// Copyright 2016 Joe Wilm, The Alacritty Project Contributors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! A specialized 2d grid implementation optimized for use in a terminal. use std::cmp::{min, max, Ordering}; use std::ops::{Deref, Range, Index, IndexMut, RangeTo, RangeFrom, RangeFull}; use index::{self, Point, Line, Column, IndexRange, RangeInclusive}; mod row; pub use self::row::Row; #[cfg(test)] mod tests; mod storage; use self::storage::Storage; /// Lines to keep in scrollback buffer const SCROLLBACK_LINES: usize = 10_000; /// Convert a type to a linear index range. pub trait ToRange { fn to_range(&self) -> RangeInclusive; } /// Bidirection iterator pub trait BidirectionalIterator: Iterator { fn prev(&mut self) -> Option; } /// An item in the grid along with its Line and Column. pub struct Indexed { pub inner: T, pub line: Line, pub column: Column, } impl Deref for Indexed { type Target = T; #[inline] fn deref(&self) -> &T { &self.inner } } /// Represents the terminal display contents #[derive(Clone, Debug, Deserialize, Serialize, Eq, PartialEq)] pub struct Grid { /// Lines in the grid. Each row holds a list of cells corresponding to the /// columns in that row. raw: Storage>, /// Number of columns cols: index::Column, /// Number of lines. /// /// Invariant: lines is equivalent to raw.len() lines: index::Line, /// Template row. /// /// This is used to quickly populate new lines and clear recycled lines /// during scroll wrapping. template_row: Row, /// Template cell for populating template_row template: T, /// Temporary row storage for scrolling with a region temp: Vec>, /// Offset of displayed area /// /// If the displayed region isn't at the bottom of the screen, it stays /// stationary while more text is emitted. The scrolling implementation /// updates this offset accordingly. display_offset: usize, /// An limit on how far back it's possible to scroll scroll_limit: usize, } pub struct GridIterator<'a, T: 'a> { grid: &'a Grid, pub cur: Point, } impl Grid { pub fn scroll_display(&mut self, count: isize) { self.display_offset = min( max((self.display_offset as isize) + count, 0isize) as usize, self.scroll_limit ); } pub fn new(lines: index::Line, cols: index::Column, template: T) -> Grid { let mut raw = Storage::with_capacity(*lines + SCROLLBACK_LINES, lines); let template_row = Row::new(cols, &template); // Allocate all lines in the buffer, including scrollback history // // TODO (jwilm) Allocating each line at this point is expensive and // delays startup. A nice solution might be having `Row` delay // allocation until it's actually used. for _ in 0..raw.capacity() { raw.push(template_row.clone()); } Grid { raw, cols, lines, template_row, template, temp: Vec::new(), display_offset: 0, scroll_limit: 0, } } pub fn resize(&mut self, lines: index::Line, cols: index::Column) { // Check that there's actually work to do and return early if not if lines == self.lines && cols == self.cols { return; } match self.lines.cmp(&lines) { Ordering::Less => self.grow_lines(lines), Ordering::Greater => self.shrink_lines(lines), Ordering::Equal => (), } match self.cols.cmp(&cols) { Ordering::Less => self.grow_cols(cols), Ordering::Greater => self.shrink_cols(cols), Ordering::Equal => (), } } fn increase_scroll_limit(&mut self, count: usize) { self.scroll_limit = min(self.scroll_limit + count, self.raw.len() - *self.lines); } /// Add lines to the visible area /// /// The behavior in Terminal.app and iTerm.app is to keep the cursor at the /// bottom of the screen as long as there is scrollback available. Once /// scrollback is exhausted, new lines are simply added to the bottom of the /// screen. /// /// Alacritty takes a different approach. Rather than trying to move with /// the scrollback, we simply pull additional lines from the back of the /// buffer in order to populate the new area. fn grow_lines(&mut self, new_line_count: index::Line) { let previous_scroll_limit = self.scroll_limit; let lines_added = new_line_count - self.lines; // Need to "resize" before updating buffer self.raw.set_visible_lines(new_line_count); self.lines = new_line_count; // Add new lines to bottom self.scroll_up(&(Line(0)..new_line_count), lines_added); self.scroll_limit = self.scroll_limit.saturating_sub(*lines_added); } fn grow_cols(&mut self, cols: index::Column) { for row in self.raw.iter_mut() { row.grow(cols, &self.template); } // Update self cols self.cols = cols; // Also update template_row to be the correct length self.template_row.grow(cols, &self.template); } /// Remove lines from the visible area /// /// The behavior in Terminal.app and iTerm.app is to keep the cursor at the /// bottom of the screen. This is achieved by pushing history "out the top" /// of the terminal window. /// /// Alacritty takes the same approach. fn shrink_lines(&mut self, target: index::Line) { // TODO handle disabled scrollback // while index::Line(self.raw.len()) != lines { // self.raw.pop(); // } let prev = self.lines; self.raw.rotate(*prev as isize - *target as isize); self.raw.set_visible_lines(target); self.lines = target; } /// Convert a Line index (active region) to a buffer offset /// /// # Panics /// /// This method will panic if `Line` is larger than the grid dimensions pub fn line_to_offset(&self, line: index::Line) -> usize { assert!