[2] = uint64(in[0])*(uint64(in[2])<<1) + + uint64(in[1])*(uint64(in[1])<<1) + tmp[3] = uint64(in[0])*(uint64(in[3])<<1) + + uint64(in[1])*(uint64(in[2])<<1) + tmp[4] = uint64(in[0])*(uint64(in[4])<<1) + + uint64(in[1])*(uint64(in[3])<<2) + + uint64(in[2])*uint64(in[2]) + tmp[5] = uint64(in[0])*(uint64(in[5])<<1) + + uint64(in[1])*(uint64(in[4])<<1) + + uint64(in[2])*(uint64(in[3])<<1) + tmp[6] = uint64(in[0])*(uint64(in[6])<<1) + + uint64(in[1])*(uint64(in[5])<<2) + + uint64(in[2])*(uint64(in[4])<<1) + + uint64(in[3])*(uint64(in[3])<<1) + tmp[7] = uint64(in[0])*(uint64(in[7])<<1) + + uint64(in[1])*(uint64(in[6])<<1) + + uint64(in[2])*(uint64(in[5])<<1) + + uint64(in[3])*(uint64(in[4])<<1) + // tmp[8] has the greatest value of 2**61 + 2**60 + 2**61 + 2**60 + 2**60, + // which is < 2**64 as required. + tmp[8] = uint64(in[0])*(uint64(in[8])<<1) + + uint64(in[1])*(uint64(in[7])<<2) + + uint64(in[2])*(uint64(in[6])<<1) + + uint64(in[3])*(uint64(in[5])<<2) + + uint64(in[4])*uint64(in[4]) + tmp[9] = uint64(in[1])*(uint64(in[8])<<1) + + uint64(in[2])*(uint64(in[7])<<1) + + uint64(in[3])*(uint64(in[6])<<1) + + uint64(in[4])*(uint64(in[5])<<1) + tmp[10] = uint64(in[2])*(uint64(in[8])<<1) + + uint64(in[3])*(uint64(in[7])<<2) + + uint64(in[4])*(uint64(in[6])<<1) + + uint64(in[5])*(uint64(in[5])<<1) + tmp[11] = uint64(in[3])*(uint64(in[8])<<1) + + uint64(in[4])*(uint64(in[7])<<1) + + uint64(in[5])*(uint64(in[6])<<1) + tmp[12] = uint64(in[4])*(uint64(in[8])<<1) + + uint64(in[5])*(uint64(in[7])<<2) + + uint64(in[6])*uint64(in[6]) + tmp[13] = uint64(in[5])*(uint64(in[8])<<1) + + uint64(in[6])*(uint64(in[7])<<1) + tmp[14] = uint64(in[6])*(uint64(in[8])<<1) + + uint64(in[7])*(uint64(in[7])<<1) + tmp[15] = uint64(in[7]) * (uint64(in[8]) << 1) + tmp[16] = uint64(in[8]) * uint64(in[8]) + + p256ReduceDegree(out, tmp) +} + +// p256Mul sets out=in*in2. +// +// On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and +// in2[0,2,...] < 2**30, in2[1,3,...] < 2**29. +// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. +func p256Mul(out, in, in2 *[p256Limbs]uint32) { + var tmp [17]uint64 + + tmp[0] = uint64(in[0]) * uint64(in2[0]) + tmp[1] = uint64(in[0])*(uint64(in2[1])<<0) + + uint64(in[1])*(uint64(in2[0])<<0) + tmp[2] = uint64(in[0])*(uint64(in2[2])<<0) + + uint64(in[1])*(uint64(in2[1])<<1) + + uint64(in[2])*(uint64(in2[0])<<0) + tmp[3] = uint64(in[0])*(uint64(in2[3])<<0) + + uint64(in[1])*(uint64(in2[2])<<0) + + uint64(in[2])*(uint64(in2[1])<<0) + + uint64(in[3])*(uint64(in2[0])<<0) + tmp[4] = uint64(in[0])*(uint64(in2[4])<<0) + + uint64(in[1])*(uint64(in2[3])<<1) + + uint64(in[2])*(uint64(in2[2])<<0) + + uint64(in[3])*(uint64(in2[1])<<1) + + uint64(in[4])*(uint64(in2[0])<<0) + tmp[5] = uint64(in[0])*(uint64(in2[5])<<0) + + uint64(in[1])*(uint64(in2[4])<<0) + + uint64(in[2])*(uint64(in2[3])<<0) + + uint64(in[3])*(uint64(in2[2])<<0) + + uint64(in[4])*(uint64(in2[1])<<0) + + uint64(in[5])*(uint64(in2[0])<<0) + tmp[6] = uint64(in[0])*(uint64(in2[6])<<0) + + uint64(in[1])*(uint64(in2[5])<<1) + + uint64(in[2])*(uint64(in2[4])<<0) + + uint64(in[3])*(uint64(in2[3])<<1) + + uint64(in[4])*(uint64(in2[2])<<0) + + uint64(in[5])*(uint64(in2[1])<<1) + + uint64(in[6])*(uint64(in2[0])<<0) + tmp[7] = uint64(in[0])*(uint64(in2[7])<<0) + + uint64(in[1])*(uint64(in2[6])<<0) + + uint64(in[2])*(uint64(in2[5])<<0) + + uint64(in[3])*(uint64(in2[4])<<0) + + uint64(in[4])*(uint64(in2[3])<<0) + + uint64(in[5])*(uint64(in2[2])<<0) + + uint64(in[6])*(uint64(in2[1])<<0) + + uint64(in[7])*(uint64(in2[0])<<0) + // tmp[8] has the greatest value but doesn't overflow. See logic in + // p256Square. + tmp[8] = uint64(in[0])*(uint64(in2[8])<<0) + + uint64(in[1])*(uint64(in2[7])<<1) + + uint64(in[2])*(uint64(in2[6])<<0) + + uint64(in[3])*(uint64(in2[5])<<1) + + uint64(in[4])*(uint64(in2[4])<<0) + + uint64(in[5])*(uint64(in2[3])<<1) + + uint64(in[6])*(uint64(in2[2])<<0) + + uint64(in[7])*(uint64(in2[1])<<1) + + uint64(in[8])*(uint64(in2[0])<<0) + tmp[9] = uint64(in[1])*(uint64(in2[8])<<0) + + uint64(in[2])*(uint64(in2[7])<<0) + + uint64(in[3])*(uint64(in2[6])<<0) + + uint64(in[4])*(uint64(in2[5])<<0) + + uint64(in[5])*(uint64(in2[4])<<0) + + uint64(in[6])*(uint64(in2[3])<<0) + + uint64(in[7])*(uint64(in2[2])<<0) + + uint64(in[8])*(uint64(in2[1])<<0) + tmp[10] = uint64(in[2])*(uint64(in2[8])<<0) + + uint64(in[3])*(uint64(in2[7])<<1) + + uint64(in[4])*(uint64(in2[6])<<0) + + uint64(in[5])*(uint64(in2[5])<<1) + + uint64(in[6])*(uint64(in2[4])<<0) + + uint64(in[7])*(uint64(in2[3])<<1) + + uint64(in[8])*(uint64(in2[2])<<0) + tmp[11] = uint64(in[3])*(uint64(in2[8])<<0) + + uint64(in[4])*(uint64(in2[7])<<0) + + uint64(in[5])*(uint64(in2[6])<<0) + + uint64(in[6])*(uint64(in2[5])<<0) + + uint64(in[7])*(uint64(in2[4])<<0) + + uint64(in[8])*(uint64(in2[3])<<0) + tmp[12] = uint64(in[4])*(uint64(in2[8])<<0) + + uint64(in[5])*(uint64(in2[7])<<1) + + uint64(in[6])*(uint64(in2[6])<<0) + + uint64(in[7])*(uint64(in2[5])<<1) + + uint64(in[8])*(uint64(in2[4])<<0) + tmp[13] = uint64(in[5])*(uint64(in2[8])<<0) + + uint64(in[6])*(uint64(in2[7])<<0) + + uint64(in[7])*(uint64(in2[6])<<0) + + uint64(in[8])*(uint64(in2[5])<<0) + tmp[14] = uint64(in[6])*(uint64(in2[8])<<0) + + uint64(in[7])*(uint64(in2[7])<<1) + + uint64(in[8])*(uint64(in2[6])<<0) + tmp[15] = uint64(in[7])*(uint64(in2[8])<<0) + + uint64(in[8])*(uint64(in2[7])<<0) + tmp[16] = uint64(in[8]) * (uint64(in2[8]) << 0) + + p256ReduceDegree(out, tmp) +} + +func p256Assign(out, in *[p256Limbs]uint32) { + *out = *in +} + +// p256Invert calculates |out| = |in|^{-1} +// +// Based on Fermat's Little Theorem: +// +// a^p = a (mod p) +// a^{p-1} = 1 (mod p) +// a^{p-2} = a^{-1} (mod p) +func p256Invert(out, in *[p256Limbs]uint32) { + var ftmp, ftmp2 [p256Limbs]uint32 + + // each e_I will hold |in|^{2^I - 1} + var e2, e4, e8, e16, e32, e64 [p256Limbs]uint32 + + p256Square(&ftmp, in) // 2^1 + p256Mul(&ftmp, in, &ftmp) // 2^2 - 2^0 + p256Assign(&e2, &ftmp) + p256Square(&ftmp, &ftmp) // 2^3 - 2^1 + p256Square(&ftmp, &ftmp) // 2^4 - 2^2 + p256Mul(&ftmp, &ftmp, &e2) // 2^4 - 2^0 + p256Assign(&e4, &ftmp) + p256Square(&ftmp, &ftmp) // 2^5 - 2^1 + p256Square(&ftmp, &ftmp) // 2^6 - 2^2 + p256Square(&ftmp, &ftmp) // 2^7 - 2^3 + p256Square(&ftmp, &ftmp) // 2^8 - 2^4 + p256Mul(&ftmp, &ftmp, &e4) // 2^8 - 2^0 + p256Assign(&e8, &ftmp) + for i := 0; i < 8; i++ { + p256Square(&ftmp, &ftmp) + } // 2^16 - 2^8 + p256Mul(&ftmp, &ftmp, &e8) // 2^16 - 2^0 + p256Assign(&e16, &ftmp) + for i := 0; i < 16; i++ { + p256Square(&ftmp, &ftmp) + } // 2^32 - 2^16 + p256Mul(&ftmp, &ftmp, &e16) // 2^32 - 2^0 + p256Assign(&e32, &ftmp) + for i := 0; i < 32; i++ { + p256Square(&ftmp, &ftmp) + } // 2^64 - 2^32 + p256Assign(&e64, &ftmp) + p256Mul(&ftmp, &ftmp, in) // 2^64 - 2^32 + 2^0 + for i := 0; i < 192; i++ { + p256Square(&ftmp, &ftmp) + } // 2^256 - 2^224 + 2^192 + + p256Mul(&ftmp2, &e64, &e32) // 2^64 - 2^0 + for i := 0; i < 16; i++ { + p256Square(&ftmp2, &ftmp2) + } // 2^80 - 2^16 + p256Mul(&ftmp2, &ftmp2, &e16) // 2^80 - 2^0 + for i := 0; i < 8; i++ { + p256Square(&ftmp2, &ftmp2) + } // 2^88 - 2^8 + p256Mul(&ftmp2, &ftmp2, &e8) // 2^88 - 2^0 + for i := 0; i < 4; i++ { + p256Square(&ftmp2, &ftmp2) + } // 2^92 - 2^4 + p256Mul(&ftmp2, &ftmp2, &e4) // 2^92 - 2^0 + p256Square(&ftmp2, &ftmp2) // 2^93 - 2^1 + p256Square(&ftmp2, &ftmp2) // 2^94 - 2^2 + p256Mul(&ftmp2, &ftmp2, &e2) // 2^94 - 2^0 + p256Square(&ftmp2, &ftmp2) // 2^95 - 2^1 + p256Square(&ftmp2, &ftmp2) // 2^96 - 2^2 + p256Mul(&ftmp2, &ftmp2, in) // 2^96 - 3 + + p256Mul(out, &ftmp2, &ftmp) // 2^256 - 2^224 + 2^192 + 2^96 - 3 +} + +// p256Scalar3 sets