//! Line and Column newtypes for strongly typed tty/grid/terminal APIs. /// Indexing types and implementations for Grid and Line. use std::cmp::{Ord, Ordering}; use std::fmt; use std::ops::{self, Add, AddAssign, Deref, Range, Sub, SubAssign}; use serde::{Deserialize, Serialize}; use crate::grid::Dimensions; /// The side of a cell. pub type Side = Direction; /// Horizontal direction. #[derive(Debug, Copy, Clone, Eq, PartialEq)] pub enum Direction { Left, Right, } impl Direction { pub fn opposite(self) -> Self { match self { Side::Right => Side::Left, Side::Left => Side::Right, } } } /// Behavior for handling grid boundaries. pub enum Boundary { /// Clamp to grid boundaries. /// /// When an operation exceeds the grid boundaries, the last point will be returned no matter /// how far the boundaries were exceeded. Clamp, /// Wrap around grid bondaries. /// /// When an operation exceeds the grid boundaries, the point will wrap around the entire grid /// history and continue at the other side. Wrap, } /// Index in the grid using row, column notation. #[derive(Serialize, Deserialize, Debug, Clone, Copy, Default, Eq, PartialEq)] pub struct Point { pub line: L, pub column: Column, } impl Point { pub fn new(line: L, col: Column) -> Point { Point { line, column: col } } #[inline] #[must_use = "this returns the result of the operation, without modifying the original"] pub fn sub(mut self, num_cols: Column, rhs: usize) -> Point where L: Copy + Default + Into + Add + Sub, { let num_cols = num_cols.0; let line_changes = (rhs + num_cols - 1).saturating_sub(self.column.0) / num_cols; if self.line.into() >= Line(line_changes) { self.line = self.line - line_changes; self.column = Column((num_cols + self.column.0 - rhs % num_cols) % num_cols); self } else { Point::new(L::default(), Column(0)) } } #[inline] #[must_use = "this returns the result of the operation, without modifying the original"] pub fn add(mut self, num_cols: Column, rhs: usize) -> Point where L: Copy + Default + Into + Add + Sub, { let num_cols = num_cols.0; self.line = self.line + (rhs + self.column.0) / num_cols; self.column = Column((self.column.0 + rhs) % num_cols); self } } impl Point { #[inline] #[must_use = "this returns the result of the operation, without modifying the original"] pub fn sub_absolute(mut self, dimensions: &D, boundary: Boundary, rhs: usize) -> Point where D: Dimensions, { let total_lines = dimensions.total_lines(); let num_cols = dimensions.cols().0; self.line += (rhs + num_cols - 1).saturating_sub(self.column.0) / num_cols; self.column = Column((num_cols + self.column.0 - rhs % num_cols) % num_cols); if self.line >= total_lines { match boundary { Boundary::Clamp => Point::new(total_lines - 1, Column(0)), Boundary::Wrap => Point::new(self.line - total_lines, self.column), } } else { self } } #[inline] #[must_use = "this returns the result of the operation, without modifying the original"] pub fn add_absolute(mut self, dimensions: &D, boundary: Boundary, rhs: usize) -> Point where D: Dimensions, { let num_cols = dimensions.cols(); let line_delta = (rhs + self.column.0) / num_cols.0; if self.line >= line_delta { self.line -= line_delta; self.column = Column((self.column.0 + rhs) % num_cols.0); self } else { match boundary { Boundary::Clamp => Point::new(0, num_cols - 1), Boundary::Wrap => { let col = Column((self.column.0 + rhs) % num_cols.0); let line = dimensions.total_lines() + self.line - line_delta; Point::new(line, col) }, } } } } impl PartialOrd for Point { fn partial_cmp(&self, other: &Point) -> Option { Some(self.cmp(other)) } } impl Ord for Point { fn cmp(&self, other: &Point) -> Ordering { match (self.line.cmp(&other.line), self.column.cmp(&other.column)) { (Ordering::Equal, ord) | (ord, _) => ord, } } } impl PartialOrd for Point { fn partial_cmp(&self, other: &Point) -> Option { Some(self.cmp(other)) } } impl Ord for Point { fn cmp(&self, other: &Point) -> Ordering { match (self.line.cmp(&other.line), self.column.cmp(&other.column)) { (Ordering::Equal, ord) => ord, (Ordering::Less, _) => Ordering::Greater, (Ordering::Greater, _) => Ordering::Less, } } } impl From> for Point { fn from(point: Point) -> Self { Point::new(point.line as isize, point.column) } } impl From> for