(line < self.num_lines()); *(self.num_lines() - line - 1) } #[inline] pub fn scroll_down(&mut self, region: &Range, positions: index::Line) { // Whether or not there is a scrolling region active, as long as it // starts at the top, we can do a full rotation which just involves // changing the start index. // // To accomodate scroll regions, rows are reordered at the end. if region.start == Line(0) { // Rotate the entire line buffer. If there's a scrolling region // active, the bottom lines are restored in the next step. self.raw.rotate_up(*positions); // Now, restore any scroll region lines for i in IndexRange(region.end .. self.num_lines()) { // First do the swap self.raw.swap_lines(i, i + positions); } // Finally, reset recycled lines for i in 0..*positions { self.raw[i].reset(&self.template_row); } } else { // Subregion rotation for line in IndexRange((region.start + positions)..region.end).rev() { self.raw.swap_lines(line, line - positions); } for line in IndexRange(region.start .. (region.start + positions)) { self.raw[*line].reset(&self.template_row); } } } /// scroll_up moves lines at the bottom towards the top /// /// This is the performance-sensitive part of scrolling. #[inline] pub fn scroll_up(&mut self, region: &Range, positions: index::Line) { if region.start == Line(0) { // Update display offset when not pinned to active area if self.display_offset != 0 { self.display_offset += *positions; } self.increase_scroll_limit(*positions); // Rotate the entire line buffer. If there's a scrolling region // active, the bottom lines are restored in the next step. self.raw.rotate(-(*positions as isize)); // Now, restore any lines outside the scroll region for idx in (*region.end .. *self.num_lines()).rev() { // First do the swap self.raw.swap_lines(Line(idx), Line(idx) - positions); } // Finally, reset recycled lines // // Recycled lines are just above the end of the scrolling region. for i in 0..*positions { self.raw[region.end - i - 1].reset(&self.template_row); } } else { // Subregion rotation for line in IndexRange(region.start..(region.end - positions)) { self.raw.swap_lines(line, line + positions); } // Clear reused lines for line in IndexRange((region.end - positions) .. region.end) { self.raw[line].reset(&self.template_row); } } } } impl Grid { #[inline] pub fn num_lines(&self) -> index::Line { self.lines } pub fn display_iter(&self) -> DisplayIter { DisplayIter::new(self) } #[inline] pub fn num_cols(&self) -> index::Column { self.cols } pub fn iter_from(&self, point: Point) -> GridIterator { GridIterator { grid: self, cur: point, } } #[inline] pub fn contains(&self, point: &Point) -> bool { self.lines > point.line && self.cols > point.col } // /// Swap two lines in the grid // /// // /// This could have used slice::swap internally, but we are able to have // /// better error messages by doing the bounds checking ourselves. // #[inline] // pub fn swap_lines(&mut self, src: index::Line, dst: index::Line) { // self.raw.swap(*src, *dst); // } fn shrink_cols(&mut self, cols: index::Column) { for row in self.raw.iter_mut() { row.shrink(cols); } self.cols = cols; self.template_row.shrink(cols); } } impl<'a, T> Iterator for GridIterator<'a, T> { type Item = &'a T; fn next(&mut self) -> Option { let last_line = self.grid.num_lines() - Line(1); let last_col = self.grid.num_cols() - Column(1); match self.cur { Point { line, col } if (line == last_line) && (col == last_col) => None, Point { col, .. } if (col == last_col) => { self.cur.line += Line(1); self.cur.col = Column(0); Some(&self.grid[self.cur.line][self.cur.col]) }, _ => { self.cur.col += Column(1); Some(&self.grid[self.cur.line][self.cur.col]) } } } } impl<'a, T> BidirectionalIterator for GridIterator<'a, T> { fn prev(&mut self) -> Option { let num_cols = self.grid.num_cols(); match self.cur { Point { line: Line(0), col: Column(0) } => None, Point { col: Column(0), .. } => { self.cur.line -= Line(1); self.cur.col = num_cols - Column(1); Some(&self.grid[self.cur.line][self.cur.col]) }, _ => { self.cur.col -= Column(1); Some(&self.grid[self.cur.line][self.cur.col]) } } } } /// Index active region by line impl Index for Grid { type Output = Row; #[inline] fn index(&self, index: index::Line) -> &Row { &self.raw[index] } } /// Index with buffer offset impl Index for Grid { type Output = Row; #[inline] fn index(&self, index: usize) -> &Row { &self.raw[index] } } impl IndexMut for Grid { #[inline] fn index_mut(&mut self, index: index::Line) -> &mut Row { &mut self.raw[index] } } impl<'point, T> Index<&'point Point> for Grid { type Output = T; #[inline] fn index<'a>(&'a self, point: &Point) -> &'a T { &self[point.line][point.col] } } impl<'point, T> IndexMut<&'point Point> for Grid { #[inline] fn index_mut<'a, 'b>(&'a mut self, point: &'b Point) -> &'a mut T { &mut self[point.line][point.col] } } // ------------------------------------------------------------------------------------------------- // REGIONS // ------------------------------------------------------------------------------------------------- /// A subset of lines in the grid /// /// May be constructed using Grid::region(..) pub struct Region<'a, T: 'a> { start: Line, end: Line, raw: &'a Storage>, } /// A mutable subset of lines in the grid /// /// May be constructed using Grid::region_mut(..) pub struct RegionMut<'a, T: 'a> { start: Line, end: Line, raw: &'a mut Storage>, } impl<'a, T> RegionMut<'a, T> { /// Call the provided function for every item in this region pub fn each(self, func: F) { for row in self { for item in row { func(item) } } } } pub trait IndexRegion { /// Get an immutable region of Self fn region<'a>(&'a self, _: I) -> Region<'a, T>; /// Get a mutable region of Self fn region_mut<'a>(&'a mut self, _: I) -> RegionMut<'a, T>; } impl IndexRegion, T> for Grid { fn region(&self, index: Range) -> Region { assert!(index.start < self.num_lines()); assert!(index.end <= self.num_lines()); assert!(index.start <= index.end); Region { start: index.start, end: index.end, raw: &self.raw } } fn region_mut(&mut self, index: Range) -> RegionMut { assert!(index.start < self.num_lines()); assert!(index.end <= self.num_lines()); assert!(index.start <= index.end); RegionMut { start: index.start, end: index.end, raw: &mut self.raw } } } impl IndexRegion, T> for Grid { fn region(&self, index: RangeTo) -> Region { assert!(index.end <= self.num_lines()); Region { start: Line(0), end: index.end, raw: &self.raw } } fn region_mut(&mut self, index: RangeTo) -> RegionMut { assert!(index.end <= self.num_lines()); RegionMut { start: Line(0), end: index.end, raw: &mut self.raw } } } impl IndexRegion, T> for Grid { fn region(&self, index: RangeFrom) -> Region { assert!(index.start < self.num_lines()); Region { start: index.start, end: self.num_lines(), raw: &self.raw } } fn region_mut(&mut self, index: RangeFrom) -> RegionMut { assert!(index.start < self.num_lines()); RegionMut { start: index.start, end: self.num_lines(), raw: &mut self.raw } } } impl IndexRegion for Grid { fn region(&self, _: RangeFull) -> Region { Region { start: Line(0), end: self.num_lines(), raw: &self.raw } } fn region_mut(&mut self, _: RangeFull) -> RegionMut { RegionMut { start: Line(0), end: self.num_lines(), raw: &mut self.raw } } } pub struct RegionIter<'a, T: 'a> { end: Line, cur: Line, raw: &'a Storage>, } pub struct RegionIterMut<'a, T: 'a> { end: Line, cur: Line, raw: &'a mut Storage>, } impl<'a, T> IntoIterator for Region<'a, T> { type Item = &'a Row; type IntoIter = RegionIter<'a, T>; fn into_iter(self) -> Self::IntoIter { RegionIter { end: self.end, cur: self.start, raw: self.raw } } } impl<'a, T> IntoIterator for RegionMut<'a, T> { type Item = &'a mut Row; type IntoIter = RegionIterMut<'a, T>; fn into_iter(self) -> Self::IntoIter { RegionIterMut { end: self.end, cur: self.start, raw: self.raw } } } impl<'a, T> Iterator for RegionIter<'a, T> { type Item = &'a Row; fn next(&mut self) -> Option { if self.cur < self.end { let index = self.cur; self.cur += 1; Some(&self.raw[index]) } else { None } } } impl<'a, T> Iterator for RegionIterMut<'a, T> { type Item = &'a mut Row; fn next(&mut self) -> Option { if self.cur < self.end { let index = self.cur; self.cur += 1; unsafe { Some(&mut *(&mut self.raw[index] as *mut _)) } } else { None } } } // ------------------------------------------------------------------------------------------------- // DISPLAY ITERATOR // ------------------------------------------------------------------------------------------------- /// Iterates over the visible area accounting for buffer transform pub struct DisplayIter<'a, T: 'a> { grid: &'a Grid, offset: usize, limit: usize, col: Column, } impl<'a, T: 'a> DisplayIter<'a, T> { pub fn new(grid: &'a Grid) -> DisplayIter<'a, T> { let offset = grid.display_offset + *grid.num_lines() - 1; let limit = grid.display_offset; let col = Column(0); DisplayIter { grid, offset, col, limit } } pub fn offset(&self) -> usize { self.offset } pub fn column(&self) -> Column { self.col } } impl<'a, T: Copy + 'a> Iterator for DisplayIter<'a, T> { type Item = Indexed; #[inline] fn next(&mut self) -> Option { // Make sure indices are valid. Return None if we've reached the end. if self.col == self.grid.num_cols() { if self.offset == self.limit { return None; } self.col = Column(0); self.offset -= 1; } // Return the next item. let item = Some(Indexed { inner: self.grid.raw[self.offset][self.col], line: Line( *self.grid.lines - 1 - (self.offset - self.limit)), column: self.col }); self.col += 1; item } }