out=3*out. +// +// On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. +// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. +func p256Scalar3(out *[p256Limbs]uint32) { + var carry uint32 + + for i := 0; ; i++ { + out[i] *= 3 + out[i] += carry + carry = out[i] >> 29 + out[i] &= bottom29Bits + + i++ + if i == p256Limbs { + break + } + + out[i] *= 3 + out[i] += carry + carry = out[i] >> 28 + out[i] &= bottom28Bits + } + + p256ReduceCarry(out, carry) +} + +// p256Scalar4 sets out=4*out. +// +// On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. +// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. +func p256Scalar4(out *[p256Limbs]uint32) { + var carry, nextCarry uint32 + + for i := 0; ; i++ { + nextCarry = out[i] >> 27 + out[i] <<= 2 + out[i] &= bottom29Bits + out[i] += carry + carry = nextCarry + (out[i] >> 29) + out[i] &= bottom29Bits + + i++ + if i == p256Limbs { + break + } + nextCarry = out[i] >> 26 + out[i] <<= 2 + out[i] &= bottom28Bits + out[i] += carry + carry = nextCarry + (out[i] >> 28) + out[i] &= bottom28Bits + } + + p256ReduceCarry(out, carry) +} + +// p256Scalar8 sets out=8*out. +// +// On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29. +// On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. +func p256Scalar8(out *[p256Limbs]uint32) { + var carry, nextCarry uint32 + + for i := 0; ; i++ { + nextCarry = out[i] >> 26 + out[i] <<= 3 + out[i] &= bottom29Bits + out[i] += carry + carry = nextCarry + (out[i] >> 29) + out[i] &= bottom29Bits + + i++ + if i == p256Limbs { + break + } + nextCarry = out[i] >> 25 + out[i] <<= 3 + out[i] &= bottom28Bits + out[i] += carry + carry = nextCarry + (out[i] >> 28) + out[i] &= bottom28Bits + } + + p256ReduceCarry(out, carry) +} + +// Group operations: +// +// Elements of the elliptic curve group are represented in Jacobian +// coordinates: (x, y, z). An affine point (x', y') is x'=x/z**2, y'=y/z**3 in +// Jacobian form. + +// p256PointDouble sets {xOut,yOut,zOut} = 2*{x,y,z}. +// +// See https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l +func p256PointDouble(xOut, yOut, zOut, x, y, z *[p256Limbs]uint32) { + var delta, gamma, alpha, beta, tmp, tmp2 [p256Limbs]uint32 + + p256Square(&delta, z) + p256Square(&gamma, y) + p256Mul(&beta, x, &gamma) + + p256Sum(&tmp, x, &delta) + p256Diff(&tmp2, x, &delta) + p256Mul(&alpha, &tmp, &tmp2) + p256Scalar3(&alpha) + + p256Sum(&tmp, y, z) + p256Square(&tmp, &tmp) + p256Diff(&tmp, &tmp, &gamma) + p256Diff(zOut, &tmp, &delta) + + p256Scalar4(&beta) + p256Square(xOut, &alpha) + p256Diff(xOut, xOut, &beta) + p256Diff(xOut, xOut, &beta) + + p256Diff(&tmp, &beta, xOut) + p256Mul(&tmp, &alpha, &tmp) + p256Square(&tmp2, &gamma) + p256Scalar8(&tmp2) + p256Diff(yOut, &tmp, &tmp2) +} + +// p256PointAddMixed sets {xOut,yOut,zOut} = {x1,y1,z1} + {x2,y2,1}. +// (i.e. the second point is affine.) +// +// See https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl +// +// Note that this function does not handle P+P, infinity+P nor P+infinity +// correctly. +func p256PointAddMixed(xOut, yOut, zOut, x1, y1, z1, x2, y2 *[p256Limbs]uint32) { + var z1z1, z1z1z1, s2, u2, h, i, j, r, rr, v, tmp [p256Limbs]uint32 + + p256Square(&z1z1, z1) + p256Sum(&tmp, z1, z1) + + p256Mul(&u2, x2, &z1z1) + p256Mul(&z1z1z1, z1, &z1z1) + p256Mul(&s2, y2, &z1z1z1) + p256Diff(&h, &u2, x1) + p256Sum(&i, &h, &h) + p256Square(&i, &i) + p256Mul(&j, &h, &i) + p256Diff(&r, &s2, y1) + p256Sum(&r, &r, &r) + p256Mul(&v, x1, &i) + + p256Mul(zOut, &tmp, &h) + p256Square(&rr, &r) + p256Diff(xOut, &rr, &j) + p256Diff(xOut, xOut, &v) + p256Diff(xOut, xOut, &v) + + p256Diff(&tmp, &v, xOut) + p256Mul(yOut, &tmp, &r) + p256Mul(&tmp, y1, &j) + p256Diff(yOut, yOut, &tmp) + p256Diff(yOut, yOut, &tmp) +} + +// p256PointAdd sets {xOut,yOut,zOut} = {x1,y1,z1} + {x2,y2,z2}. +// +// See https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl +// +// Note that this function does not handle P+P, infinity+P nor P+infinity +// correctly. +func p256PointAdd(xOut, yOut, zOut, x1, y1, z1, x2, y2, z2 *[p256Limbs]uint32) { + var z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp [p256Limbs]uint32 + + p256Square(&z1z1, z1) + p256Square(&z2z2, z2) + p256Mul(&u1, x1, &z2z2) + + p256Sum(&tmp, z1, z2) + p256Square(&tmp, &tmp) + p256Diff(&tmp, &tmp, &z1z1) + p256Diff(&tmp, &tmp, &z2z2) + + p256Mul(&z2z2z2, z2, &z2z2) + p256Mul(&s1, y1, &z2z2z2) + + p256Mul(&u2, x2, &z1z1) + p256Mul(&z1z1z1, z1, &z1z1) + p256Mul(&s2, y2, &z1z1z1) + p256Diff(&h, &u2, &u1) + p256Sum(&i, &h, &h) + p256Square(&i, &i) + p256Mul(&j, &h, &i) + p256Diff(&r, &s2, &s1) + p256Sum(&r, &r, &r) + p256Mul(&v, &u1, &i) + + p256Mul(zOut, &tmp, &h) + p256Square(&rr, &r) + p256Diff(xOut, &rr, &j) + p256Diff(xOut, xOut, &v) + p256Diff(xOut, xOut, &v) + + p256Diff(&tmp, &v, xOut) + p256Mul(yOut, &tmp, &r) + p256Mul(&tmp, &s1, &j) + p256Diff(yOut, yOut, &tmp) + p256Diff(yOut, yOut, &tmp) +} + +// p256CopyConditional sets out=in if mask = 0xffffffff in constant time. +// +// On entry: mask is either 0 or 0xffffffff. +func p256CopyConditional(out, in *[p256Limbs]uint32, mask uint32) { + for i := 0; i < p256Limbs; i++ { + tmp := mask & (in[i] ^ out[i]) + out[i] ^= tmp + } +} + +// p256SelectAffinePoint sets {out_x,out_y} to the index'th entry of table. +// +// On entry: index < 16, table[0] must be zero. +func p256SelectAffinePoint(xOut, yOut *[p256Limbs]uint32, table []uint32, index uint32) { + for i := range xOut { + xOut[i] = 0 + } + for i := range yOut { + yOut[i] = 0 + } + + for i := uint32(1); i < 16; i++ { + mask := i ^ index + mask |= mask >> 2 + mask |= mask >> 1 + mask &= 1 + mask-- + for j := range xOut { + xOut[j] |= table[0] & mask + table = table[1:] + } + for j := range yOut { + yOut[j] |= table[0] & mask + table = table[1:] + } + } +} + +// p256SelectJacobianPoint sets {out_x,out_y,out_z} to the index'th entry of +// table. +// +// On entry: index < 16, table[0] must be zero. +func p256SelectJacobianPoint(xOut, yOut, zOut *[p256Limbs]uint32, table *[16][3][p256Limbs]uint32, index uint32) { + for i := range xOut { + xOut[i] = 0 + } + for i := range yOut { + yOut[i] = 0 + } + for i := range zOut { + zOut[i] = 0 + } + + // The implicit value at index 0 is all zero. We don't need to perform that + // iteration of the loop because we already set out_* to zero. + for i := uint32(1); i < 16; i++ { + mask := i ^ index + mask |= mask >> 2 + mask |= mask >> 1 + mask &= 1 + mask-- + for j := range xOut { + xOut[j] |= table[i][0][j] & mask + } + for j := range yOut { + yOut[j] |= table[i][1][j] & mask + } + for j := range zOut { + zOut[j] |= table[i][2][j] & mask + } + } +} + +// p256GetBit returns the bit'th bit of scalar. +func p256GetBit(scalar *[32]uint8, bit uint) uint32 { + return uint32(((scalar[bit>>3]) >> (bit & 7)) & 1) +} + +// p256ScalarBaseMult sets {xOut,yOut,zOut} = scalar*G where scalar is a +// little-endian number. Note that the value of scalar must be less than the +// order of the group. +func p256ScalarBaseMult(xOut, yOut, zOut *[p256Limbs]uint32, scalar *[32]uint8) { + nIsInfinityMask := ^uint32(0) + var pIsNoninfiniteMask, mask, tableOffset uint32 + var px, py, tx, ty, tz [p256Limbs]uint32 + + for i := range xOut { + xOut[i] = 0 + } + for i := range yOut { + yOut[i] = 0 + } + for i := range zOut { + zOut[i] = 0 + } + + // The loop adds bits at positions 0, 64, 128 and 192, followed by + // positions 32,96,160 and 224 and does this 32 times. + for i := uint(0); i < 32; i++ { + if i != 0 { + p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut) + } + tableOffset = 0 + for j := uint(0); j <= 32; j += 32 { + bit0 := p256GetBit(scalar, 31-i+j) + bit1 := p256GetBit(scalar, 95-i+j) + bit2 := p256GetBit(scalar, 159-i+j) + bit3 := p256GetBit(scalar, 223-i+j) + index := bit0 | (bit1 << 1) | (bit2 << 2) | (bit3 << 3) + + p256SelectAffinePoint(&px, &py, p256Precomputed[tableOffset:], index) + tableOffset += 30 * p256Limbs + + // Since scalar is less than the order of the group, we know that + // {xOut,yOut,zOut} != {px,py,1}, unless both are zero, which we handle + // below. + p256PointAddMixed(&tx, &ty, &tz, xOut, yOut, zOut, &px, &py) + // The result of pointAddMixed is incorrect if {xOut,yOut,zOut} is zero + // (a.k.a. the point at infinity). We handle that situation by + // copying the point from the table. + p256CopyConditional(xOut, &px, nIsInfinityMask) + p256CopyConditional(yOut, &py, nIsInfinityMask) + p256CopyConditional(zOut, &p256One, nIsInfinityMask) + + // Equally, the result is also wrong if the point from the table is + // zero, which happens when the index is zero. We handle that by + // only copying from {tx,ty,tz} to {xOut,yOut,zOut} if index != 0. + pIsNoninfiniteMask = nonZeroToAllOnes(index) + mask = pIsNoninfiniteMask & ^nIsInfinityMask + p256CopyConditional(xOut, &tx, mask) + p256CopyConditional(yOut, &ty, mask) + p256CopyConditional(zOut, &tz, mask) + // If p was not zero, then n is now non-zero. + nIsInfinityMask &^= pIsNoninfiniteMask + } + } +} + +// p256PointToAffine converts a Jacobian point to an affine point. If the input +// is the point at infinity then it returns (0, 0) in constant time. +func p256PointToAffine(xOut, yOut, x, y, z *[p256Limbs]uint32) { + var zInv, zInvSq [p256Limbs]uint32 + + p256Invert(&zInv, z) + p256Square(&zInvSq, &zInv) + p256Mul(xOut, x, &zInvSq) + p256Mul(&zInv, &zInv, &zInvSq) + p256Mul(yOut, y, &zInv) +} + +// p256ToAffine returns a pair of *big.Int containing the affine representation +// of {x,y,z}. +func p256ToAffine(x, y, z *[p256Limbs]uint32) (xOut, yOut *big.Int) { + var xx, yy [p256Limbs]uint32 + p256PointToAffine(&xx, &yy, x, y, z) + return p256ToBig(&xx), p256ToBig(&yy) +} + +// p256ScalarMult sets {xOut,yOut,zOut} = scalar*{x,y}. +func p256ScalarMult(xOut, yOut, zOut, x, y *[p256Limbs]uint32, scalar *[32]uint8) { + var px, py, pz, tx, ty, tz [p256Limbs]uint32 + var precomp [16][3][p256Limbs]uint32 + var nIsInfinityMask, index, pIsNoninfiniteMask, mask uint32 + + // We precompute 0,1,2,... times {x,y}. + precomp[1][0] = *x + precomp[1][1] = *y + precomp[1][2] = p256One + + for i := 2; i < 16; i += 2 { + p256PointDouble(&precomp[i][0], &precomp[i][1], &precomp[i][2], &precomp[i/2][0], &precomp[i/2][1], &precomp[i/2][2]) + p256PointAddMixed(&precomp[i+1][0], &precomp[i+1][1], &precomp[i+1][2], &precomp[i][0], &precomp[i][1], &precomp[i][2], x, y) + } + + for i := range xOut { + xOut[i] = 0 + } + for i := range yOut { + yOut[i] = 0 + } + for i := range zOut { + zOut[i] = 0 + } + nIsInfinityMask = ^uint32(0) + + // We add in a window of four bits each iteration and do this 64 times. + for i := 0; i < 64; i++ { + if i != 0 { + p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut) + p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut) + p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut) + p256PointDouble(xOut, yOut, zOut, xOut, yOut, zOut) + } + + index = uint32(scalar[31-i/2]) + if (i & 1) == 1 { + index &= 15 + } else { + index >>= 4 + } + + // See the comments in scalarBaseMult about handling infinities. + p256SelectJacobianPoint(&px, &py, &pz, &precomp, index) + p256PointAdd(&tx, &ty, &tz, xOut, yOut, zOut, &px, &py, &pz) + p256CopyConditional(xOut, &px, nIsInfinityMask) + p256CopyConditional(yOut, &py, nIsInfinityMask) + p256CopyConditional(zOut, &pz, nIsInfinityMask) + + pIsNoninfiniteMask = nonZeroToAllOnes(index) + mask = pIsNoninfiniteMask & ^nIsInfinityMask + p256CopyConditional(xOut, &tx, mask) + p256CopyConditional(yOut, &ty, mask) + p256CopyConditional(zOut, &tz, mask) + nIsInfinityMask &^= pIsNoninfiniteMask + } +} + +// p256FromBig sets out = R*in. +func p256FromBig(out *[p256Limbs]uint32, in *big.Int) { + tmp := new(big.Int).Lsh(in, 257) + tmp.Mod(tmp, p256Params.P) + + for i := 0; i < p256Limbs; i++ { + if bits := tmp.Bits(); len(bits) > 0 { + out[i] = uint32(bits[0]) & bottom29Bits + } else { + out[i] = 0 + } + tmp.Rsh(tmp, 29) + + i++ + if i == p256Limbs { + break + } + + if bits := tmp.Bits(); len(bits) > 0 { + out[i] = uint32(bits[0]) & bottom28Bits + } else { + out[i] = 0 + } + tmp.Rsh(tmp, 28) + } +} + +// p256ToBig returns a *big.Int containing the value of in. +func p256ToBig(in *[p256Limbs]uint32) *big.Int { + result, tmp := new(big.Int), new(big.Int) + + result.SetInt64(int64(in[p256Limbs-1])) + for i := p256Limbs - 2; i >= 0; i-- { + if (i & 1) == 0 { + result.Lsh(result, 29) + } else { + result.Lsh(result, 28) + } + tmp.SetInt64(int64(in[i])) + result.Add(result, tmp) + } + + result.Mul(result, p256RInverse) + result.Mod(result, p256Params.P) + return result } diff --git a/src/crypto/elliptic/p256_noasm.go b/src/crypto/elliptic/p256_noasm.go new file mode 100644 index 0000000000..380ea66ac3 --- /dev/null +++ b/src/crypto/elliptic/p256_noasm.go @@ -0,0 +1,15 @@ +// Copyright 2016 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +//go:build !amd64 && !s390x && !arm64 && !ppc64le +// +build !amd64,!s390x,!arm64,!ppc64le + +package elliptic + +var p256 p256Curve + +func initP256Arch() { + // Use pure Go constant-time implementation. + p256 = p256Curve{p256Params} +} diff --git a/src/crypto/elliptic/p256_ppc64le.go b/src/crypto/elliptic/p256_ppc64le.go index dda1157564..3867a87e1f 100644 --- a/src/crypto/elliptic/p256_ppc64le.go +++ b/src/crypto/elliptic/p256_ppc64le.go @@ -35,7 +35,6 @@ var ( func initP256Arch() { p256 = p256CurveFast{p256Params} initTable() - return } func (curve p256CurveFast) Params() *CurveParams { @@ -73,7 +72,6 @@ func p256MovCond(res, a, b *p256Point, cond int) //go:noescape func p256Select(point *p256Point, table []p256Point, idx int) -// //go:noescape func p256SelectBase(point *p256Point, table []p256Point, idx int) @@ -85,12 +83,9 @@ func p256SelectBase(point *p256Point, table []p256Point, idx int) //go:noescape func p256PointAddAffineAsm(res, in1, in2 *p256Point, sign, sel, zero int) -// Point add -// //go:noescape func p256PointAddAsm(res, in1, in2 *p256Point) int -// //go:noescape func p256PointDoubleAsm(res, in *p256Point) @@ -340,7 +335,6 @@ func boothW7(in uint) (int, int) { } func initTable() { - p256PreFast = new([37][64]p256Point) // TODO: For big endian, these slices should be in reverse byte order, @@ -352,7 +346,6 @@ func initTable() { 0x25, 0xf3, 0x21, 0xdd, 0x88, 0x86, 0xe8, 0xd2, 0x85, 0x5d, 0x88, 0x25, 0x18, 0xff, 0x71, 0x85}, //(p256.y*2^256)%p z: [32]byte{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00}, //(p256.z*2^256)%p - } t1 := new(p256Point) diff --git a/src/crypto/elliptic/p256_s390x.go b/src/crypto/elliptic/p256_s390x.go index 735e9f57f1..b7331ebbfd 100644 --- a/src/crypto/elliptic/p256_s390x.go +++ b/src/crypto/elliptic/p256_s390x.go @@ -60,7 +60,6 @@ func initP256Arch() { // No vector support, use pure Go implementation. p256 = p256Curve{p256Params} - return } func (curve p256CurveFast) Params() *CurveParams { diff --git a/src/crypto/elliptic/params.go b/src/crypto/elliptic/params.go new file mode 100644 index 0000000000..586f2c0386 --- /dev/null +++ b/src/crypto/elliptic/params.go @@ -0,0 +1,296 @@ +// Copyright 2021 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package elliptic + +import "math/big" + +// CurveParams contains the parameters of an elliptic curve and also provides +// a generic, non-constant time implementation of Curve. +type CurveParams struct { + P *big.Int // the order of the