Point { fn from(point: Point) -> Self { Point::new(Line(point.line), point.column) } } impl From> for Point { fn from(point: Point) -> Self { Point::new(point.line as usize, point.column) } } impl From for Point { fn from(point: Point) -> Self { Point::new(point.line.0, point.column) } } /// A line. /// /// Newtype to avoid passing values incorrectly. #[derive(Serialize, Deserialize, Debug, Copy, Clone, Eq, PartialEq, Default, Ord, PartialOrd)] pub struct Line(pub usize); impl fmt::Display for Line { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{}", self.0) } } /// A column. /// /// Newtype to avoid passing values incorrectly. #[derive(Serialize, Deserialize, Debug, Copy, Clone, Eq, PartialEq, Default, Ord, PartialOrd)] pub struct Column(pub usize); impl fmt::Display for Column { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{}", self.0) } } // Copyright 2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // // implements binary operators "&T op U", "T op &U", "&T op &U" // based on "T op U" where T and U are expected to be `Copy`able macro_rules! forward_ref_binop { (impl $imp:ident, $method:ident for $t:ty, $u:ty) => { impl<'a> $imp<$u> for &'a $t { type Output = <$t as $imp<$u>>::Output; #[inline] fn $method(self, other: $u) -> <$t as $imp<$u>>::Output { $imp::$method(*self, other) } } impl<'a> $imp<&'a $u> for $t { type Output = <$t as $imp<$u>>::Output; #[inline] fn $method(self, other: &'a $u) -> <$t as $imp<$u>>::Output { $imp::$method(self, *other) } } impl<'a, 'b> $imp<&'a $u> for &'b $t { type Output = <$t as $imp<$u>>::Output; #[inline] fn $method(self, other: &'a $u) -> <$t as $imp<$u>>::Output { $imp::$method(*self, *other) } } }; } /// Macro for deriving deref. macro_rules! deref { ($ty:ty, $target:ty) => { impl Deref for $ty { type Target = $target; #[inline] fn deref(&self) -> &$target { &self.0 } } }; } macro_rules! add { ($ty:ty, $construct:expr) => { impl ops::Add<$ty> for $ty { type Output = $ty; #[inline] fn add(self, rhs: $ty) -> $ty { $construct(self.0 + rhs.0) } } }; } macro_rules! sub { ($ty:ty, $construct:expr) => { impl ops::Sub<$ty> for $ty { type Output = $ty; #[inline] fn sub(self, rhs: $ty) -> $ty { $construct(self.0 - rhs.0) } } impl<'a> ops::Sub<$ty> for &'a $ty { type Output = $ty; #[inline] fn sub(self, rhs: $ty) -> $ty { $construct(self.0 - rhs.0) } } impl<'a> ops::Sub<&'a $ty> for $ty { type Output = $ty; #[inline] fn sub(self, rhs: &'a $ty) -> $ty { $construct(self.0 - rhs.0) } } impl<'a, 'b> ops::Sub<&'a $ty> for &'b $ty { type Output = $ty; #[inline] fn sub(self, rhs: &'a $ty) -> $ty { $construct(self.0 - rhs.0) } } }; } /// This exists because we can't implement Iterator on Range /// and the existing impl needs the unstable Step trait /// This should be removed and replaced with a Step impl /// in the ops macro when `step_by` is stabilized. pub struct IndexRange(pub Range); impl From> for IndexRange { fn from(from: Range) -> Self { IndexRange(from) } } macro_rules! ops { ($ty:ty, $construct:expr) => { add!($ty, $construct); sub!($ty, $construct); deref!($ty, usize); forward_ref_binop!(impl Add, add for $ty, $ty); impl $ty { #[inline] fn steps_between(start: $ty, end: $ty, by: $ty) -> Option { if by == $construct(0) { return None; } if start < end { // Note: We assume $t <= usize here. let diff = (end - start).0; let by = by.0; if diff % by > 0 { Some(diff / by + 1) } else { Some(diff / by) } } else { Some(0) } } #[inline] fn steps_between_by_one(start: $ty, end: $ty) -> Option { Self::steps_between(start, end, $construct(1)) } } impl Iterator for IndexRange<$ty> { type Item = $ty; #[inline] fn next(&mut self) -> Option<$ty> { if self.0.start < self.0.end { let old = self.0.start; self.0.start = old + 1; Some(old) } else { None } } #[inline] fn size_hint(&self) -> (usize, Option) { match Self::Item::steps_between_by_one(self.0.start, self.0.end) { Some(hint) => (hint, Some(hint)), None => (0, None) } } } impl DoubleEndedIterator for IndexRange<$ty> { #[inline] fn next_back(&mut self) -> Option<$ty> { if self.0.start < self.0.end { let new = self.0.end - 1; self.0.end = new; Some(new) } else { None } } } impl AddAssign<$ty> for $ty { #[inline] fn add_assign(&mut self, rhs: $ty) { self.0 += rhs.0 } } impl SubAssign<$ty> for $ty { #[inline] fn sub_assign(&mut self, rhs: $ty) { self.0 -= rhs.0 } } impl AddAssign for $ty { #[inline] fn add_assign(&mut self, rhs: usize) { self.0 += rhs } } impl SubAssign for $ty { #[inline] fn sub_assign(&mut self, rhs: usize) { self.0 -= rhs } } impl From for $ty { #[inline] fn from(val: usize) -> $ty { $construct(val) } } impl Add for $ty { type Output = $ty; #[inline] fn add(self, rhs: usize) -> $ty { $construct(self.0 + rhs) } } impl Sub for $ty { type Output = $ty; #[inline] fn sub(self, rhs: usize) -> $ty { $construct(self.0 - rhs) } } } } ops!