underlying field + N *big.Int // the order of the base point + B *big.Int // the constant of the curve equation + Gx, Gy *big.Int // (x,y) of the base point + BitSize int // the size of the underlying field + Name string // the canonical name of the curve +} + +func (curve *CurveParams) Params() *CurveParams { + return curve +} + +// CurveParams operates, internally, on Jacobian coordinates. For a given +// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1) +// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole +// calculation can be performed within the transform (as in ScalarMult and +// ScalarBaseMult). But even for Add and Double, it's faster to apply and +// reverse the transform than to operate in affine coordinates. + +// polynomial returns x³ - 3x + b. +func (curve *CurveParams) polynomial(x *big.Int) *big.Int { + x3 := new(big.Int).Mul(x, x) + x3.Mul(x3, x) + + threeX := new(big.Int).Lsh(x, 1) + threeX.Add(threeX, x) + + x3.Sub(x3, threeX) + x3.Add(x3, curve.B) + x3.Mod(x3, curve.P) + + return x3 +} + +func (curve *CurveParams) IsOnCurve(x, y *big.Int) bool { + // If there is a dedicated constant-time implementation for this curve operation, + // use that instead of the generic one. + if specific, ok := matchesSpecificCurve(curve, p224, p384, p521); ok { + return specific.IsOnCurve(x, y) + } + + if x.Sign() < 0 || x.Cmp(curve.P) >= 0 || + y.Sign() < 0 || y.Cmp(curve.P) >= 0 { + return false + } + + // y² = x³ - 3x + b + y2 := new(big.Int).Mul(y, y) + y2.Mod(y2, curve.P) + + return curve.polynomial(x).Cmp(y2) == 0 +} + +// zForAffine returns a Jacobian Z value for the affine point (x, y). If x and +// y are zero, it assumes that they represent the point at infinity because (0, +// 0) is not on the any of the curves handled here. +func zForAffine(x, y *big.Int) *big.Int { + z := new(big.Int) + if x.Sign() != 0 || y.Sign() != 0 { + z.SetInt64(1) + } + return z +} + +// affineFromJacobian reverses the Jacobian transform. See the comment at the +// top of the file. If the point is ∞ it returns 0, 0. +func (curve *CurveParams) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { + if z.Sign() == 0 { + return new(big.Int), new(big.Int) + } + + zinv := new(big.Int).ModInverse(z, curve.P) + zinvsq := new(big.Int).Mul(zinv, zinv) + + xOut = new(big.Int).Mul(x, zinvsq) + xOut.Mod(xOut, curve.P) + zinvsq.Mul(zinvsq, zinv) + yOut = new(big.Int).Mul(y, zinvsq) + yOut.Mod(yOut, curve.P) + return +} + +func (curve *CurveParams) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { + // If there is a dedicated constant-time implementation for this curve operation, + // use that instead of the generic one. + if specific, ok := matchesSpecificCurve(curve, p224, p384, p521); ok { + return specific.Add(x1, y1, x2, y2) + } + + z1 := zForAffine(x1, y1) + z2 := zForAffine(x2, y2) + return curve.affineFromJacobian(curve.addJacobian(x1, y1, z1, x2, y2, z2)) +} + +// addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and +// (x2, y2, z2) and returns their sum, also in Jacobian form. +func (curve *CurveParams) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { + // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl + x3, y3, z3 := new(big.Int), new(big.Int), new(big.Int) + if z1.Sign() == 0 { + x3.Set(x2) + y3.Set(y2) + z3.Set(z2) + return x3, y3, z3 + } + if z2.Sign() == 0 { + x3.Set(x1) + y3.Set(y1) + z3.Set(z1) + return x3, y3, z3 + } + + z1z1 := new(big.Int).Mul(z1, z1) + z1z1.Mod(z1z1, curve.P) + z2z2 := new(big.Int).Mul(z2, z2) + z2z2.Mod(z2z2, curve.P) + + u1 := new(big.Int).Mul(x1, z2z2) + u1.Mod(u1, curve.P) + u2 := new(big.Int).Mul(x2, z1z1) + u2.Mod(u2, curve.P) + h := new(big.Int).Sub(u2, u1) + xEqual := h.Sign() == 0 + if h.Sign() == -1 { + h.Add(h, curve.P) + } + i := new(big.Int).Lsh(h, 1) + i.Mul(i, i) + j := new(big.Int).Mul(h, i) + + s1 := new(big.Int).Mul(y1, z2) + s1.Mul(s1, z2z2) + s1.Mod(s1, curve.P) + s2 := new(big.Int).Mul(y2, z1) + s2.Mul(s2, z1z1) + s2.Mod(s2, curve.P) + r := new(big.Int).Sub(s2, s1) + if r.Sign() == -1 { + r.Add(r, curve.P) + } + yEqual := r.Sign() == 0 + if xEqual && yEqual { + return curve.doubleJacobian(x1, y1, z1) + } + r.Lsh(r, 1) + v := new(big.Int).Mul(u1, i) + + x3.Set(r) + x3.Mul(x3, x3) + x3.Sub(x3, j) + x3.Sub(x3, v) + x3.Sub(x3, v) + x3.Mod(x3, curve.P) + + y3.Set(r) + v.Sub(v, x3) + y3.Mul(y3, v) + s1.Mul(s1, j) + s1.Lsh(s1, 1) + y3.Sub(y3, s1) + y3.Mod(y3, curve.P) + + z3.Add(z1, z2) + z3.Mul(z3, z3) + z3.Sub(z3, z1z1) + z3.Sub(z3, z2z2) + z3.Mul(z3, h) + z3.Mod(z3, curve.P) + + return x3, y3, z3 +} + +func (curve *CurveParams) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { + // If there is a dedicated constant-time implementation for this curve operation, + // use that instead of the generic one. + if specific, ok := matchesSpecificCurve(curve, p224, p384, p521); ok { + return specific.Double(x1, y1) + } + + z1 := zForAffine(x1, y1) + return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1)) +} + +// doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and +// returns its double, also in Jacobian form. +func (curve *CurveParams) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { + // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b + delta := new(big.Int).Mul(z, z) + delta.Mod(delta, curve.P) + gamma := new(big.Int).Mul(y, y) + gamma.Mod(gamma, curve.P) + alpha := new(big.Int).Sub(x, delta) + if alpha.Sign() == -1 { + alpha.Add(alpha, curve.P) + } + alpha2 := new(big.Int).Add(x, delta) + alpha.Mul(alpha, alpha2) + alpha2.Set(alpha) + alpha.Lsh(alpha, 1) + alpha.Add(alpha, alpha2) + + beta := alpha2.Mul(x, gamma) + + x3 := new(big.Int).Mul(alpha, alpha) + beta8 := new(big.Int).Lsh(beta, 3) + beta8.Mod(beta8, curve.P) + x3.Sub(x3, beta8) + if x3.Sign() == -1 { + x3.Add(x3, curve.P) + } + x3.Mod(x3, curve.P) + + z3 := new(big.Int).Add(y, z) + z3.Mul(z3, z3) + z3.Sub(z3, gamma) + if z3.Sign() == -1 { + z3.Add(z3, curve.P) + } + z3.Sub(z3, delta) + if z3.Sign() == -1 { + z3.Add(z3, curve.P) + } + z3.Mod(z3, curve.P) + + beta.Lsh(beta, 2) + beta.Sub(beta, x3) + if beta.Sign() == -1 { + beta.Add(beta, curve.P) + } + y3 := alpha.Mul(alpha, beta) + + gamma.Mul(gamma, gamma) + gamma.Lsh(gamma, 3) + gamma.Mod(gamma, curve.P) + + y3.Sub(y3, gamma) + if y3.Sign() == -1 { + y3.Add(y3, curve.P) + } + y3.Mod(y3, curve.P) + + return x3, y3, z3 +} + +func (curve *CurveParams) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) { + // If there is a dedicated constant-time implementation for this curve operation, + // use that instead of the generic one. + if specific, ok := matchesSpecificCurve(curve, p224, p256, p384, p521); ok { + return specific.ScalarMult(Bx, By, k) + } + + Bz := new(big.Int).SetInt64(1) + x, y, z := new(big.Int), new(big.Int), new(big.Int) + + for _, byte := range k { + for bitNum := 0; bitNum < 8; bitNum++ { + x, y, z = curve.doubleJacobian(x, y, z) + if byte&0x80 == 0x80 { + x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z) + } + byte <<= 1 + } + } + + return curve.affineFromJacobian(x, y, z) +} + +func (curve *CurveParams) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { + // If there is a dedicated constant-time implementation for this curve operation, + // use that instead of the generic one. + if specific, ok := matchesSpecificCurve(curve, p224, p256, p384, p521); ok { + return specific.ScalarBaseMult(k) + } + + return curve.ScalarMult(curve.Gx, curve.Gy, k) +} + +func matchesSpecificCurve(params *CurveParams, available ...Curve) (Curve, bool) { + for _, c := range available { + if params == c.Params() { + return c, true + } + } + return nil, false +} -- cgit v1.2.3-54-g00ecf