(Line, Line); ops!(Column, Column); #[cfg(test)] mod tests { use super::*; #[test] fn location_ordering() { assert!(Point::new(Line(0), Column(0)) == Point::new(Line(0), Column(0))); assert!(Point::new(Line(1), Column(0)) > Point::new(Line(0), Column(0))); assert!(Point::new(Line(0), Column(1)) > Point::new(Line(0), Column(0))); assert!(Point::new(Line(1), Column(1)) > Point::new(Line(0), Column(0))); assert!(Point::new(Line(1), Column(1)) > Point::new(Line(0), Column(1))); assert!(Point::new(Line(1), Column(1)) > Point::new(Line(1), Column(0))); } #[test] fn sub() { let num_cols = Column(42); let point = Point::new(0, Column(13)); let result = point.sub(num_cols, 1); assert_eq!(result, Point::new(0, point.column - 1)); } #[test] fn sub_wrap() { let num_cols = Column(42); let point = Point::new(1, Column(0)); let result = point.sub(num_cols, 1); assert_eq!(result, Point::new(0, num_cols - 1)); } #[test] fn sub_clamp() { let num_cols = Column(42); let point = Point::new(0, Column(0)); let result = point.sub(num_cols, 1); assert_eq!(result, point); } #[test] fn add() { let num_cols = Column(42); let point = Point::new(0, Column(13)); let result = point.add(num_cols, 1); assert_eq!(result, Point::new(0, point.column + 1)); } #[test] fn add_wrap() { let num_cols = Column(42); let point = Point::new(0, num_cols - 1); let result = point.add(num_cols, 1); assert_eq!(result, Point::new(1, Column(0))); } #[test] fn add_absolute() { let point = Point::new(0, Column(13)); let result = point.add_absolute(&(Line(1), Column(42)), Boundary::Clamp, 1); assert_eq!(result, Point::new(0, point.column + 1)); } #[test] fn add_absolute_wrapline() { let point = Point::new(1, Column(41)); let result = point.add_absolute(&(Line(2), Column(42)), Boundary::Clamp, 1); assert_eq!(result, Point::new(0, Column(0))); } #[test] fn add_absolute_multiline_wrapline() { let point = Point::new(2, Column(9)); let result = point.add_absolute(&(Line(3), Column(10)), Boundary::Clamp, 11); assert_eq!(result, Point::new(0, Column(0))); } #[test] fn add_absolute_clamp() { let point = Point::new(0, Column(41)); let result = point.add_absolute(&(Line(1), Column(42)), Boundary::Clamp, 1); assert_eq!(result, point); } #[test] fn add_absolute_wrap() { let point = Point::new(0, Column(41)); let result = point.add_absolute(&(Line(3), Column(42)), Boundary::Wrap, 1); assert_eq!(result, Point::new(2, Column(0))); } #[test] fn add_absolute_multiline_wrap() { let point = Point::new(0, Column(9)); let result = point.add_absolute(&(Line(3), Column(10)), Boundary::Wrap, 11); assert_eq!(result, Point::new(1, Column(0))); } #[test] fn sub_absolute() { let point = Point::new(0, Column(13)); let result = point.sub_absolute(&(Line(1), Column(42)), Boundary::Clamp, 1); assert_eq!(result, Point::new(0, point.column - 1)); } #[test] fn sub_absolute_wrapline() { let point = Point::new(0, Column(0)); let result = point.sub_absolute(&(Line(2), Column(42)), Boundary::Clamp, 1); assert_eq!(result, Point::new(1, Column(41))); } #[test] fn sub_absolute_multiline_wrapline() { let point = Point::new(0, Column(0)); let result = point.sub_absolute(&(Line(3), Column(10)), Boundary::Clamp, 11); assert_eq!(result, Point::new(2, Column(9))); } #[test] fn sub_absolute_wrap() { let point = Point::new(2, Column(0)); let result = point.sub_absolute(&(Line(3), Column(42)), Boundary::Wrap, 1); assert_eq!(result, Point::new(0, Column(41))); } #[test] fn sub_absolute_multiline_wrap() { let point = Point::new(2, Column(0)); let result = point.sub_absolute(&(Line(3), Column(10)), Boundary::Wrap, 11); assert_eq!(result, Point::new(1, Column(9))); } }